

Imagine the result

Georgia-Pacific LLC

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility Fort Bragg, California

January 2013

© Georgia-Pacific LLC 2013

MASS

Erik Mantor, EIT Environmental Engineer

Queganos

Kimberly Walsh, MPH Principal Scientist

mun

Jeremie Maehr, PE Certified Project Manager 2

Final Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility

Prepared for:

Georgia-Pacific LLC

Prepared by: ARCADIS U.S., Inc. 100 Montgomery Street Suite 300 San Francisco, California 94104 Tel 415.374.2744 Fax 415.374.2745

Our Ref.: B0066142.2012.AS010

Date: January 2013

© Georgia-Pacific LLC 2013

Acro	onyms	and Ab	obreviations	xiii	
Exe	cutive	Summa	ary	ES-1	
1.	Introduction				
	1.1	Object	ives	1-1	
	1.2	Report	t Organization	1-2	
2.	Phys	sical Ch	naracteristics of Operable Unit E	2-1	
	2.1	Land L	Jse	2-1	
		2.1.1	Current	2-1	
		2.1.2	Future Scenario	2-2	
	2.2	Ecolog	3y	2-2	
		2.2.1	Flora and Fauna	2-3	
	2.3	Climat	e	2-4	
	2.4	Geolog	ЭУ	2-5	
		2.4.1	Regional	2-5	
		2.4.2	Local	2-5	
		2.4.3	OU-E Specific	2-5	
			2.4.3.1 Artificial Fill	2-6	
			2.4.3.2 Marine Sediments and Bedrock	2-6	
	2.5	Hydro	geology	2-6	
		2.5.1	Regional	2-6	
		2.5.2	Local	2-7	
		2.5.3	OU-E Specific	2-7	
	2.6	Surfac	e Water Hydrology	2-7	
3.	Site	History	,	3-1	
	3.1	Operat	tional History	3-1	
		3.1.1	Terrestrial Areas	3-1	
			3.1.1.1 Water Treatment and Truck Dump AOI	3-1	

		3.1.1.2	Compressor House AOI	3-3
		3.1.1.3	Sawmill #1 AOI	3-3
		3.1.1.4	Powerhouse and Fuel Barn AOI	3-4
		3.1.1.5	Pond 8 Fill AOI	3-6
	3.1.2	Ponds		3-6
3.2	Previo	us Investi	gations	3-7
	3.2.1	Lead-B	ased Paint Investigations	3-7
	3.2.2	Environ	mental Site Assessments	3-8
		3.2.2.1	Phase I ESA	3-8
		3.2.2.2	Phase II ESA	3-8
	3.2.3	Additior	nal Site Assessments	3-8
		3.2.3.1	Additional Site Assessment – TRC	3-8
		3.2.3.2	Additional Site Assessment – AME	3-9
	3.2.4	Quarter	rly Groundwater Monitoring	3-9
3.3	Interin	n Action A	ctivities	3-9
	3.3.1	Founda	ation Removal	3-9
	3.3.2	Pipeline	e Removal	3-9
	3.3.3	Interim	Action Compressor House Area	3-10
3.4	Biolog	ical Asses	ssment	3-10
Rem	edial Ir	nvestigat	tion Activities and Nature and Extent of Contamination	4-1
4.1	Pond	Sediment	Investigations	4-1
4.2	Soil ar	nd Ground	dwater Investigation Activities	4-2
	4.2.1	Initial S	oil and Groundwater Investigation, June 2010	4-3
	4.2.2	Step Ou	ut Evaluation, October-November 2010	4-5
	4.2.3	Step Ou	ut Evaluation, December 2010	4-6
4.3	Data B	Evaluation	Approach	4-6
	4.3.1	Soil		4-7

4.

4.4

	4.3.1.1	Human Hea	Ith Screening Levels	4-7
	4.3.1.2	Ecological S	Screening Levels	4-8
	4.3.1.3	ТРН		4-9
4.3.2	Sedime	nt		4-9
	4.3.2.1	Human Hea	Ith Screening Levels	4-9
	4.3.2.2	Ecological S	Screening Levels	4-9
	4.3.2.3	ТРН		4-10
	4.3.2.4	Usability of	Soil Metals Background Concentrations for Sediment Evaluation	4-10
4.3.3	Ground	water		4-10
4.3.4	Surface	Water		4-12
4.3.5	TPH Fo	rensics		4-12
4.3.6	Dioxin/F	uran Source	Classification	4-12
Nature	e and Exte	nt of Contami	ination by Area of Interest	4-13
4.4.1	Soil			4-14
	4.4.1.1	Water Treat	ment and Truck Dump AOI	4-14
		4.4.1.1.1	Overview of RI Activities	4-14
		4.4.1.1.2	Nature and Extent of Contamination	4-15
		4.4.1.1.3	Summary of Findings	4-19
	4.4.1.2	Sawmill #1	AOI	4-21
		4.4.1.2.1	Overview of RI Activities	4-21
		4.4.1.2.2	Nature and Extent of Contamination	4-21
		4.4.1.2.3	Summary of Findings	4-25
	4.4.1.3	Compresso	r House and Lath Building AOI	4-27
		4.4.1.3.1	Overview of RI Activities	4-27
		4.4.1.3.2	Nature and Extent of Contamination	4-27

		4.4.1.3.3	Summary of Findings	4-30
	4.4.1.4	Powerhouse	and Fuel Barn AOI	4-32
		4.4.1.4.1	Overview of RI Activities	4-32
		4.4.1.4.2	Nature and Extent of Contamination	4-34
		4.4.1.4.3	Summary of Findings	4-38
	4.4.1.5	Pond 8 Fill A	rea AOI	4-41
		4.4.1.5.1	Metals	4-41
		4.4.1.5.2	Total Petroleum Hydrocarbons	4-41
		4.4.1.5.3	Semi-Volatile Organic Compounds	4-42
		4.4.1.5.4	Volatile Organic Compounds	4-42
		4.4.1.5.5	Summary of Findings	4-42
4.4.2	Sedime	nt		4-43
	4.4.2.1	Pond 8 AOI		4-43
		4.4.2.1.1	Metals	4-43
		4.4.2.1.2	Total Petroleum Hydrocarbons	4-45
		4.4.2.1.3	Polychlorinated Biphenyls	4-45
		4.4.2.1.4	Polycyclic Aromatic Hydrocarbons	4-46
		4.4.2.1.5	Volatile Organic Compounds	4-46
		4.4.2.1.6	Dioxins/Furans	4-46
		4.4.2.1.7	Summary of Findings	4-47
	4.4.2.2	North Pond a	and Ponds 6 and 7AOIs	4-49

	4.4.2.2.1	Metals	4-49
	4.4.2.2.2	Total Petroleum Hydrocarbons	4-52
	4.4.2.2.3	Polychlorinated Biphenyls	4-52
	4.4.2.2.4	Polycyclic Aromatic Hydrocarbons	4-52
	4.4.2.2.5	Volatile Organic Compounds	4-53
	4.4.2.2.6	Dioxins/Furans	4-53
	4.4.2.2.7	Summary of Findings	4-54
4.4.2.3	Southern Po	onds AOI	4-55
	4.4.2.3.1	Metals	4-56
	4.4.2.3.2	Total Petroleum Hydrocarbons	4-59
	4.4.2.3.3	Polychlorinated Biphenyls	4-59
	4.4.2.3.4	Polycyclic Aromatic Hydrocarbons	4-59
	4.4.2.3.5	Volatile Organic Compounds	4-60
	4.4.2.3.6	Dioxins/Furans	4-60
	4.4.2.3.7	Summary of Findings	4-61
4.4.2.4	Ponds 5 and	d 9 AOIs	4-64
	4.4.2.4.1	Metals	4-64
	4.4.2.4.2	Total Petroleum Hydrocarbons	4-65
	4.4.2.4.3	Polychlorinated Biphenyls	4-65
	4.4.2.4.4	Polycyclic Aromatic Hydrocarbons	4-65

		4.4.2.4.5	Volatile Organic Compounds	4-66
		4.4.2.4.6	Dioxins/Furans	4-66
		4.4.2.4.7	Summary of Findings	4-66
4.4.3	Ground	water		4-67
	4.4.3.1	Overview of	RI Activities	4-68
	4.4.3.2	Metals		4-68
		4.4.3.2.1	Monitoring Well Samples	4-68
		4.4.3.2.2	Groundwater Grab Samples	4-69
	4.4.3.3	Total Petrole	um Hydrocarbons	4-70
		4.4.3.3.1	Monitoring Well Samples	4-70
		4.4.3.3.2	Groundwater Grab Samples	4-71
	4.4.3.4	Hydrocarbon	Source Evaluation	4-71
	4.4.3.5	Polychlorinat	ed Biphenyls	4-72
	4.4.3.6	Semi-volatile	Organic Compounds	4-72
		4.4.3.6.1	Monitoring Well Samples	4-72
		4.4.3.6.2	Groundwater Grab Samples	4-72
	4.4.3.7	Polycyclic Ar	romatic Hydrocarbons	4-72
		4.4.3.7.1	Monitoring Well Samples	4-72
		4.4.3.7.2	Groundwater Grab Samples	4-73
	4.4.3.8	Volatile Orga	anic Compounds	4-73
		4.4.3.8.1	Monitoring Well Samples	4-73
		4.4.3.8.2	Groundwater Grab Samples	4-73

		4.4.3.9	Dioxins/Fura	ns	4-74
		4.4.3.10	Summary of	Findings	4-74
	4.4.4	Surface	Water		4-78
		4.4.4.1	Pond 8		4-78
			4.4.4.1.1	Metals	4-78
			4.4.4.1.2	Total Petroleum Hydrocarbons	4-78
			4.4.4.1.3	Polycyclic Aromatic Hydrocarbons	4-78
			4.4.4.1.4	Volatile Organic Compounds	4-79
			4.4.4.1.5	Dioxins/Furans	4-79
			4.4.4.1.6	Summary of Findings	4-79
		4.4.4.2	North Pond a	and Ponds 6 and 7	4-79
			4.4.4.2.1	Metals	4-79
			4.4.4.2.2	Total Petroleum Hydrocarbons	4-80
			4.4.4.2.3	Polycyclic Aromatic Hydrocarbons	4-80
			4.4.4.2.4	Volatile Organic Compounds	4-80
			4.4.4.2.5	Dioxins/Furans	4-80
			4.4.4.2.6	Summary of Findings	4-81
		4.4.4.3	Southern Po	nds	4-81
			4.4.4.3.1	Metals	4-81
		4.4.4.4	Ponds 5 and	9	4-81
			4.4.4.1	Metals	4-82
4.5	Adequ	acy of Site	e Characteriza	tion	4-83

5.	Conc	lusions	5-1
	5.1	Water Treatment and Truck Dump AOI	5-1
	5.2	Sawmill #1 AOI	5-1
	5.3	Compressor House and Lath Building AOI	5-2
	5.4	Powerhouse and Fuel Barn AOI	5-2
	5.5	Pond 8 Fill Area AOI	5-2
	5.6	Pond 8 AOI	5-2
	5.7	Ponds 6, 7 and North Pond AOIs	5-3
	5.8	Southern Ponds AOI	5-3
	5.9	Ponds 5 and 9 AOI	5-3
	5.10	Groundwater and Surface Water	5-4
6.	Refer	ences	6-1

Tables

Table 4-1	Groundwater Sampling and Analysis Summary
Table 4-2	Soil Sampling and Analysis Summary
Table 4-3	North Pond and Ponds 6,7 and 8 – Sediment Sampling and Analysis Summary
Table 4-4	North Pond and Ponds 6,7 and 8 – Surface Water Sampling and Analysis Summary
Table 4-5	Southern Ponds – Sediment Sampling and Analysis Summary
Table 4-6	Southern Ponds – Surface Water Sampling and Analysis Summary
Table 4-7	Ponds 5 and 9 – Sediment Sampling and Analysis Summary
Table 4-8	Ponds 5 and 9 - Surface Water Sampling and Analysis Summary
Table 4-9	Rationale and Results Evaluation for Step-Out Sampling Events
Table 4-10	(Deleted)
Table 4-11	Dissolved Metals Detected in Groundwater Grab Samples
Table 4-12	Total Petroleum Hydrocarbons Detected in Groundwater Grab Samples
Table 4-13	Semi-Volatile Organic Compounds Detected in Groundwater Grab Samples
Table 4-14	Polycyclic Aromatic Hydrocarbons Detected in Groundwater Grab Samples

Table of Contents

- Table 4-15
 Volatile Organic Compounds Detected in Groundwater Grab Samples
- Table 4-16
 Dissolved Metals Detected in Groundwater Monitoring Well Samples
- Table 4-17 Total Petroleum Hydrocarbons Detected in Groundwater Monitoring Well Samples
- Table 4-18 Polychlorinated Biphenyls Detected in Groundwater Monitoring Well Samples
- Table 4-19 Semi-Volatile Organic Compounds Detected in Groundwater Monitoring Well Samples
- Table 4-20 Polycyclic Aromatic Hydrocarbons Detected in Groundwater Monitoring Well Samples
- Table 4-21 Volatile Organic Compounds Detected in Groundwater Monitoring Well Samples
- Table 4-22 PCDDs/PCDFs Detected in Groundwater Monitoring Well Samples
- Table 4-23 Metals Detected in Soil
- Table 4-24 Total Petroleum Hydrocarbons Detected in Soil
- Table 4-25 Polychlorinated Biphenyls Detected in Soil
- Table 4-26 Semi-Volatile Organic Compounds Detected in Soil
- Table 4-27 Polycyclic Aromatic Hydrocarbons Detected in Soil
- Table 4-28Volatile Organic Carbons Detected in Soil
- Table 4-29 Dioxins Detected in Soil
- Table 4-30Metals Detected in Sediment
- Table 4-31 Total Petroleum Hydrocarbons Detected in Sediment
- Table 4-32 Polychlorinated Biphenyls Detected in Sediment
- Table 4-33 Polycyclic Aromatic Hydrocarbons Detected in Sediment
- Table 4-34 Volatile Organic Carbons Detected in Sediment
- Table 4-35 Dioxins Detected in Sediment
- Table 4-36 Pesticides Detected in Sediment
- Table 4-37 Dissolved Metals Detected in Surface Water
- Table 4-38
 Total Petroleum Hydrocarbons Detected in Surface Water
- Table 4-39 Semi-Volatile Organic Compounds Detected in Surface Water
- Table 4-40 Polycyclic Aromatic Hydrocarbons Detected in Surface Water
- Table 4-41
 Volatile Organic Compounds Detected in Surface Water

Table of Contents

ARCADIS

- Table 4-42Dioxins Detected in Surface Water
- Table 4-43 Chlorophenols Detected in Surface Water
- Table 4-44 Grab Groundwater Statistical Summary
- Table 4-45 Monitoring Well Groundwater Statistical Summary
- Table 4-46 Soil Statistical Summary Water Treatment and Truck Dump AOI
- Table 4-47 Soil Statistical Summary Sawmill #1 AOI
- Table 4-48 Soil Statistical Summary Compressor House and Lath Building AOI
- Table 4-49 Soil Statistical Summary Power House and Fuel Barn AOI
- Table 4-50 Soil Statistical Summary Pond 8 Fill Area AOI
- Table 4-51
 Sediment Statistical Summary Pond 8
- Table 4-52 Sediment Statistical Summary North Pond and Ponds 6 and 7
- Table 4-53 Sediment Statistical Summary Southern Ponds
- Table 4-54 Sediment Statistical Summary Ponds 5 and 9
- Table 4-55 Surface Water Statistical Summary Pond 8
- Table 4-56 Surface Water Statistical Summary North Pond and Ponds 6 and 7
- Table 4-57 Surface Water Statistical Summary Southern Ponds
- Table 4-58 Surface Water Statistical Summary Ponds 5 and 9

Figures

Figure 1-1	Site Location Map
Figure 1-2	Operable Units Location Map
Figure 2-1	OU-E Terrestrial AOIs and Associated Features
Figure 2-2	Wetlands and Other Wet Environmentally Sensitive Habitat Area – Central
Figure 2-3	Wetlands and Other Wet Environmentally Sensitive Habitat Area - Southern
Figure 2-4	Geology Map
Figure 2-5	Fourth Quarter 2011 Groundwater Contour Map
Figure 2-6	Surface Water Flow Schematic
Figure 4-1	Areas of Interest

- Figure 4-2 Groundwater Sampling Locations
- Figure 4-3 Water Treatment and Truck Dump, Compressor, House and Lathe Building, and Sawmill #1 AOIs – Soil, Sediment and Surface Water Sampling Locations
- Figure 4-4 Powerhouse and Fuel Barn AOI and Pond 8 Fill Area AOI Soil, Sediment and Groundwater and Surface Water Sampling Locations
- Figure 4-5 Southern Ponds Sediment and Surface Water Sampling Locations
- Figure 4-6 Pond 5 and Pond 9 Sediment and Surface Water Sampling Locations
- Figure 4-7 TPH Concentrations in Groundwater
- Figure 4-8 Cross-Section Overview
- Figure 4-9 X-X' Cross Section: Diesel
- Figure 4-10 X-X' Cross Section: Motor Oil
- Figure 4-11 Y-Y' Cross Section: Diesel
- Figure 4-12 Y-Y' Cross Section: Motor Oil
- Figure 4-13 Z-Z' Cross Section: Diesel
- Figure 4-14 Z-Z' Cross Section: Motor Oil
- Figure 4-15a Lead Concentrations in Soil Compared with Background Concentration
- Figure 4-15b Lead Concentrations in Soil Compared with Human Health PSL
- Figure 4-16 TPHd Concentrations in Soil
- Figure 4-17 B(a)P TEQ Concentrations in Soil
- Figure 4-18a 2,3,7,8-TCDD TEQ Concentrations in Soil Compared with Ecological PSL
- Figure 4-18b 2,3,7,8-TCDD TEQ Concentrations in Soil Compared with Human Health PSL and CDRG
- Figure 4-19 HMW PAH Concentrations in Soil
- Figure 4-20 Arsenic Concentrations in Sediment
- Figure 4-21 Lead Concentrations in Sediment
- Figure 4-22 TPHd Concentrations in Sediment
- Figure 4-23 Total PAH Concentrations in Sediment
- Figure 4-24a 2,3,7,8-TCDD TEQ (Human/Mammal) Concentrations in Sediment Compared with Human Health PSL
- Figure 4-24b 2,3,7,8-TCDD TEQ (Fish) Concentrations in Sediment Compared with Ecological PSL

Table of Contents

ARCADIS

Figure 4-25	Southern Ponds – Arsenic Concentrations in Sediment
Figure 4-26	Southern Ponds – Lead Concentrations in Sediment
Figure 4-27	Southern Ponds – Zinc Concentrations in Sediment
Figure 4-28	Southern Ponds – Total PAH Concentrations in Sediment
Figure 4-29a	Southern Ponds – 2,3,7,8-TCDD TEQ Concentrations in Sediment
Figure 4-29b	Southern Ponds – 2,3,7,8-TCDD TEQ Concentrations in Sediment Compared with Ecological PSL
Figure 5-1	Areas of Concern

Appendices (on CD)

A Field N	lotes
-----------	-------

- B Data Validation and Laboratory Reports
- C Boring Logs
- D Selection of Screening Level Values for Data Evaluation
- E Deleted
- F Forensic Evaluation of TPH Content in Soil Samples Containing Wood/Sawdust and Other Organic Material
 - Attachment F-1 TPH Forensic Evaluation Figures
 - Attachment F-2 TPH Forensic Evaluation Reference
 - Attachment F-3 TPH Forensic Analysis Laboratory Report

G Dioxin Profiles

- Attachment G-1 Soil Dioxin Congener Profiles
- Attachment G-2 Pond 8 Sediment Dioxin Congener Profiles
- Attachment G-3 Ponds 6, 7 and North Pond Sediment Dioxin Congener Profiles
- Attachment G-4 Southern Ponds Sediment Dioxin Congener Profiles
- Attachment G-5 Ponds 5 and 9 Sediment Dioxin Congener Profiles

Attachment G-6 Literature-Based Dioxin Congener Source Profiles

- H Response to Comments
- I Groundwater Geochemistry Evaluation

Acronyms and Abbreviations

ACM	asbestos-containing material
AME	Acton•Mickelson•Environmental, Inc.
AOC	Area of Concern
AOI	area of interest
ARCADIS	ARCADIS U.S., Inc.
AST	aboveground storage tank
B(a)P	benzo(a)pyrene
BBL	Blasland, Bouck & Lee, Inc.
bgs	below ground surface
BHHERA	baseline human health and ecological risk assessment
bss	below sediment surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
CalEPA	California Environmental Protection Agency
CAM	California Assessment Manual
CCC	California Coastal Commission
CCME	Canadian Council of Ministers of the Environment
CCR	Current Conditions Report (BBL, 2006)
CDRG	California Dioxin Remediation Goal
CDFG	California Department of Fish and Game
CHHSL	California Human Health Screening Level
City	City of Fort Bragg
COI	constituent of interest
CPF	cancer potency factor
CRAM	California Rapid Assessment Method
CSM	conceptual site model
CVRWQCB	California Regional Water Quality Control Board, Central Valley Region

су	cubic yard(s)
dioxin	polychlorinated dibenzo-p-dioxin
DTSC	California Environmental Protection Agency, Department of Toxic Substances Control
Eco-SSL	ecological soil screening level
EFH	Exposure Factors Handbook
ESA	environmental site assessment
ESHA	environmentally sensitive habitat area
°F	degrees Fahrenheit
FOD	frequency of detection
ft	feet or foot
ft/ft	foot per foot
FS	feasibility study
furan	polychlorinated dibenzofuran
GC	gas chromatogram
Georgia-Pacific	Georgia-Pacific LLC
GIS	geographical information system
HERD	Human and Ecological Risk Division
HHRA	Human Health Risk Assessment
HMW	high molecular weight
LBP	lead-based paint
LGW	leaching to groundwater
LMW	low molecular weight
MCL	Maximum Contaminant Level
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MSB	marine/sediment bedrock
NCRWQCB	North Coast Region Water Quality Control Board

NOM	natural organic material
OEHHA	Office of Environmental Health and Hazard Assessment
Order	Site Investigation and Remediation Order, Docket No. HSA-RAO 06-07-150
OU	operable unit
PAH	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
PEC	probable effects concentration
PHG	Public Health Goal
pg/g	picograms per gram
pg/L	picograms per liter
PID	photoionization detector
PSL	primary screening level
QAPP	Quality Assurance Project Plan (ARCADIS BBL, 2007c)
RA	risk assessment
RAGS	Risk Assessment Guidance for Superfund
RAP	Remedial Action Plan
RAWP	Site-Wide Risk Assessment Work Plan (ARCADIS BBL, 2008a)
RBSC	risk-based screening concentration
RBTL	risk-basedTarget Levels
RI	remedial investigation
RSL	Regional Screening Level
site	former Georgia-Pacific Wood Products Facility, Fort Bragg, California
SOPs	standard operating procedures
SVOC	semivolatile organic compound
TCDD	2,3,7,8-tetrachlorodibenzo-p-dioxin
TEC	threshold effects concentration
TEF	toxicity equivalency factor
TEQ	toxic equivalent

TOC	total organic carbon
TPH	total petroleum hydrocarbons
TPH-LGW SL	total petroleum hydrocarbons leaching to groundwater screening level
TPHd	total petroleum hydrocarbons as diesel
TPHg	total petroleum hydrocarbons as gasoline
TPHmo	total petroleum hydrocarbons as motor oil
TRC	TRC Companies, Inc.
USEPA	United States Environmental Protection Agency
VOC	volatile organic compound
waters/wetlands	waters, including wetlands
WHO	World Health Organization
WQO	water quality objective
WRA	WRA Environmental Consultants

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

Executive Summary

Georgia-Pacific LLC (Georgia-Pacific) and ARCADIS U.S., Inc. (ARCADIS) prepared this *Remedial Investigation Report for Operable Unit E* (RI Report). Operable Unit E (OU-E) is a portion of the former Georgia-Pacific Wood Products Facility (site) located in Fort Bragg, Mendocino County, California. This RI Report was prepared as required by the California Department of Toxic Substances Control (DTSC) under the Site Investigation and Remediation Order, Docket No. HAS-RAO 06-07-150 (Order) for the site. This RI identifies potential sources and nature and extent of impacts observed through extensive sample collection and analysis within OU-E. This RI also includes human health and ecological risk evaluations. The OU-E RI is distinct from other RIs completed for operable units at the site in that the current conditions risk evaluation is integrated with the nature and extent evaluation and was conducted using a conservative approach in the form of point-by-point comparison with screening levels. This comparison culminated in identification of Areas of Concern (AOCs) for evaluation in a forthcoming baseline human health and ecological risk assessment (BHHERA) to provide a basis for a Feasibility Study and remedial action planning.

Site Characteristics

OU-E consists of approximately 28 terrestrial acres in the west-central portion of the site, as well as 10 manmade ponds (Ponds 1 through 9 and the North Pond). Predominant industrial features in this area were related to power production, milling of timber, water treatment, management of fly ash, and fuel storage. The ponds served operational purposes, including wastewater management, providing a source of water for firefighting, and use as a log pond. Pond 8 also continues to provide stormwater management for the City of Fort Bragg (City).

The majority of industrial features within OU-E have been removed. Some portions of the terrestrial area were also capped following structural demolition and foundation removal activities. Currently, OU-E is vacant and only used to support ongoing environmental activities for the site as well as stormwater management for the City of Fort Bragg.

Operational History and Previous Environmental Activities

Georgia-Pacific identified five terrestrial areas of interest (AOIs) in OU-E based on former site operations: Water Treatment and Truck Dump, Compressor House, Sawmill #1, Powerhouse and Fuel Barn, and Pond 8 Fill Area. Industrial development that occurred in OU-E was largely concentrated in the first four AOIs, which comprise the low-lying basin north of Pond 8. Predominant industrial features in this area were related to power production, milling of timber, water treatment, management of fly ash, and fuel storage. Ponds 1 through 9 are also considered the equivalent of AOIs in this document.

Former Georgia-Pacific Wood Products Facility

Extensive environmental sampling activities have been conducted within OU-E in connection with a Phase I Environmental Site Assessment performed in 2004. These activities have included collection and analysis of hundreds of soil, pond sediment, and pond surface water samples, in addition to groundwater monitoring. Interim actions have included concrete slab and foundation demolition, pipeline removal, and excavation of impacted soil in the vicinity of a historical fuel line and the compressor house.

Future Use

Various alternatives have been considered for the future development of OU-E, particularly for Pond 8 and the adjacent terrestrial area. The majority of the Operable Unit, including all of the terrestrial area and Pond 8, is designated as open space. Ponds 1 through 4 span areas designated as urban reserve and industrial use. The area around Pond 5 is designated as mixed use, while the area around Pond 9 is designated as residential.

Nature and Extent of Impacts

Soil sample results from the terrestrial AOIs indicate minimal total petroleum hydrocarbons as gasoline (TPHg), total petroleum hydrocarbons as motor oil (TPHmo), volatile organic compounds (VOC), semivolatile organic compound (SVOC) or polychlorinated biphenyl (PCB) impacts to soil. Lead, polycyclic aromatic hydrocarbons (PAHs) and dioxins/furans were detected in soil samples at concentrations above screening levels in the low-lying area north of Pond 8. Lead and dioxin/furan concentrations were highest southeast of the former Powerhouse, in the proximity of the former fly-ash reinjection system and open fire refuse area. PAH concentrations greater than screening levels were identified along the drain line south of the former Sawmill #1 building, near the former Equipment Fueling Area, along the eastern perimeter of the fuel line excavation boundary, and south of the former Bunker Fuel above ground storage tank (AST) area. Metals other than lead were also detected at concentrations above conservative human health (arsenic, barium, copper) or ecological (antimony, arsenic, barium, chromium, cobalt, copper, mercury, molybdenum, nickel, selenium, silver, vanadium, zinc) screening levels. There are also exceedances in soil samples of total petroleum hydrocarbons as diesel (TPHd) screening levels. However, TPHd concentrations in groundwater samples from downgradient monitoring wells are consistently below screening levels or not detected. Furthermore, forensic analysis of TPH in select soil samples indicates that naturally organic material (NOM) is contributing to TPH concentrations, with only a small contribution from petroleum sources.

Historical and RI sediment sample results for Ponds 1, 2 and 3 indicate minimal TPHg, TPHd, TPHmo, PCB, or VOC impacts. Dioxin/furan concentrations exceeding human health and ecological screening levels were detected in samples from the three ponds. Arsenic, molybdenum and zinc concentrations exceeded ecological screening levels by an order of magnitude in some samples; other metals were also detected above ecological screening levels. Arsenic and lead were detected above human health screening levels. PAHs were also detected above screening levels in samples from the three ponds, with the highest

Former Georgia-Pacific Wood Products Facility

concentrations in Pond 2 and the eastern portion of Pond 3. In general, sediment impacts in Ponds 1, 2, and 3 were greatest in surface sediment and decreased with depth.

Pond 4 contains minimal sediment; concentrations were comparable to the screening levels in the single sample where exceedances of sediment screening levels were observed.

Sediment samples from Ponds 5 and 9 indicate minimal impacts to sediment from TPH, PCBs, PAHs, and VOCs, but concentrations of metals (copper, lead, molybdenum, copper, and zinc) and dioxins/furans exceed screening levels. None of the metal concentrations exceeds the human health PSL and most of the metal concentrations (with the exception of copper) were within the same order of magnitude as the ecological PSL or background concentration. Source classification evaluation indicates that dioxin/furan concentrations in Pond 5 and Pond 9 are consistent with ambient/mixture sources.

Pond 8 sediment samples contain concentrations of metals, PAHs, and dioxins/furans above screening levels. Only arsenic and lead were detected above human health screening levels. TPH concentrations in Pond 8 sediment samples were above the site-specific risk based screening concentrations (RBSCs), but sediment samples included natural organic material, which could contribute to TPH concentrations.

Historical and RI sediment sample results for Ponds 6, 7 and the North Pond indicate minimal TPHg, TPHmo, PCB, or VOC impacts. Sediment samples from Pond 6 and Pond 7 contained concentrations of metals, PAHs and dioxins/furans above ecological and human health screening levels. Concentrations in surface sediment in the North Pond are generally below screening levels, with the exception of some metals detected slightly above screening levels. A single sample at 19 feet bss had a PAH and dioxin TEQ concentration that exceeded the ecological and human health screening level; however concentrations in shallower samples down to 14.5 feet were lower and generally at or below screening levels. No constituents of concern (COIs) have been detected in surface water samples above screening levels in recent sampling events (since 2007). Groundwater within OU-E also appears relatively unimpacted. While some COIs were detected in grab groundwater samples at concentrations above screening levels, monitoring well samples, which are considered more representative of groundwater conditions, generally did not contain COIs above screening levels. Although arsenic and barium were detected above screening levels in monitoring well samples, this is likely the result of naturally reducing conditions in the subsurface.

Conclusions

The nature and extent of impacts in OU-E has been adequately characterized. Areas of concern based on exceedances of one or more conservative human health and ecological screening levels are provided in Figure 5-1. Potential risk will be further evaluated in the forthcoming Baseline Human Health and Ecological Risk Assessment (BHHERA).

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

1. Introduction

Georgia-Pacific LLC (Georgia-Pacific) and ARCADIS U.S., Inc. (ARCADIS) prepared this *Remedial Investigation Report for Operable Unit E* (RI Report). Operable Unit E (OU-E) is a portion of the former Georgia-Pacific Wood Products Facility (site) located at 90 West Redwood Avenue, Fort Bragg, Mendocino County, California (Figure 1-1). This RI Report was prepared as required by the California Department of Toxic Substances Control (DTSC) under the Site Investigation and Remediation Order Docket No. HAS-RAO 06-07-150 (Order) for the site. This RI was prepared to identify sources, nature, and extent of contamination within OU-E, as well as physical characteristics of the site and the fate and transport of chemicals within OU-E. This RI also includes human health and ecological risk evaluations. The OU-E RI is distinct from other RIs completed for operable units at the site in that the current conditions risk evaluation is integrated with the nature and extent evaluation and was conducted using a conservative approach in the form of point-by-point comparison with screening levels. This comparison culminated in identification of Areas of Concern (AOCs) for evaluation in a forthcoming baseline human health and ecological risk assessment (BHHERA) to provide a basis for a Feasibility Study and remedial action planning.

The 415-acre site is located west of Highway 1 along the Pacific Ocean coastline and is bounded by Noyo Bay to the south, the City of Fort Bragg (City) to the east and north, and the Pacific Ocean to the west. According to historical records, Union Lumber Company began sawmill operations at the site in 1885. Georgia-Pacific acquired the site in 1973 and ceased lumber operations on August 8, 2002. Much of the equipment and structures associated with the lumber production have since been removed. Industrial operations at the site included lumber production and power generation by burning residual bark and wood.

OU-E consists of approximately 28 terrestrial acres in the west-central portion of the site, as well as 10 manmade ponds (Ponds 1 through 9 and the North Pond). Predominant industrial features in this area were related to power production, milling of timber, water treatment, management of fly ash, and fuel storage. The ponds were constructed for operational purposes, including management of wastewater from site operations, providing a source of water for fire-fighting, and use as a log pond. Pond 8 also provides stormwater management for runoff from the City. The majority of industrial features within OU-E have been removed. Some portions of the terrestrial area were also capped following foundation cleanup activities. Currently, OU-E is vacant and only used to support ongoing environmental activities for the site as well as stormwater management for the City.

1.1 Objectives

According to the Order, "the purpose of the RI is to collect data necessary to adequately characterize the Site for the purposes of defining risks to public health and the environment and developing and evaluating effective remedial alternatives for foreseeable land uses" and to "identify the sources of contamination and define the nature, extent, and volume of the contamination." The Order also states that this information

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

should be used to evaluate contaminant fate and transport. The Order further indicates that the RI should contain the following:

(a) Site Physical Characteristics. Data on the physical characteristics of the Site and surrounding area shall be collected to the extent necessary to define potential transport pathways and receptor populations and to provide sufficient engineering data for development and screening of remedial action alternatives.

(b) Sources of contamination. Contamination sources (including heavily contaminated media) shall be defined. The data shall include the source locations, type of contaminant, waste characteristics, and Site features related to contaminant migration and human exposure.

(c) Nature and Extent of Contamination. Contaminants shall be identified and the horizontal and vertical extent of contamination shall be defined in soil, groundwater, surface water, sediment, air, and biota. Spatial and temporal trends and the fate and transport of contamination shall be evaluated.

Potential risk associated with site conditions will be further evaluated in the forthcoming BHHERA.

1.2 Report Organization

The remainder of this RI Report is organized as follows:

- Section 2, Physical Characteristics of Operable Unit E, summarizes land use, ecology, climate, geology, hydrogeology, and surface water hydrology at the site.
- Section 3, Site History, describes the operational history and previous environmental investigations conducted at the site.
- Section 4, Remedial Investigation Activities and Nature and Extent of Contamination, describes the approach used for data evaluation and presents the RI activities conducted to evaluate soil, groundwater, sediment and surface water. This section also presents a comparison of relevant data to conservative human health and ecological screening levels.
- Section 5, Conclusions, provides a summary of findings and recommendations regarding the nature and extent of impacts in OU-E.
- Section 6, References, lists the sources of information cited in this RI Report.

Former Georgia-Pacific Wood Products Facility

- Appendix A, Field Notes, contains notes documenting field work performed during the RI field investigations described in Section 4.
- Appendix B, Data Validation and Laboratory Reports, provides copies of official laboratory reports and validation reports completed by ARCADIS for work described in Section 4 of this report (all other laboratory and data validation reports were part of previous submittals).
- Appendix C, Boring Logs, contains geological descriptions of the borings advanced, and notes of observations of the field investigations described in Section 4.
- Appendix D, Selection of Screening Level Values for Data Evaluation, presents the screening values considered for use in the data evaluation, along with a discussion of how screening values were selected when multiple values exist, and an evaluation of the suitability of comparing sediment metals concentrations with background soil metals concentrations.
- Appendix E, Removed with Future Risk Assessment, data are presented in tables.
- Appendix F, Forensic Evaluation of TPH Content in Soil Samples Containing Wood/Sawdust and Other Organic Material, presents an assessment of possible source material for total petroleum hydrocarbons (TPH) in soil and groundwater.
- Appendix G, Dioxin Profiles, provides graphical depictions of the distribution of various dioxin congeners in samples collected from OU-E environmental media.
- Appendix H, Response to DTSC Comments, presents the responses to DTSC comments on the Draft OU-E RI submitted in May 2011, the Draft Final OU-E RI submitted January, 2012, the Draft Final OU-E RI submitted May 2012, and the Draft Final OU-E RI submitted August 2012.
- Appendix I, Groundwater Geochemistry Evaluation, provides the study conducted to assess physical and geochemical controls influencing arsenic and barium concentrations in groundwater at the site.

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

2. Physical Characteristics of Operable Unit E

OU-E consists of approximately 28 terrestrial acres in the west-central portion of the site, and a total of 11 acres of seasonal wetland or open water in the form of 10 man-made ponds (Ponds 1 through 9 and the North Pond), ranging in size from 0.1 acre to 7.29 acres (Figure 1-2). The ponds were created for operational purposes, and Pond 8 also provides stormwater management for the City of Fort Bragg.

Much of the terrestrial portion of OU-E is situated in an area of lower elevation north of Pond 8, just east of the offshore area known as Soldier Bay, also known as Fort Bragg Landing. This area is approximately 20 to 40 feet (ft) lower in elevation than the remainder of the site. As shown on Figure 2-1, industrial development in OU-E occurred in this area. Predominant industrial features in this area related to power production, milling of timber, water treatment, management of fly ash, and fuel storage. Additional features include water cooling towers at the southwestern tip of Pond 8, which were present prior to the 1970s, cooling towers just north of Pond 8 that replaced the original cooling towers, and the pump house along the southern shore of Pond 8.

The terrestrial portion of OU-E has been subdivided into areas of interest (AOIs) based on historical uses and data derived from previous investigations. The terrestrial AOIs, listed below, and related features are shown on Figure 2-1.

- Water Treatment and Truck Dump AOI
- Sawmill #1 AOI
- Compressor House and Lath Building AOI
- Powerhouse and Fuel Barn AOI
- Pond 8 (also known as the Log Pond or Mill Pond) Fill Area AOI

2.1 Land Use

2.1.1 Current

Most industrial features within OU-E have been removed, with the exception of a few smaller features shown on Figure 2-1. With the exception of these remaining industrial features, OU-E is vacant and only used to support ongoing environmental activities for the site as well as stormwater management for the City of Fort Bragg. The site is fenced and locked to prevent trespassers.

Former Georgia-Pacific Wood Products Facility

Portions of the terrestrial area north of Pond 8 were capped following foundation activities, as shown on Figure 2-1. These caps remain in place and were installed to prevent exposure to impacted soil that remained after foundation work.

2.1.2 Future Scenario

Various alternatives have been considered for the future development of OU-E, particularly for Pond 8 and the adjacent terrestrial area. The majority of the Operable Unit, including all of the terrestrial area and Pond 8, is designated as open space). Ponds 1 through 4 span areas designated as urban reserve and industrial use. The area around Pond 5 is designated as mixed use, while the area around Pond 9 is designated as residential.

2.2 Ecology

The majority of OU-E is developed industrial land characterized by large areas covered with structures/foundations, asphalt, crushed rock, or a mixture of both. Weedy ruderal vegetation is occasionally observed in these areas (WRA Environmental Consultants [WRA], 2005a).

Within OU-E, identified wetlands and waters include ponds and ditches used in former sawmill operations and stormwater management for the City of Fort Bragg, seasonal wetlands¹, and wetland seeps² (Figures 2-2 and 2-3). Most of the ponds at the site are dominated by species typical of freshwater marshes, although a few consist of open water with less than 5% cover by vegetation.

Two environmentally sensitive habitat area (ESHA) delineation efforts occurred to identify "any area in which plant or animal life or their habitats are either rare or especially valuable because of their special nature or role in an ecosystem and which could be easily disturbed or degraded by human activities and developments" (California Coastal Commission [CCC] definition; CCC, 2000). In 2009, WRA Environmental Consultants (WRA) delineated 20 waters, including wetlands, totaling 13.31 acres, including Ponds 1 through 9 and the North Pond (classified as industrial ponds) and three wetland seeps on the vegetated slope of the northern portion of OU-E (Wetlands B, C, and D, shown on Figure 2-2) (WRA 2009).

¹ Seasonal wetland plant communities occur in depressions that are inundated during the rainy season for sufficient duration to support vegetation adapted to wetland conditions.

² Freshwater seep plant communities are wetlands containing perennial and annual herbs, including sedges and grasses, which occur in areas that receive perennial or semi-perennial hydrological input as a result of subsurface flow of water.

Former Georgia-Pacific Wood Products Facility

In 2010, ARCADIS identified three wetland seeps (the eastern portion of Wetland E-1, Wetland E-3, and Wetland E-8) and four seasonal wetlands (the western portion of Wetland E-1, Wetland E-2, Wetland Complex E-5 and E-6, and Wetland E-7) in OU-E (Figure 2-2). One additional wetland classified as an industrial pond (Wetland E-4) was identified in a concrete-lined pit that was a remnant of a demolished building. Additional discussion of these areas is included in the *Environmentally Sensitive Habitat Areas Delineation Report* (ARCADIS, 2011c)

2.2.1 Flora and Fauna

In 2005, WRA conducted a biological assessment (WRA, 2005) to identify potentially sensitive biological resources at the site. Non-sensitive plant communities identified at the site included developed industrial, non-native grassland, northern coastal bluff scrub, coastal strand, and planted coniferous woodland. Sensitive plant communities observed at the site included coastal terrace prairie, north coast riparian scrub, coastal and valley freshwater marsh, freshwater seep, riparian wetland, seasonal wetland, and seasonal wetland ditch.

The majority of the terrestrial portion of OU-E consists of industrial land characterized by large areas covered with structures/foundations, asphalt, crushed rock, or a mixture of both. Vegetation in these areas includes non-native annual grasses and weeds, including sow thistle (*Sonchus asper*), wild radish (*Raphanus sativa*), and Italian ryegrass (*Lolium multiflorum*). Pampas grass (*Cortaderia selloana*), a common invasive species, grows in the terrestrial areas of OU-E.

Waters and wetlands identified in OU-E support a mix of native and invasive hydrophytes. Ponds at the site are dominated by species typical of freshwater marshes, which typically support perennial emergent monocots from 4 to 5 meters tall, often forming completely closed canopies (Holland, 1986). Ponds dominated by emergent vegetation at the site contained species such as water parsley *(Oenanthe sarmentosa)*, parrot's feather *(Myriophyllum aquaticum)*, slough sedge *(Carex obnupta)*, and cattail *(Typha latifolia)*. Plant species observed in seasonal wetlands present at the site include all flatsedge *(Cyperuseragrostis)*, purple velvet grass *(Holcus lanatus)*, common horsetail *(Equisetum arvense)*, and California blackberry *(Rubus ursinus)*. Plant species associated with the freshwater seeps at the site include panicled bulrush *(Scirpus micocarpus)*, seep monkey flower *(Mimulus guttatus)*, soft rush *(Juncus effusus)*, and common horsetail *(Equisetum arvense)*.

A variety of birds and mammals may occur within the boundaries of OU-E, including rabbits, deer, geese, raccoon, muskrat, mallard, egret, and heron. Killdeer (Charadrius vociferous) and marsh wren (Cistothorus palustris) may use the terrestrial area for nesting.

The ponds provide habitat for amphibians and aquatic plants, and provide a food source for wildlife. The isolated nature of the ponds and some aspects of the physical configuration (e.g., pond banks are generally

Former Georgia-Pacific Wood Products Facility

very steep, there is little open water, and/or water levels are low and turn anoxic in late summer/fall) likely limit the utility of the ponds by fish.

During the 2005 Biological Assessment, WRA (2005a, updated 2007) recorded 54 special status species of wildlife in the site vicinity, indicating that appropriate habitat may exist on or near the site for each species listed, but that the species may not be present onsite, or that the species may spend little time onsite and not feed onsite. Only three species – the double-crested cormorant (*Phalacrocorax auritus*), the California brown pelican (*Pelecanus occidentalis californicus*), and the osprey (*Pandion haliaetus*) – have a high potential for occurrence in the site vicinity. The pelagic cormorant (*Phelacrocorax pelagicus*, not a special status species) has been observed nesting along the bluffs, but the double-crested cormorant has not. The pelican has been observed foraging offsite but has not been observed to visit the site itself. Osprey roost in trees on the bluffs and hunt offshore. These species do not nest onsite, and are not expected to obtain a significant portion of their diet from the site.

WRA (2005b) and Sholars (2005a,b) recorded 47 special status plant species in the site vicinity. Of the 47 special status plant species, 18 have a moderate potential to occur at the site, and only three sensitive plant species were found during the Sholars botanical surveys (2005a,b): Blasdale's bent grass (*Agrostis blasdalei*), Mendocino Coast Indian paintbrush (*Castilleja mendocinensis*), and short-leaved evax (*Hesperevax sparsifolia* var. *brevifolia*). None of these special status plant species are likely to occur within OU-E. Monthly surveys conducted in OU-E from February to May 2010 did not identify special status plant species in OU-E.

2.3 Climate

Western Mendocino County has a relatively mild climate with abundant rainfall. Temperatures remain cool throughout the year, with averages ranging from 53 to 57 degrees Fahrenheit (°F). At Fort Bragg, the difference in the average monthly temperature of the coolest month (January) and the warmest month (September) is only 8°F. Marine air minimizes the difference between daytime and nighttime temperatures; at Fort Bragg, the variation between the average high and low daily temperatures for August is 15°F (Natural Resources Conservation Service, 2002).

Precipitation levels vary from 35 to 80 inches per year, and precipitation occurs mostly from October through April. The lesser amounts occur along the immediate coast near Fort Bragg and Point Arena. Marine fog commonly occurs in coastal areas, especially during the nearly rainless summer months.

Mean annual wind speed in the area is 7.3 miles per hour, and the prevailing wind direction is generally from the north to northwest in the summer and from the south in the winter (City, 2004).

Former Georgia-Pacific Wood Products Facility

2.4 Geology

2.4.1 Regional

Fort Bragg is located along the northern California coastline within the Coast Range geomorphic province. The regional geology consists of complexly folded, faulted, sheared, and altered bedrock. The bedrock of the region is the Franciscan Complex of Cretaceous to Tertiary (late Eocene) age (40 to 70 million years old). The Franciscan Complex comprises a variety of rock types. In the north coast region, the Franciscan Complex is divided into two units: the Coastal Belt and the Melange. In Mendocino County, the Melange lies inland and is an older portion of the Franciscan Complex, ranging in age from the Upper Jurassic to the late Cretaceous. The Coastal Belt consists predominantly of greywacke sandstone and shale.

2.4.2 Local

Besides the Coastal Belt, other geologic units present in Fort Bragg and in the vicinity include surficial deposits of beach and dune sands, alluvium, and marine sediments. As discussed below, the most important of these at the site are the marine sediments, which cut bedrock surfaces along the coast and form much of the coastal bluff material overlying bedrock. Artificial fill (reworked native soil or imported material) is also prevalent at the site.

The surficial geology of the site and environs is depicted on Figure 2-4. The site is underlain by Quaternary (less than 1.5 million years old) marine sediments deposited in thicknesses up to 30 ft on wave-cut surfaces parallel to the coast (Blackburn Consulting, Inc., 2006). These surfaces were created during the Pleistocene Epoch, when sea level fluctuations caused by glaciation created a series of terraces cut into the Franciscan bedrock by wave action (BACE Geotechnical, 2004). The marine sediments comprise poorly to moderately consolidated silts, sands, and gravels, and in some locations, are overlain by a 3- to 4-ft-thick mantle of topsoil or up to a 20-ft-thick layer of artificial fill (BACE Geotechnical, 2004). Both the topsoil and fill are generally relatively coarse in texture, ranging primarily from sandy silts to gravel. The marine sediments are also generally coarse, but appreciable thicknesses of finer materials are also found onsite. Beneath these Pleistocene materials are the Tertiary-Cretaceous rocks (approximately 65 million years old) of the Coastal Belt, composed of well-consolidated sandstone, shale, and conglomerate.

2.4.3 OU-E Specific

The shallow subsurface of the terrestrial portions of OU-E contains up to three lithologic units: artificial fill, marine sediments, and bedrock.

Former Georgia-Pacific Wood Products Facility

2.4.3.1 Artificial Fill

Soil borings, test pits, and potholes completed in the terrestrial portions of OU-E identified artificial fill in most areas. In general, the fill consists of reworked marine sediments with foreign materials. It can be generally characterized as coarse-textured material (silty sands to silty gravels), often containing wood chips, bark, ash, sawdust, brick, scrap metal, charcoal, and plastic. Fill thicknesses greater than 20 to 30+ feet below ground surface (ft bgs) have been observed along the eastern edges of Ponds 6 (borings HSA-4.5 and HSA-4.6) and 8 (boring HSA-5.41), but thicknesses on the order of 5 to 10 ft bgs are more common in the terrestrial areas and around the ponds in Parcel 7 (borings DP-7.4, DP-7.5, DP-7.7, and DP-7.8).

2.4.3.2 Marine Sediments and Bedrock

Marine sediments and bedrock underlie the artificial fill (where present) in OU-E. As with other portions of the site, Franciscan bedrock is present beneath the upland portions of OU-E, but based on lithological information available from borings advanced at the site, its surface undulates and depths to bedrock can vary widely over short lateral distances. For example, within a 350-ft distance along the eastern edge of Pond 8, depths to bedrock vary from less than 10 ft bgs (boring GT-4) to greater than approximately 40 ft bgs (borings HSA-5.41 through HSA-5.43). Bedrock depths are generally shallow (approximately 10 ft bgs; borings DP-7.7, DP-7.8, and DP-7.11 through DP-7.16) near the ponds in Parcel 7, but in the formerly developed areas of Sawmill #1 and the Powerhouse, bedrock depths are generally no less than 30 ft bgs (borings MW-4.2 through MW-4.4). In some locations around the margins of Pond 8 (e.g., borings GT-4 and P5-41), marine sediments are completely absent and artificial fill is in direct contact with bedrock.

2.5 Hydrogeology

2.5.1 Regional

The regional hydrogeologic setting of the Mendocino County coast has been presented in the Mendocino County Coastal Ground Water Study (California Department of Water Resources, 1982). The site is located in the western coastal area of the county, which was divided into five subunits in the study: Westport, Fort Bragg, Albion, Elk, and Point Arena, separated by the major rivers that discharge to the Pacific Ocean. The study included all areas where coastal terrace deposits had been mapped. The site is located within the Fort Bragg subunit, which extends from Big River to the south to Ten Mile River to the north.

Fresh groundwater is primarily obtained from shallow wells in the semi-consolidated marine terrace deposits or through municipal or privately owned water systems. These water systems divert surface flow and springs or tap shallow alluvial aquifers. A combination of wells and surface water diversions is commonly necessary to provide adequate supply year round.

Former Georgia-Pacific Wood Products Facility

2.5.2 Local

Based on 23 rounds of quarterly monitoring, groundwater generally flows radially at the site toward Soldier Bay and the Pacific Ocean (Figure 2-5) under an average horizontal hydraulic gradient of approximately 0.03 foot per foot (ft/ft). Depths to first-encountered groundwater have historically ranged from less than 1 to approximately 29 ft bgs. In terms of elevation, groundwater levels have ranged from approximately 8 to 104 ft above mean sea level (Figure 2-5). Depending on the location, groundwater levels have been observed to fluctuate seasonally up to 12 ft with the seasons.

2.5.3 OU-E Specific

Much of OU-E lies at the lowest elevations at the site and groundwater flow paths tend to converge in the areas around Soldier Bay, with eventual discharge to the Pacific Ocean (Figure 2-5). Along an east-to-west cross-section through the terrestrial area of OU-E, average horizontal hydraulic gradients are on the order of 0.025 ft/ft, but during the wet season the gradients increase somewhat in response to upgradient water levels. Average horizontal gradients along the other (more perpendicular) directions of the radial flow paths are about double. Depths to groundwater of approximately 1 ft bgs have been recorded in the center of the area north of Pond 8 (monitoring wells MW-4.4 and MW-5.16), with depths along the eastern (monitoring well MW-5.16) and western perimeters (monitoring well MW-4.6) increasing to more than 11 ft bgs (Figure 2-5).

2.6 Surface Water Hydrology

Figure 1-2 identifies the locations of 10 man-made ponds (Ponds 1 through 9 and the North Pond) ranging in size from 0.1 acre to 7.29 acres. The ponds served operational purposes, and Pond 8 also provides stormwater management for the City of Fort Bragg. Water transfer into and among the ponds was an integral part of the operational history of the site. Figure 2-6 provides a schematic illustration of surface water flow at the site. More information on use of the ponds during historical site operations appears in Section 3.1.2.

Most waters and wetland features in the OU-E lowland (which includes Pond 6, Pond 7, the North Pond, and wetland features described in Section 2.2.1) rely on direct precipitation and surface water runoff. Some wetland seep features receive groundwater discharge as well. Waters and wetlands in this area lack a direct hydrologic surface connection to Soldier Bay. One exception, Pond 6, has a surface flow connection to Soldier Bay via a corrugated high density polyethylene culvert that discharges through the beach berm separating the OU-E lowland from Soldier Bay. Runoff into the OU-E lowland also occurs from impervious surfaces (i.e., asphalt and concrete) in the higher elevation areas located to the north and east

Former Georgia-Pacific Wood Products Facility

Pond 8, also known as the Log Pond, was created in the late 1800s by the damming of Alder Creek. Pond 8 receives stormwater runoff from the City of Fort Bragg as well as overflow from Pond 5. It is estimated that approximately 50% to 60% of the stormwater runoff entering the ponds comes from the City, depending on storm conditions and magnitude (ARCADIS, 2012). Water from Pond 8 discharges over the dam spillway to the beach adjacent to Soldier Bay.

In the past, the Southern Ponds (Ponds 1 through 4) received water from site operations. Currently, the Southern Ponds capture rainfall, stormwater runoff and some groundwater seeps. The bottom elevation of Pond 1 lies above the groundwater table, making Pond 1 seasonal and dry for a portion of the year. Ponds 2 and 4 are also seasonal, but have some groundwater input as the water table can rise above the pond bottom during the rainy season. The southeast and northwest portions of Pond 3 generally have groundwater infiltration year-round.

Pond 5 currently receives runoff from the main office area located to the north of the Pond, as well as from Pudding Creek. Pond 5 is regularly pumped into Pond 8 as part of site maintenance activities. Pond 9 receives surface water pumped from Pudding Creek to supply water to hydrants for fire fighting.
ARCADIS

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

3. Site History

3.1 Operational History

The following documents, in addition to the Current Conditions Report (CCR) (Blasland, Bouck & Lee, Inc. [BBL], 2006), provide information about the operational history at the site and OU-E in particular:

- Phase I Environmental Site Assessment (ESA) (TRC Companies, Inc. [TRC], 2004a)
- Phase II ESA (TRC, 2004b)
- Work Plan for Additional Site Assessment (TRC, 2004c)
- Additional Site Assessment Report (TRC, 2004d)
- Work Plan for Additional Site Assessment (Acton•Mickelson•Environmental, Inc. [AME], 2005a)
- Construction Completion Report for Foundation and Ash Pile Removal Projects (Construction Completion Report; ARCADIS BBL, 2007a)
- Fuel Oil Line Removal Report (ARCADIS, 2008)

A general summary of the operational history of the terrestrial area and ponds within OU-E is provided below, followed by a description of the historical use of each AOI, focusing on those areas where activities could have resulted in a release of hazardous substances. The AOI locations and site features are shown on Figure 2-1.

3.1.1 Terrestrial Areas

3.1.1.1 Water Treatment and Truck Dump AOI

The Water Treatment and Truck Dump AOI is located in the northwest section of OU-E (Figure 2-1). Former features in the area include the Alum Tank, Water Treatment Plant, Sewage Pump Station, Water Supply Switch Building, Water Valve Shed, Water Tower, Powerhouse Fuel Storage Shed, Chipper Building, Truck Dump, Truck Dump Hydraulic Unit Building, and the Bunker Fuel Aboveground Storage Tank (AST) Area.

Built in the 1970s, the Alum Tank, Water Treatment Plant, Sewage Pump Station, Water Supply Switch Building, and Water Valve Shed supported water treatment processes. The Water Treatment Plant treated water to prevent corrosion and scaling of the cooling towers. Inside the plant were two treatment tanks and

Former Georgia-Pacific Wood Products Facility

two air compressors. Each treatment tank had a mixing tank, clarifier, and additional settling tank. The following chemicals were identified inside the plant during the Phase I ESA (TRC, 2004a): liquid chlorine (mostly empty 350-gallon tank), alum (250-gallon tank in secondary containment), caustic soda (350-gallon tank in secondary containment and two 55-gallon drums), and ammonium chloride. Site documents also suggested that sodium hypochlorite (500+ gallons) and sodium hydroxide (350 gallons) were present.

Outside the plant, a concrete AST may have held a treated water supply for the Powerhouse. About 300 ft northwest of the plant was a 4,000-gallon AST containing alum³. The Alum Tank foundation and the Water Treatment Plant foundation were broken up, and the concrete was moved to the concrete storage area in August 2006. After the demolition of the foundations, a dry cap⁴ was placed in the removal area.

The Chipper Building consisted of a wood structure with a concrete floor. The Truck Dump Ramp was located next to the Chipper Building. The Truck Dump included a hydraulic system formerly used to empty trucks of their wood fuel loads (it was assumed to have been built in the mid-1970s); inside the building was a transformer. A concrete slab was used for structural support at this location. The walls of the Chipper Building were left in place, as they support a slope north of the building. After the demolition of the foundations in June and July 2006, a dry cap was placed in the area. The majority of the dry cap, which was placed over these areas, was later excavated with the removal of the Fuel Oil Line in 2007 (ARCADIS, 2008), which is further discussed in Section 3.3.2.

The Sewage Pumping Station consists of a concrete slab and an underground concrete tank.

The Water Supply Switch Building was constructed of corrugated metal with a concrete foundation. The foundation was removed and a dry cap installed in July 2006.

The Powerhouse Fuel Storage Shed was built in 1995 with corrugated metal, had a concrete floor and berm (secondary containment), and was open to the north and east. The shed contained three horizontal ASTs, each with a capacity of 10,000 gallons. In May 1999, 4,000 gallons of fuel spilled within secondary containment and was cleaned up. Soil and groundwater sampling conducted as part of the Phase II ESA (TRC, 2004b) showed concentrations of TPH below screening levels. To the west of the building, there was a 30,000-gallon Water Tower, built from wood with a concrete base. The Water Tower pad and the Fuel Storage Area were removed and a dry cap installed in July 2006.

³ A combination of an alkali metal (such as sodium, potassium, or ammonium) and a trivalent metal (such as aluminum, iron, or chromium). In water treatment, alum is used as a coagulant, which binds together very fine suspended particles into larger particles that can be removed by settling and filtration.

⁴ Dry caps refer to caps placed where groundwater was not considered likely to extend to the bottom of the excavations. They consisted of a geosynthetic clay liner covered with clean fill material.

Former Georgia-Pacific Wood Products Facility

The backup fuel was stored in two ASTs in the Former Bunker Fuel AST area north of the Powerhouse. Both ASTs had concrete secondary containment and were removed in 1996. Underground piping associated with the ASTs was excavated in 2007 (see Section 3.3.2 and the *Fuel Oil Line Removal Report* [ARCADIS, 2008]).

3.1.1.2 Compressor House AOI

The Compressor House and Lath Building AOI included two small buildings (Compressor House 1 and Compressor House 2), Electrical Shop, Compressor House Shed, Lath Building, and a secondary containment structure (Figure 2-1).

Compressor House 1, an enclosed structure composed of corrugated metal with concrete floors, housed two compressors and related maintenance equipment and materials (e.g., 55-gallon oil drums, used oil filter drums). A compressed air AST and backup air compressor were located outside the building.

Compressor House 2, a smaller corrugated metal structure with concrete floors, stored 55-gallon oil drums and various other materials. Three overhead transformers were observed south of Compressor House 2 during the Phase I ESA (TRC, 2004a).

The Compressor House Shed, constructed of corrugated metal without a concrete foundation/floor, housed a large metal tank with an air pressure gauge.

Compressor Houses 1 and 2 were removed in July 2006 (ARCADIS BBL, 2007a) and covered with a dry cap, the majority of which was later excavated as part of the interim action to remove TPH and metal-impacted soil from under the former Electrical Shop, Compressor House 1, and Compressor House 2 buildings (ARCADIS, 2010b). The Compressor House Shed was not demolished because of the presence of an active 12-inch-diameter metal water pipe that passes through the shed.

The Lath Building was located northwest of the former Compressor House buildings, near the former Sawmill #1 building. It housed a small process area that made products from scrap/waste wood. The building structure was removed prior to 2006. Because of the presence of a seep wetland feature, the concrete foundation for this structure was not removed during the summer of 2006.

3.1.1.3 Sawmill #1 AOI

The Sawmill #1 AOI is an "L" shaped area located north of the eastern half of Pond 8. Former features in the area include the Sawmill #1 Building, Press Building, Green Chain (and Elevated Roadway), Lath and Shake Mill, Refuse Wood for Fuel Area, Engine House Area, Number 5 Shingle Mill Area, and AST (Figure 2-1).

ARCADIS

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

Historical photos, Sanborn maps, and interviews with site personnel suggest that the former Sawmill #1 Building was constructed in the late 1880s. It was equipped with saws, edgers, trimmers, wood chippers, cyclones, and target boxes. It generally handled larger diameter logs, which were first debarked by either hydraulic or mechanical means, cut to remove tattered edges, and trimmed. Finished logs were sent to resaw areas for size reduction or to the Green Chain for manual sorting and stacking in preparation for transfer to storage areas, planer mill, shipping areas, or drying areas. The Sawmill #1 ceased operations in 1998; later that year, some of the aboveground structures of the Sawmill #1 Building and the Green Chain were demolished. The remainder of the Sawmill #1 Building was demolished in 1999 and 2000. The concrete foundations of the Sawmill #1 Building, as well as the concrete structural supports for the Green Chain, were demolished in June and July of 2006. After the demolition, a wet cap⁵ was placed over the area, which was completed in September 2006.

The Press Building was constructed of wood with a concrete floor and was located south of the former Sawmill #1 Building. The building contained a sugar cane press until the early 1990s when it was removed. Press Building pad and footings removal occurred in July 2006, followed by placement of a dry cap in the removal area.

The former Lath and Shake Mill, Refuse Wood for Fuel Area, Engine House Area, AST, and Number 5 Shingle Mill Area were also present in the Sawmill #1 AOI. These areas are illustrated on Sanborn maps and Figure 2-1, but are not discussed in previous investigation reports.

3.1.1.4 Powerhouse and Fuel Barn AOI

The Powerhouse and Fuel Barn AOI is located directly north of Pond 8 (Figure 2-1). Former features in the area include the Dewatering Slabs, Equipment Fueling Area, Steam Dry Kilns, Former South Pond, Fuel Barn, Powerhouse Building, Transformer Pad, Oil Storage Shed, Chemical Storage Tank, Poly Tanks/Small Transformer Pad to the south, Paint Storage Shed, Fly Ash Reinjection System, Open Refuse Fire Area, and Cooling Towers (including the Poly Tank/Transformer Pad and the Cooling Towers Storage Shed). Features still present include the Concrete Lined Tank and Process Water Pumping Station.

During operation, the Powerhouse used residual wood chips from plant operations to generate power. The Powerhouse had a concrete foundation and contained brick ovens, boilers, turbines, water pumps, and other associated equipment to generate power for site operations. Chemicals used and stored in the Powerhouse included: grease, solvent, filter oil, turbine oil, automatic transmission fluid, motor oil, trisodium

⁵ Wet caps refer to caps placed where groundwater was considered likely to extend to the bottom of the excavations. They consisted of a geosynthetic clay liner covered with one to four inches of crushed concrete, covered with clean fill, and then covered by a geosynthetic clay liner.

Former Georgia-Pacific Wood Products Facility

nitrilotriacetate (a boiler feed water additive), and mercury (contained within switches). Review of site records indicates the presence of two hydraulic units (total containment: 100 gallons), one each on the north and south sides of the boilers on the fire deck area. Site documentation also indicated the presence of three turbine oil tanks (total containment: 2,100 gallons) beneath the floor grating between the east and west ends of the turbines. Several 1- and 5-gallon buckets of paint and a large pump were stored in a small wood shed with concrete flooring on the south side of the Powerhouse. Also on the south side of the Powerhouse were two 330-gallon ASTs containing water and sodium hydroxide. A transformer was observed next to the ASTs (Figure 2-1).

The foundations of the Powerhouse and associated structures were demolished in August 2006. After the demolition, the area was covered with a wet cap in September 2006.

The Poly Tanks/Transformer Pad, Chemical Storage Shed, and Paint Storage Shed were located south of the Powerhouse Building. The Paint Storage Shed was constructed of wood with a concrete floor. The foundations of these structures were not removed during the foundation removal effort in 2006 (ARCADIS BBL, 2007a) because doing so could have compromised stability of the north berm of Pond 8 and some of the vertical retaining walls in the embankment.

Two transformer pads were located north of the Powerhouse. The larger pad was constructed of concrete and enclosed with a chain-link fence, while the smaller pad consisted of an open-sided shed southeast of the larger Transformer Pad. An Oil Storage Shed was located directly east of the larger Transformer Pad. The Oil Storage Shed had dimensions of approximately 15 by 20 ft, was constructed of wood and had a concrete secondary containment base with expanded metal grating. Plant personnel indicated that the shed was constructed in the late 1980s. The large and small transformer pads and the Oil Storage Shed north of the Powerhouse were broken up in July 2006.

The Cooling Towers were located south of the Powerhouse on the berm that separated the Powerhouse area from Pond 8 (Figure 2-1). The area consisted of the Cooling Towers, a small shed, and two concrete pads for poly tank storage. The Cooling Towers building (visible in the 1983 aerial photograph) was constructed and operational in the mid-1970s (according to plant personnel) and contained four cooling elements. The building had a concrete foundation and corrugated metal walls on the east and west sides. The north and south sides of the building were screened with metal slats. The small storage shed was located east of the Cooling Towers. According to site personnel, the shed was built in the mid-1970s and was constructed of corrugated metal on a concrete foundation. During the Phase I ESA (TRC, 2004a), ammonium chloride, sodium hypochlorite, and soda ash were noted as being stored in the shed. South of the shed were three poly tanks on a concrete pad. Chemicals stored in the tanks included sodium hypochlorite, isopropanol, and formula 222 (sodium molybdenum). All foundations in the Cooling Towers area were removed in August 2006, and a dry cap was placed in the removal area.

Former Georgia-Pacific Wood Products Facility

The Fuel Barn was located west of the Powerhouse. Historical photos, Sanborn maps, and interviews with site personnel suggest that the Fuel Barn was built prior to the early 1950s. The walls were constructed of corrugated metal, and the floor was composed of soil and mulch. There was a concrete "trench" in the center of the Fuel Barn, which was used to support a conveyor system. During plant operations, the "fuel" (wood chips) for the Powerhouse was stored in the Fuel Barn. A fuel digger, located in the Fuel Barn, moved the wood chips onto a conveyor belt and into the Powerhouse. The concrete stem wall foundation and center concrete structure at the Fuel Barn were removed in June 2006.

The Dewatering Slabs were located in the northwestern corner of the AOI near the North Pond. The slabs were constructed of concrete and were used until 1996 to dewater wet fly ash from the Powerhouse. Scrubber water from the boilers contained fly ash and was piped to the two dewatering slabs; after drying, the residual fly ash was placed in a dump hopper for removal and placement at an offsite location. Use of the slabs was discontinued in 1996, when the Fly Ash Reinjection System was installed east of the Powerhouse. Following this installation, process water was conveyed to Pond 7 and from there via an underground pipe to Ponds 1 through 4. The Dewatering Slab foundation and the northern portion of the Fly Ash Reinjection System building pad were removed in June 2006, and a dry cap was placed in the removal area. The Fly Ash Reinjection System pad foundation within approximately 15 ft of the retaining wall was not removed because of concerns regarding the stability of the wall.

3.1.1.5 Pond 8 Fill AOI

The Pond 8 Fill Area AOI comprises the land along the eastern, southern, and western perimeters of Pond 8 (Figure 2-1). Pond 8 originally extended further west. The western portion of Pond 8 appears to have been filled prior to 1973 (TRC, 2004a).

Prior to the construction of the Cooling Towers in the Powerhouse AOI (Section 2.1) such towers were located near the southwestern corner of Pond 8. According to plant personnel, the Cooling Towers at this location ceased operation and were subsequently demolished in the early 1970s. The former Cooling Towers location is currently undeveloped and consists of a concrete pad in a gravel area with some vegetation.

3.1.2 Ponds

Ponds 1 through 9 and the North Pond range in size from 0.1 acre to 7.29 acres. The ponds were constructed for operational purposes, including management of wastewater from site operations, providing a source of water for fire-fighting, and use as a log pond. Pond 8 also provides stormwater management for runoff from the City of Fort Bragg. The historical use of the ponds was described in the *Preliminary Site Investigation Work Plan Operable Unit E – Onsite Ponds* (ARCADIS BBL, 2007b). A schematic illustrating the flow between the ponds is provided in Figure 2-7.

ARCADIS

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

Ponds 1 through 4, together with Pond 7, were a series of treatment ponds related to the operation of the former Powerhouse. Pond 7 received effluent from the wet scrubbers operating in the power plant. From approximately the mid-1970s up until 1996, fly ash emissions from the boilers were controlled by multi-cyclone collectors, followed by wet scrubbers. Scrubber water from the boilers contained fly ash and was piped to two dewatering slabs where, after drying the residual, fly ash was placed in a dump hopper for removal and placement at an offsite location. Water on the dewatering slabs that did not evaporate was conveyed to Pond 7, and then pumped to Ponds 1 through 4 (Settling Ponds) for further treatment. Pond 7 also received water from the dewatering slabs and wash water from the Powerhouse as well as groundwater and surface water runoff from the Powerhouse area.

Pond 5 was man-made for facility purposes. Pond 5 receives water from Pudding Creek as well as runoff from the main office area (OU-B).

The North Pond was formerly used as a settling basin for water used during the operation of the hydraulic debarker. Water from an unknown source currently enters the North Settling Pond via a culvert on its east side and discharges to Pond 6 via a culvert.

Pond 6 collects stormwater runoff during winter storm events and also receives discharge from the North Settling Pond and drainage water from Parcel 2. When the plant was operational, water from Pond 6 would be pumped via Pond 7 to Ponds 1 through 4 when full.

Pond 8, also known as the Log Pond, was created in the late 1800s by the damming of Alder Creek. Pond 8 receives stormwater runoff from the City of Fort Bragg as well as overflow from Pond 5. It is estimated that approximately 50% to 60% of the stormwater runoff entering the ponds comes from the City, depending on storm conditions and magnitude. (ARCADIS, 2012) Water from Pond 8 discharges over the dam spillway to the beach adjacent to Soldier Bay.

Pond 9 is a man-made reservoir supplied by surface water pumped from Pudding Creek. Water from this pond was pumped to hydrants for fire fighting.

3.2 Previous Investigations

3.2.1 Lead-Based Paint Investigations

In January 1998, TRC (1998) conducted a preliminary investigation of surface and shallow subsurface soil to evaluate paint on select buildings for elevated lead levels and to evaluate if chemicals associated with site operations were present in subsurface soil in the areas scheduled for demolition in Parcels 3, 4, and 5. In late 2002, Hygienetics Environmental Services, Inc. (Hygienetics, 2003) conducted an additional lead-based paint (LBP) investigation.

Former Georgia-Pacific Wood Products Facility

Samples from the following features in the upland portion of OU-E were found to contain LBP:

- The exterior wood wall and metal post of the Water Treatment Plant Building (up to 2,200 parts per million [ppm] lead)
- The exterior metal wall and round metal post of the Chipper Building (up to 1,200 ppm lead)
- Various surfaces from the Sawmill #1 building
- The interior metal wall of the Compressor House 1 (up to 1,600 ppm lead)
- The exterior north wood wall of the Powerhouse Building (up to 17,000 ppm lead)
- 3.2.2 Environmental Site Assessments

3.2.2.1 Phase I ESA

TRC (2004a) performed a Phase I ESA of the site that included a visual inspection of each parcel; a site history survey, including historical Sanborn maps, historical U.S. Geological Survey maps, and aerial photograph review; personal, telephone, and written communication with local and county regulatory agencies; interviews with current and past Georgia-Pacific employees with historical operational knowledge of the site; and a computer database search of sites with environmental concerns within a 1-mile radius of the site.

3.2.2.2 Phase II ESA

TRC (2004b) conducted a Phase II ESA to characterize site soils and groundwater in the areas identified in the Phase I ESA as requiring further investigation and to refine the understanding of the nature and extent of possible impacts to affected media. Activities included the installation of seven monitoring wells within OU-E.

3.2.3 Additional Site Assessments

3.2.3.1 Additional Site Assessment – TRC

TRC (2004d) conducted additional assessment activities pursuant to recommendations for follow-up assessment presented in TRC's Phase I and Phase II ESAs. The additional site investigation included the completion of pothole investigations, geophysical investigation, and soil borings for the purpose of collecting additional soil samples.

Former Georgia-Pacific Wood Products Facility

3.2.3.2 Additional Site Assessment – AME

In 2005 and 2006, AME conducted additional site assessment work, including additional soil and groundwater sampling, geophysical surveys, and the installation of additional groundwater monitoring wells. Activities were conducted in general accordance with the *Work Plan for Additional Site Assessment* (AME, 2005a). Analytical data were reported in the *Data Transmittal Report* (AME, 2006a) and the *Dioxin Sampling and Analysis Report* (AME, 2006a).

3.2.4 Quarterly Groundwater Monitoring

Quarterly groundwater monitoring at the site was initiated by TRC (2004e) in 2004. The comprehensive groundwater monitoring dataset for the site, including all data collected through the fourth quarter 2010 from all monitoring wells, is presented in the *Fourth Quarter 2010 Groundwater Monitoring Report* (ARCADIS, 2011d). Monitoring well data collected through December 2010 within or relevant to the characterization of OU-E are discussed in Section 4.4.3. Data continue to be collected for monitoring purposes as of production of this revised report, and are reported in the quarterly groundwater reports.

3.3 Interim Action Activities

3.3.1 Foundation Removal

Concrete slab and foundation demolition activities were conducted in 2006. Following foundation removal, confirmation soil samples were collected in accordance with approved work plans (AME, 2005a,b,c,d; 2006b). Details regarding the demolition, investigation, and removal activities performed and the analytical results from the sampling are presented in the Construction Completion Report (ARCADIS BBL, 2007a).

Caps consisting of geotextile membranes and crushed concrete, rock, and/or soil fill were placed in areas where foundations had been removed, as illustrated on Figure 2-1. Additional details regarding the interim caps and their design and construction are provided in the Final Cap Design Memo, included as Appendix G of the Construction Completion Report (ARCADIS BBL, 2007a).

3.3.2 Pipeline Removal

In 2007, ARCADIS (2008) removed a 4-inch-diameter, double-walled fiberglass fuel oil pipeline that extended south of the Powerhouse Fuel Storage Shed in a general southward direction across Parcel 4 to the Powerhouse. The fuel oil line historically transported Bunker C fuel oil (also referred to as No. 6 fuel oil), a highly viscous long-chain or heavy oil used in boiler/combustion operations produced by blending long-chain residual oils with a light oil, typically No. 2 fuel oil. The fuel oil was delivered by rail car, unloaded, and

Former Georgia-Pacific Wood Products Facility

pumped to two steel ASTs. These tanks, located on the south side of the Powerhouse Fuel Storage Shed, were in operation from the 1950s to 1995, when they were decommissioned and demolished.

The pipeline excavation was completed in the north and south directions, well short of the Powerhouse to the south and the Fuel Storage Shed to the north, because the pipes had extended aboveground at these points to previously demolished overhead pipe racks. Overall, approximately 200 linear feet of the pipeline and 3,000 cubic yards (cy) of soil were removed within the excavation boundary shown on Figure 2-1. The excavation of the fuel oil pipeline was completed on June 21, 2007. Confirmation soil samples were collected as part of the investigation. Final confirmation samples indicated that impacted soil remains, but the source of the contamination was thought to be unrelated to the fuel line. The excavation was backfilled in the summer of 2007, and it was agreed that the need for further remediation would be considered at a later date using data from the surrounding area.

3.3.3 Interim Action Compressor House Area

Metals and TPH-impacted soils were excavated from the Compressor House area in the summer of 2008. Approximately 60 cy of metals-impacted soil was excavated and transported offsite. Excavation of TPH-impacted soil at the Compressor House area was initiated following completion of the metals-impacted soil excavation. The total excavation area measured approximately 7,000 square ft and 2,600 cy of soil were removed and transported to the land treatment unit for bioremediation (ARCADIS, 2010b). Excavation proceeded to the south until a retaining wall was reached. Excavation boundaries are shown on Figure 2-1.

The excavation was advanced to at least 2 to 3 ft below the water table; groundwater that infiltrated into the excavation was treated by biosparging. Oxygen-releasing material was added to the backfill soil to address residual TPH contamination in soil and downgradient groundwater that may not have been affected by biosparging. Confirmation soil samples were collected from the walls and floor of the excavation, and samples were collected from the excavation prior to and following the biosparging. These results are presented in the *Interim Action Completion Report, Operable Units C and E* (ARCADIS, 2010b).

3.4 Biological Assessment

In 2005, WRA conducted a biological assessment at the site to identify biological resources at the site. A total of 54 special status species of wildlife were recorded in the site vicinity, but only three species (the double-crested cormorant, the California brown pelican, and the osprey) have a potential for occurrence in the site vicinity. Although these species may be observed and/or occur at times onsite, these species do not nest onsite, and are not expected to obtain a significant portion of their diet from the site. A total of 47 special status plant species were identified in the site vicinity, 18 of which have a moderate potential to occur at the site. Three sensitive plant species were found onsite during the botanical surveys: Blasdale's bent grass, Mendocino Coast Indian paintbrush, and short-leaved evax; however, none of these special

Former Georgia-Pacific Wood Products Facility

status plant species are likely to occur within OU-E and monthly surveys conducted in OU-E from February to May 2010 did not identify any special status plant species (WRA 2005a, updated 2007).

ESHA delineation activities were conducted by WRA in 2009 and ARCADIS in 2010 to identify potential ESHAs (including potential federal and state jurisdictional waters, including wetlands [waters/wetlands]) located onsite. WRA (2009) delineated 20 waters/wetlands totaling 13.31 acres in OU-C, OU-D and OU-E. Of these delineated areas, 8.89 acres were classified as U.S. Army Corps of Engineers (USACE) jurisdictional waters/wetlands. Approximately 308 acres of the 317 acres that Georgia-Pacific owns were considered non-jurisdictional for USACE purposes. In 2010, ARCADIS identified and delineated the following additional features as potential ESHAs: 17 waters/wetlands totaling approximately 3.64 acres, approximately 2.21 acres of riparian area, and approximately 375 linear ft of bedrock groundwater seep complexes. ARCADIS also delineated coastal waters associated with Soldier Bay. In total, there are 48 potential ESHA areas totaling approximately 19.16 acres of the approximately 317-acres comprising OU-C, OU-D and OU-E (ARCADIS 2011c). Delineated ESHAs within OU-E are shown on Figures 2-2 and 2-3.

In 2010, ARCADIS conducted a functional assessment of the delineated potential waters/wetlands to evaluate their ecological function. ARCADIS followed guidance provided in *California Rapid Assessment Method (CRAM) for Wetlands* (Collins et al. 2008). Overall CRAM scores indicate that waters/wetlands evaluated on the site possess between 33% and 58% of the total functional capacity that a reference wetland system could attain. These CRAM scores indicate the generally degraded character of the site waters/wetlands. Ponds on the site scored lowest in the CRAM evaluation (i.e., between 32% and 45% of total functional capacity). Seasonal and seep wetlands that have developed in the OU-E lowland since demolition of the building foundations in this area scored the highest in the CRAM evaluation (i.e., 58% of total functional capacity). The complete results of the CRAM evaluation are presented in the *Mill Pond Complex Restoration Draft Conceptual Design* (ARCADIS, 2011e).

Former Georgia-Pacific Wood Products Facility

4. Remedial Investigation Activities and Nature and Extent of Contamination

Remedial investigation activities were conducted in the AOIs described in Section 3. Ponds 1 through 9 are considered the equivalent of AOIs in this and future reports. This section describes the scope, methods, and results of RI sampling and analyses and compares the results to human health and ecological screening levels to identify and evaluate the nature and extent of constituents of interest (COIs) and describe Areas of Concern (AOCs).

COIs are identified as chemicals detected at concentrations above background or screening level concentrations. Areas where concentrations of one or more COIs exceed background or screening level concentrations are considered AOCs. COIs identified in the AOCs will be carried forward into the forthcoming Baseline Human Health and Ecological Risk Assessment (BHHERA).

Sample locations are shown on Figures 4-2 through 4-6. Tables 4-1 through 4-9 summarize sampling and analysis performed and the rationale for step out sampling events. Tables 4-11 through 4-43 present analytical results for detected COIs. Tables 4-44 through 4-58 present statistical summaries for analytical results for each AOI. Additional summary tables are embedded in the following text to assist interpretation. Detailed laboratory analytical results are presented in Appendix B.

4.1 Pond Sediment Investigations

ARCADIS conducted pond sediment sampling activities in March 2008, as described in the *Data Summary Report, Operable Unit E Pond Sediment* (Data Summary Report; ARCADIS, 2009b). These activities were performed in general accordance with the *Preliminary Site Investigation Work Plan Operable Unit E – Onsite Ponds* (ARCADIS BBL, 2007b) and the guidelines set forth in the site-specific Health and Safety Plan (BBLES, 2007) and the *Quality Assurance Project Plan* (QAPP; ARCADIS BBL, 2007c), as well as the Standard Operating Procedures (SOPs) contained within the QAPP. These include the ARCADIS BBL SOP for Sediment Sampling, contained in Appendix C of the *Preliminary Site Investigation Work Plan Operable Unit E – Onsite Ponds*, and the SOP for Soil Boring Installation, Soil Sampling, and Borehole Abandonment Procedures and the SOP for Sediment Sampling with Dewatering, both included as appendices to the QAPP.

Sediment samples were collected from 26 locations in Ponds 1 through 9 and the North Pond. Sediment samples were collected from the intervals of 0 to 0.5 ft below sediment surface (bss) and 0.5 to 1.5 ft bss and analyzed for COIs for which a data gap had been identified: metals, TPH as diesel (TPHd), TPH as motor oil (TPHmo), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and dioxins/ furans. In some locations, samples were also collected at depths up to 9.5 ft bss. Sample locations were selected to characterize areas not previously addressed during historical investigations and/or to fill data gaps related to the spatial and vertical distribution of specific COIs. Samples were collected from

Former Georgia-Pacific Wood Products Facility

locations in accordance with the sampling design outlined in the work plan, with a few exceptions (primarily related to agency comments and access issues) which are described in detail in the Data Summary Report (ARCADIS, 2009b). Laboratory analytical reports, field notes, and boring logs associated with this investigation were provided in the Data Summary Report (ARCADIS, 2009b).

An additional sediment sampling event was conducted in June 2009 to understand the magnitude and spatial extent of the COIs in Pond 8, to provide samples for sediment bioassay and bioaccumulation studies, and to provide paired data for estimation of site-specific bioaccumulation factors. Sample methods and results are described in full in the *Data Summary Report – Additional Investigation Pond 8 Sediment* (ARCADIS, 2011i). Because surface sediment (0 to 0.5 ft bss) was identified as the primary exposure media for Pond 8 (ARCADIS BBL, 2007b and ARCADIS, 2009b), the investigation focused on surface sediment only. For this investigation, nine sediment samples were collected from Pond 8 and one sample was collected from Pond 9 to provide a basis for comparison for the Pond 8 sediment results, as Pond 9 has no known associated sources of site-related contaminants. Samples were analyzed for metals, TPHd, TPHmo, and dioxins/furans, as well as bioassay and bioaccumulation testing (ARCADIS, 2011g). Laboratory analytical reports and field notes associated with this investigation were provided in the *Data Summary Report – Additional Investigation Pond 8 Sediment* (ARCADIS, 2011i). Pond sediment sampling locations are shown on Figures 4-4 through 4-6. Sampling and analysis summaries (including historical samples) from the pond investigations are presented in Tables 4-3 through 4-8. Discussion of the results of the RI pond investigations are presented in Section 4.4.2.

4.2 Soil and Groundwater Investigation Activities

Initial RI soil and groundwater sampling activities occurred in OU-E in June 2010, in accordance with the *Site Investigation Work Plan Operable Unit E – Upland* (Work Plan; ARCADIS, 2010d) and subsequent step-out investigations in October, November, and December 2010. Sampling procedures and preliminary results for the June 2010 investigation were presented in the *Site Investigation Summary and Step-out Evaluation, Operable Unit E* (Data Report; ARCADIS, 2010e) and are summarized in Section 4.2.1 of this RI Report. Activities performed during October and November 2010 were presented in a December 3, 2010 email to DTSC and are described briefly in Section 4.2.2. The final phase of this investigation, conducted in December 2010, is described in Section 4.2.3 of this report. The results of all three phases of RI investigation are presented on an AOI basis in Section 4.4. As mentioned in Section 3.3, areas of OU-E were capped following the foundation removal. Because cap depths were uncertain, the work plan proposed sample depths relative to the bottom of the cap. For characterization purposes, all soil sample depths have been referenced to February 2011 ground surface (gs) elevations. Sample depths are also cited in this section and in associated tables relative to February 2011 ground surface (gs) elevations, unless otherwise noted.

The field notes for the October, November, and December 2010 step-out investigations are presented in Appendix A (field notes for initial sampling activities are presented in the Data Report) and laboratory reports

Former Georgia-Pacific Wood Products Facility

for all soil and groundwater RI sampling activities are presented in Appendix B. Boring logs from both historical and RI sampling activities are included as Appendix C.

4.2.1 Initial Soil and Groundwater Investigation, June 2010

As mentioned in Section 4.2.1, initial RI soil and groundwater sampling activities were conducted in OU-E in June 2010, in accordance with the Work Plan (ARCADIS, 2010d), and comments that were received from the agencies during a conference call on June 22, 2010, as well as during a site visit with the DTSC on that same day⁶. Sampling procedures and analytical results were presented in the Data Report (ARCADIS, 2010e), along with historical data, and recommendations for additional step-out samples to address data gaps.

Deviations from the sampling design proposed in the Work Plan (ARCADIS, 2010d) and Response to DTSC Comments on the Work Plan (ARCADIS, 2010e)⁶ include the following:

- Surface soil sample intervals (proposed at just below the bottom of the cap to 0.5 ft below the bottom of the cap) at six locations (OUE-HA-023A, OUE-HA-023B, OUE-HA-024, OUE-DP-038, OUE-DP-039, and OUE-DP-047) were combined with the second sample interval (proposed at 0.5 to 1.5 ft below the bottom of the cap) because the material just below the cap was very loose and recovery was poor.
- Analyses for TPHd and TPHmo were added to nine samples based on odor (OUE-DP-012 at 13.5 to 14.5 ft bgs; OUE-DP-021 at 3 to 4 ft bgs; OUE-DP-025 at 1.5 to 2 ft bgs and 2 to 2.5 ft bgs; OUE-DP-038 at 0 to 2.5 ft bgs; and OUE-DP-039 at 2 to 2.7 ft bgs, 5 to 5.5 ft bgs, 10 to 11.5 ft bgs, and 16.5 to 17 ft bgs). Analysis for PAHs was added to the soil sample from OUE-DP-012 at 13.5 to 14.5 ft bgs. The soil sample from OUE-DP-038 at 0 to 2.5 ft bgs was also submitted for volatile organic compound (VOC) analysis based on a high photoionization detector (PID) reading.
- An elevated PID reading was recorded above the surface soil sample at OUE-DP-024 (Sawmill AOI). Sampling was conducted below the cap, as proposed, but a soil sample could not be collected from 0.5 to 1.5 ft below the cap because the soil was too watery. An additional sample from the top of the cap was also submitted for VOC analysis (sample OUE-CAP-024).

⁶ The Response to DTSC Comments on the Work Plan was included as an attachment to the Data Report and summarizes the comments received during and prior to sampling and the agreed upon sample design changes.

Former Georgia-Pacific Wood Products Facility

- Soil samples were not collected from location OUE-DP-027 (Sawmill AOI) because only gravel and concrete were encountered during drilling. However, a groundwater sample was collected from this location.
- Soil samples could not be collected from locations OUE-DP-043 and OUE-DP-044 (Powerhouse AOI) because of refusal in concrete prior to reaching the proposed sample depths. Refusal was encountered in wood at OUE-DP-046 (Powerhouse AOI) prior to reaching the proposed depth of the deepest soil sample, so samples were collected from the two proposed shallower depth intervals only. Samples were not collected from OUE-DP-029 (Sawmill AOI) because of access restrictions and associated safety concerns. The slope is very steep and remnants of concrete foundations are present. An additional soil sample was collected from OUE-DP-013 (Water Treatment and Truck Dump AOI) at 10.5 to 11 ft bgs and submitted for dioxin/furan analysis based on possible observation of ash at this location.
- Soil and groundwater samples could not be collected from OUE-DP-041 and OUE-DP-042 (Powerhouse AOI) during the June 2010 sampling event because of access restrictions. The locations are south of the former Powerhouse, on the slope of the Pond 8 berm. Samples were successfully collected at each location in September 2010, with the following exceptions: 1) a soil sample could not be collected from the 4 to 5 ft bgs interval at location OUE-DP-041 (former Chemical Storage Tank area) because a large rock prevented further penetration, and 2) groundwater was not collected at locations OUE-DP-041 or OUE-DP-042 (Paint Storage Shed) because groundwater was too deep to access with a hand auger.
- A total of eight soil samples were submitted for additional analysis for the purpose of TPH forensics.

A total of 174 soil samples and 40 groundwater samples were collected during the June 2010 sampling event. Samples were analyzed for metals, PCBs, dioxins/furans, semivolatile organic compounds (SVOCs), VOCs, TPH as gasoline (TPHg), TPHd, TPHmo, and PAHs, as shown in Tables 4-1 and 4-2. Note that these sampling and analysis summary tables also include data for samples collected as part of historical sampling efforts described in Section 3.2. Sample locations are shown on Figures 4-2 through 4-4.

Representative site soil samples containing a range of TPH concentrations and known wood/sawdust content (based on boring logs) were analyzed for forensic TPH and PAHs. To help identify potential hydrocarbon sources in soil samples (e.g., petroleum products, natural organic material [NOM] such as wood waste or bark, or byproducts of incomplete combustion processes [pyrogenic hydrocarbons]), groundwater samples were collected at selected soil boring and monitoring well (MW) locations and also analyzed for forensic TPH and PAHs. Multiple lines of evidence from the forensic data were used to identify potential sources of the TPH content in site soil samples. The full evaluation is presented in Appendix F, and conclusions are discussed in relevant sections below.

Former Georgia-Pacific Wood Products Facility

ARCADIS reviewed the available data regarding chemical impacts to soil and groundwater generated from the implementation of the Work Plan (ARCADIS, 2010d) and recommended additional sampling and analysis to adequately define the nature and extent of impacts. Recommendations were consistent with the step-out approach presented in the work plan (ARCADIS, 2010d) and are summarized in Table 4-9. DTSC reviewed and approved these recommendations.

4.2.2 Step Out Evaluation, October-November 2010

Additional sampling and analyses were conducted in accordance with the recommendations outlined in Table 4-9. The step-out approach was described in the OU-E Work Plan (ARCADIS, 2010). The proposed additional investigation was discussed with DTSC on October 19, 2010; the sampling (including modifications requested by DTSC) was conducted in October and November 2010.

A total of 117 soil samples and 6 groundwater samples were collected in this sampling event. Samples were analyzed for metals, PCBs, dioxins/furans, VOCs, TPHd, TPHmo, and PAHs, as shown in Tables 4-1 and 4-2.

Deviations from the sampling design presented in Table 4-9 include the following:

- Dioxin/furan analysis was added for OUE-DP-076 at 5 to 6 ft bgs and 6 to 7 ft bgs after DTSC comment. Dioxins/furan analysis was also added to three additional samples based on visual observations of fly ash: OUE-T1-1 (15.5 to 16.0 ft bgs), OUE-T2-2a (6.0 to 6.5 ft bgs), and OUE-T2-2b (6.0 to 6.5 ft bgs) (Figure 4-4).
- Two sample locations were moved from their proposed locations due to refusal. Sample location OUE-DP-080 was moved approximately 5 ft north of the proposed location, and sample location OUE-DP-088 was moved approximately 20 ft east of the proposed location. An additional sample from 6 to 7 ft bgs was also collected at OUE-DP-088 and analyzed for lead at DTSC's request (Figure 4-4).
- Lead analysis was added to the following sampling locations based on DTSC comments: OUE-DP-076 (10 to 11 ft bgs), OUE-DP-078 (8 to 8.5 ft bgs), OUE-DP-081 (0 to 0.5 ft bgs and 2.5 to 3 ft bgs), and OUE-DP-090 (5.5 to 6 ft bgs) (Figure 4-4).
- Samples could not be collected at OUE-DP-082 due to refusal on two attempts. This sample location
 was moved east to OUE-DP-093 under the former Powerhouse foundation (Figure 4-4). Samples
 were collected at 6.8 to 7.3 ft bgs and 11.2 to 11.7 ft bgs and were analyzed for lead, TPHmo, TPHd,
 and dioxins/furans.

Former Georgia-Pacific Wood Products Facility

- Samples from three locations (OUE-DP-096, OUE-DP-097 and OUE-DP-098) were proposed for dioxin/furan analysis based on observed fly ash at OUE-T2-2a and OUE-T2-2b. However, no fly ash was observed in any of the three locations during drilling activities, and thus samples were not submitted for dioxin/furan analysis.
- Analysis for TPHd and TPHmo were added to sample OUE-T5-3 at 3 to 3.5 ft bgs based on odor (Figure 4-4).
- Additional soil samples were collected from the shallow interval (directly below the cap) at locations OUE-DP-070 (1.2 to 1.7 ft bgs) and OUE-DP-071 (2.2 to 2.7 ft bgs) because the cap was encountered at a shallower interval than originally anticipated (Figure 4-4).
- Based on the results from this round of sampling, ARCADIS proposed a final round of sampling to DTSC on December 3, 2010 (ARCADIS, 2010f). ARCADIS discussed the sampling design with DTSC on December 9, 2010, and DTSC approved the modified design on December 10, 2010 (DTSC, 2010c). Table 4-9 presents the sampling design and associated rationale.

4.2.3 Step Out Evaluation, December 2010

ARCADIS conducted the last round of step out sampling in December 2010 in accordance with the recommendations outlined in Tables 4-9 and 4-10. A total of 26 soil samples from 9 locations (OUE-DP-068, OUE-DP-069, OUE-DP-070, OUE-DP-094, OUE-DP-095, OUE-DP-099, OUE-DP-100, OUE-DP-101, and OUE-T2-2b, shown on Figures 4-3 and 4-4) and 4 groundwater samples (from OUE-DP-094, OUE-DP-099, OUE-DP-100, and OUE-DP-102, shown in Figure 4-2) were collected during this round of sampling. The soil samples were analyzed for lead, PAHs and dioxins/furans, and the groundwater samples were analyzed for TPHd, TPHmo, alkylated PAHs, and forensic TPH.

4.3 Data Evaluation Approach

Soil and groundwater data for characterization of OU-E were compared with available human health and ecological screening levels to evaluate the nature and extent of COIs. A Primary Screening Level (PSL) was established for each matrix (soil, sediment, groundwater, and surface water) and receptor group (human and ecological) using published screening level sources and selection methodology presented in the sections below. PSLs were generally selected for each COI as the lowest of selected published values above background concentrations, or as the background concentration if greater than all published values. PSLs for TPH were based on site specific RBSCs.

Summaries of the screening levels reviewed for soil, sediment, groundwater, and surface water are presented in the following sections. Appendix D presents a complete description of the methodology used

Former Georgia-Pacific Wood Products Facility

for PSL selection, including considerations made when selecting screening levels for constituents such as PCB mixtures, PAHs, and dioxin/furans.

The methodology used to select PSLs was also used and/or described in the following approved documents:

- Site Wide Risk Assessment Work Plan (RAWP; ARCADIS BBL, 2008a)
- Remedial Investigation Report, Operable Unit A (ARCADIS BBL, 2008b)
- Data Summary Report Operable Unit E Pond Sediment (ARCADIS, 2009b)
- Site Investigation Work Plan Operable Unit E Upland (ARCADIS, 2010d)
- Remedial Investigation Report, Operable Units C and D (ARCADIS, 2011g)
- Fourth Quarter 2010 Groundwater Monitoring Report (ARCADIS, 2011d)

Note that most of the screening levels used are not site-specific, and exceedance of PSLs does not necessarily indicate potential risk. Thus, screening levels are used for discussion purposes only in this RI Report. Potential risk will be evaluated in the forthcoming BHHERA.

4.3.1 Soil

4.3.1.1 Human Health Screening Levels

The following sources were used to identify potential soil PSLs for protection of human health. These sources are listed according to the hierarchy in which they were used to identify the PSL. This approach is consistent with the methodology presented in the *Site Investigation Work Plan Operable Unit E – Upland* (ARCADIS, 2010d):

- Site-specific background concentrations for metals (ARCADIS BBL, 2007d)
- California Human Health Screening Level (CHHSLs) established by the California Environmental Protection Agency (CalEPA) (CalEPA, 2005)
- Regional Screening Levels (RSLs) for residential soil (United States Environmental Protection Agency [USEPA], 2010), incorporating DTSC (2009a) recommendations in Human Health Risk Assessment

Former Georgia-Pacific Wood Products Facility

(HHRA) Note 3 regarding the use of RSLs and DTSC's recommendation to use the more conservative of the latest RSL update and HHRA Note 3 recommended values (DTSC, 2010d)

- Site-specific risk-based screening concentrations (RBSCs) for TPH (ARCADIS BBL, 2008a) for direct contact and indoor air, and site-specific TPH screening levels for the leaching to groundwater (LGW) pathway (LGW Screening Level; ARCADIS, 2010g)
- Dioxin toxic equivalent (TEQ) suggested soil remediation goal for residential land use in California (DTSC, 2009b)

These screening levels are shown in Table D-1 for COIs except TPH and Table D-5 for TPH. In general, CHHSLs were selected as the PSL unless they were below the site-specific background concentration. If a CHHSL or background concentration was not available, the more conservative of the RSLs for residential soil (USEPA, 2010) and recommendations in DTSC Human and Ecological Risk Division (HERD) Note 3 (2009a) was used as the PSL. Dioxin data were compared to the DTSC (2009b) TEQ suggested residential remediation goals for mitigation sites in California (California Dioxin Remediation Goal [CDRG]). Selection of TPH PSLs is discussed in Section 4.3.1.3 below.

Also note that the RSLs are updated on a semi-annual basis and have been updated since the first submittal of this document. A comparison of the December 2011 RSLs and the December 2010 RSLs used for the nature and extent characterization in this report is summarized in Appendix D. As shown in that appendix, the updates to the RSLs do not impact the characterization of OU-E, either because the RSL is not the primary screening level, because the RSL increased, or because analyte concentrations were below the revised RSL.

4.3.1.2 Ecological Screening Levels

Ecological PSLs for detected COIs were selected based on background concentrations, conservative directcontact plant phytotoxicity and invertebrate benchmarks, and wildlife (avian and mammalian) ecological soil screening levels (ecological soil screening level [Eco-SSLs]; USEPA, 2007). For each COI, the lowest of the invertebrate contact benchmark, plant contact toxicity benchmark, and wildlife Eco-SSLs was used as the PSL for ecological evaluation of soil impacts, unless the number was below background. In such instances, the background number was used as the PSL.

The majority of invertebrate toxicity benchmarks were taken from *Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process* (Efroymson et al., 1997a) and the majority of plant toxicity benchmarks were taken from *Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants* (Efroymson et al., 1997b), except for the constituents noted in Table D-2. Appendix D discusses in detail the sources of

Former Georgia-Pacific Wood Products Facility

invertebrate and plant toxicity benchmarks and wildlife Eco-SSLs considered in this evaluation, as well as the methodology used for evaluation of total PAHs.

4.3.1.3 TPH

No background concentrations, CHHSLs, RSLs or Eco-SSLs are available for TPH in soil. Therefore, TPH data in soil were compared to site-specific RBSCs. TPH data were compared to the RBSC for potential exposure via the direct contact and indoor air pathways. TPHd data were also compared to a site-specific screening level for the leaching to groundwater pathway (ARCADIS, 2010b).

Although TPH data are screened against both the aliphatic and aromatic RBSCs in the data tables, the discussion in the text focuses on the comparison with the aliphatic RBSC. This is because sufficient data exist for aromatic constituents (benzene, toluene, ethylbenzene, and total xylenes [BTEX]) and PAHs in those areas where aromatic TPH fractions (TPHg and TPHd) are of potential concern. Therefore, concentrations of these constituents will be discussed by comparing them to screening levels specific to the individual constituents. Both the aliphatic RBSC and the LGW criteria are used as PSLs for TPH for their respective indoor air and leaching to groundwater pathways.

4.3.2 Sediment

4.3.2.1 Human Health Screening Levels

Analytical results for COIs in pond sediment were compared with the human health screening levels recommended by DTSC and discussed in Section 4.3.1.1. The human health screening levels presented in Appendix Table D-1 were used for both the soil and sediment evaluation. Site specific background concentrations for metals in sediment have not been developed and could not be incorporated into the PSLs. Concentrations of metals in sediment were compared to background concentrations of metals in soil for discussion purposes. Section 4.3.2.4 describes the use of soil background concentrations in place of site specific sediment background concentrations.

4.3.2.2 Ecological Screening Levels

Sediment data were compared with ecological benchmarks for freshwater sediment, consistent with the approach presented in the RAWP (ARCADIS BBL, 2008a) and Data Summary Report (ARCADIS, 2009b). These benchmarks are primarily "consensus based threshold effects concentrations" (TECs) and "consensus-based probable effects concentrations" (PECs) taken from MacDonald et al. (2000), except where noted in Table D-3. Appendix D discusses in detail the sources of ecological freshwater sediment benchmarks considered in this evaluation, as well as the methodology used for evaluation of dioxins/furans

Former Georgia-Pacific Wood Products Facility

in sediment. Consistent with the human health evaluation, data were also discussed in the context of sitespecific soil background concentrations (see Section 4.3.2.4).

4.3.2.3 TPH

As for soil, there are no literature based screening levels for TPH in sediment. Therefore, concentrations of TPH in sediment were compared with site-specific RBSC and site-specific screening concentrations for leaching of TPH to groundwater for soil, as described in Section 4.3.1.3. Note that these values were developed for soil and are human health based.

4.3.2.4 Usability of Soil Metals Background Concentrations for Sediment Evaluation

Although no site-specific background concentrations have been developed for pond sediments, established soil background concentrations for metals were considered when evaluating concentrations of potential COIs in sediments. To determine whether soil background concentrations were applicable to evaluation of pond sediment data, two sets of box plots were made. One set showing the concentrations of metals in all ponds (Ponds 1 through 8 and the North Pond); the other set showing the concentrations of metals in Ponds 5 and 9 only (which had no known industrial activities and thus no likely source of impacts).

The box plots are presented in Attachment D-1 of Appendix D, and indicate that many metals detected in pond sediments are present at concentrations that are consistent with soil background concentrations. Concentrations in Ponds 5 and 9 are generally similar to or less than soil background concentrations. Sediment concentrations in Ponds 5 and 9 appear to be representative of background or ambient concentrations for OU-E pond sediments, having generally smaller concentration ranges and lower median concentrations than the overall OU-E Ponds data for each metal.

Generally, metals associated with fine-grained materials accumulate in sediment depositional areas. As a result of this process, sediment background concentrations are generally higher than soil background concentrations from the same general area. For this reason, site-specific background concentrations of metals in soil are considered conservative values for evaluating concentrations of metals in sediment.

4.3.3 Groundwater

ARCADIS used two methods to evaluate COIs detected in groundwater. The first method used the following sources of screening levels as potential PSLs. These sources are listed according to the hierarchy in which they were used to select the PSLs. This approach is consistent with the methodology presented in the *Site Investigation Work Plan Operable Unit E – Upland* (ARCADIS, 2010d):

Former Georgia-Pacific Wood Products Facility

- The more conservative of the Federal and California Maximum Contaminant Levels (MCLs; USEPA, 2006)
- Public Health Goals (PHGs; Office of Environmental Health and Hazard Assessment [OEHHA], 2010)
- RSLs for tap water (USEPA, 2010), incorporating DTSC (2009a) recommendations in HHRA Note 3
 regarding the use of RSLs and DTSC's recommendation to use the more conservative of the latest RSL
 update and HHRA Note 3 recommended values (DTSC, 2010d)
- Alternative screening levels from the California Regional Water Quality Control Board, Central Valley Region (CVRWQCB, 2007) document entitled A Compilation of Water Quality Goals and/or provided in a letter from the North Coast Region Water Quality Control Board (NCRWQCB) dated March 2, 2010 (NCRWQCB, 2010)
- Site-specific RBSCs for TPH (ARCADIS BBL, 2008a)
- CVRWQCB (2004) TPH water quality objectives (WQOs) for taste and odor

In general, the MCL (USEPA, 2006) was selected as PSL for groundwater. If no MCL was available, the PHG (OEHHA, 2010) was selected as the PSL. The more conservative of the RSL for tap water (USEPA, 2010) and DTSC (2009a) recommendations in HHRA Note 3 was used for chemicals where both an MCL and PHG have not been established. The alternative criteria were only used for analytes where none of these screening levels were available.

MCLs, PHGs, and RSLs are not established for TPH. Therefore, groundwater TPH data were screened against site-specific RBSCs for TPH in groundwater, developed based on a standard resident child exposure scenario (ARCADIS BBL, 2008a). TPH data for groundwater were also screened against the CVRWQCB (2004, 2007) water quality objectives for taste and odor. Additional information on the groundwater screening levels used in the data evaluation for this work plan is provided in Appendix D.

A second set of screening levels, referred to as "RWQCB WQOs," was developed following the hierarchy outlined in *A Compilation of Water Quality Goals* (CalEPA, 2007, 2011; see page 21). This hierarchy, and the values considered for each constituent, is discussed in Appendix D.

The screening levels for groundwater are presented in Appendix D, Tables D-4 (PSLs), D-5 (WQOs) and D-8 (TPH). Site-specific background concentrations for metals in groundwater (ARCADIS 2010i) are also provided in Table D-4. The values described above are compared to data from both monitoring wells and groundwater grab samples. Data from groundwater grab samples may overestimate concentrations due to the inability of temporary sampling points to develop similar to a monitoring well (i.e., there is usually higher

Former Georgia-Pacific Wood Products Facility

turbidity/particulates in groundwater grab samples than in samples collected from monitoring wells). Data from permanent monitoring wells are preferred for decision-making. Additionally, more recent monitoring well data are preferred over data from older sampling events.

For data evaluation purposes, groundwater samples collected from OU-E were compared with the PSL for each constituent (Appendix D). The PSLs are conservative values that are not site-specific. For example, the PSL for groundwater is often the MCL, despite the fact that groundwater at the site is not a source of drinking water. For this reason, comparison of COI concentrations to these screening levels should only be considered a tool to identify a nature and extent of impacts in OU-E.

4.3.4 Surface Water

Surface water data were compared with available USEPA National Recommended Ambient Water Quality Criteria (NRAWQC) for freshwater aquatic life protection (as presented in Buchman, 2008). Data were also compared with values presented in the California Toxics Rule (40 Code of Federal Regulations Part 131) and the *Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota* (Suter and Tsao, 1996). Table D-6 summarizes the screening values considered for surface water evaluation.

Surface water data were also compared with WQOs for Inland Surface Water provided by NCRWCB (DTSC, 2011b). Table D-7 summarizes the Inland Surface Water WQOs.

4.3.5 TPH Forensics

In addition to comparison to site-specific risk based screening levels, select soil and groundwater samples were used to conduct a TPH forensics evaluation to determine possible source material for TPH concentrations detected in OU-E. Appendix F discusses this evaluation in detail.

4.3.6 Dioxin/Furan Source Classification

Dioxins/furans are ubiquitous in the environment, so it is important to distinguish site-related compounds from background or ambient sources. To evaluate where dioxins/furans detected within OU-E soils and pond sediment are consistent with ambient conditions, samples were assigned a source category using a semi-quantitative approach, as described in Appendix G. In brief, the congener profile of each sample was compared with congener profiles for three source categories characterized in literature that are known to occur onsite: ambient background, natural wood ash, and waste wood ash.

Samples were assigned a source category if the profile was consistent with one of the three literature profiles described above. A mixture classification was assigned if characteristics from multiple sources

Former Georgia-Pacific Wood Products Facility

were present. Ambiguous samples were not classified. Additional sources that may have contributed to dioxin/furan residues in pond sediments, such as stormwater from the City, were not assessed independently (although they are inherently included in the "mixture" category). It should be noted that the results of this source classification are included for the purpose of better understanding the potential source of the dioxins/furans in OU-E, and are not used to eliminate data points from the characterization or risk assessment. As stated in a letter from DTSC dated June 9, 2010 (DTSC, 2010e), profile comparisons may be useful, as part of a weight-of-evidence approach that also includes standard risk assessment methodology, for making risk management decisions and selecting a remedial goal for dioxin/furans.

4.4 Nature and Extent of Contamination by Area of Interest

In this section, the discussion of soil, sediment, and surface water is organized by AOIs defined in the Work Plan (ARCADIS, 2010d) and Section 2 of this report, and the ponds as outlined below and presented in Figure 4-1:

- Water Treatment and Truck Dump AOI
- Sawmill #1 AOI
- Compressor House and Lath Building AOI
- Powerhouse and Fuel Barn AOI
- Pond 8 Fill Area AOI
- Pond 8 AOI
- North Pond and Ponds 6 and 7 AOIs
- Southern Ponds AOI (Ponds 1 through 4)
- Ponds 5 and 9 AOIs

For each area, a summary of the RI activities is followed by a discussion of the comprehensive (historical and RI) dataset for the area, which is concluded by a summary of the findings for the area. Groundwater is presented in the same fashion and discussed on an OU-E-wide basis below.

Former Georgia-Pacific Wood Products Facility

Data for selected analytes are presented on Figures 4-7 through 4-29. Data detection summaries and comparisons to the selected screening levels are provided in Tables 4-11 through 4-43. Tables 4-44 through 4-58 provide data summary statistics in response to regulatory agency comments dated July 27, 2011 (DTSC, 2011b). Note that sample depths presented in the tables, figures and discussion have been adjusted to reflect the depth of the actual soil surface (the thickness of concrete/asphalt/gravel/cap has been subtracted).

Summary Tables are included at the end of each AOI section. These tables identify for each AOI the applicable PSLs, COIs detected above the PSL, the range of detections (minimum and maximum), and the number of PSL exceedances. A complete list of human health and ecological PSLs are included in Appendix D.

4.4.1 Soil

4.4.1.1 Water Treatment and Truck Dump AOI

The Water Treatment and Truck Dump AOI comprises the northwestern portion of the OU-E lowland area north of Pond 8 (Figure 4-1). As discussed in Section 3.3.2, an excavation of the fuel oil pipeline was conducted in 2007; as shown in Figure 2-1, the major portion of the excavation is in this AOI. Note that data for samples collected from soil that was later excavated are not included in the data discussion below because the data are no longer representative of current site conditions. Confirmation samples are included in the dataset.

This section presents an overview of the RI activities conducted within this AOI, followed by a discussion of the nature and extent of impacts identified in soil, including data from historical and RI sampling, and addressing conditions before and after excavation activities, as applicable. Sample locations are depicted in Figure 4-3.

4.4.1.1.1 Overview of RI Activities

As discussed in Section 4.2.1, soil sampling occurred in June 2010 to address data gaps identified along sewer/drain lines, along the rail lines, near the former sewage pumping station, west of the former truck dump hydraulic unit building, and under the former water treatment building within this AOI. Results from the June 2010 sampling event identified the following areas for further investigation based on exceedances of screening levels and to identify the nature and extent of impacts:

 Lead and PAHs in a soil sample collected east of the former sewage pumping station near a drain line (OUE-DP-001 from 4 to 5 ft bgs)

Former Georgia-Pacific Wood Products Facility

- Lead and TPHd in soil samples collected near other drain/sewer lines (OUE-DP-003 from 0 to 1 ft bgs and OUE-DP-004 from 1 to 2 ft bgs, respectively)
- TPHd in a soil sample collected west of the former truck dump (OUE-DP-012 from 13.5 to 14.5 ft bgs)

Figures 4-15 and 4-16 present lead and TPHd analytical data, respectively.

ARCADIS conducted step-out sampling in October and November 2010 (as discussed in Section 4.2.2) to further identify the lateral and vertical extents of these constituents in soil, as well as to assess whether elevated TPH and/or PAHs were present beneath the bottom of the former fuel oil pipeline excavation. Lead, PAH, and TPHd concentrations in soil samples collected from step-out locations west of the former sewage pumping station (OUE-DP-058 through OUE-DP-60 at intervals from 2 to 7 ft bgs) and along the drain lines (OUE-DP-61 through OUE-DP-063 at intervals from 0 to 1.5 ft bgs) were lower than screening levels. Samples collected from below the former fuel oil pipeline excavation (OUE-DP-091 and OUE-DP-092 at intervals from 5.5 to 12.5 ft bgs) did not contain TPH or PAHs at concentrations above screening levels. One of the nine soil samples (OUE-DP-065 from 0.5 to 1.5 ft bgs) collected from three step-out locations near one of the drain lines contained benzo(a)pyrene (B(a)P) TEQ concentrations exceeding the CHHSL of 0.038 milligrams per kilogram (mg/kg).

As discussed in Section 4.2.3, step-out sampling occurred in December 2010 to further investigate the extent of B(a)P TEQ concentrations detected at location OUE-DP-065. Three of the six soil samples collected from two step-out locations (OUE-DP-099 and OUE-DP-100) contained B(a)P TEQ concentrations exceeding CHHSL of 0.038 (mg/kg).

4.4.1.1.2 Nature and Extent of Contamination

A total of 156 soil samples were collected from the Water Treatment and Truck Dump AOI during historical and RI activities. Samples were analyzed for metals, TPH, PCBs, PAHs, SVOCs, VOCs, and dioxins/furans, as presented in Table 4-2. Soil represented by thirteen of these samples was subsequently removed during the fuel oil pipeline excavation activities discussed in Section 3.3.2; these samples are identified as "EXCAVATED" in Table 4-2. Table 4-46 presents a statistical summary of data for this AOI. The following subsections discuss the nature and extent of contamination within the Water Treatment and Truck Dump AOI by analyte group, incorporating all historical and RI data.

4.4.1.1.2.1 Metals

During historical and RI sampling activities, 59 soil samples from 39 locations in this AOI were analyzed for metals. Not all samples were analyzed for all metals. The number of samples analyzed for each metal are shown in the tables. Table 4-23 shows the results for metals detected in soil within the Water Treatment and

ARCADIS

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

Truck Dump AOI. A summary table is provided at the end of the section. Eight of the CAM 17 metals (beryllium, cadmium, cobalt, nickel, selenium, silver, thallium, and vanadium) were either not detected or were below PSLs. Nine of the CAM 17 metals (antimony, arsenic, barium, chromium, copper, lead, mercury, molybdenum, and zinc) were detected at concentrations above PSLs (see the table at end of this section). Exceedances of arsenic, barium, copper, mercury, and molybdenum PSLs were infrequent and the highest concentrations of these metals generally occurred in fill material. Three metals (chromium, lead, and zinc) were detected at concentrations above PSLs in at least 10% of the total samples collected and are discussed below:

- Chromium was detected above the ecological PSL (42 milligrams per kilogram [mg/kg]) in four of the 38 samples analyzed. The maximum chromium concentration detected in the Water Treatment and Truck Dump AOI was 69 mg/kg (sample OUE-DP-003 from 0 to 1 ft bgs). All chromium concentrations were below the human health PSL (100,000 mg/kg).
- Lead was detected above the ecological PSL (22 mg/kg) in eight of the 59 samples. Two samples (OUE-DP-001 from 4 to 5 ft bgs and OUE-DP-003 from 0 to 1 ft bgs) exceeded the human health PSL (CHHSLr: 80 mg/kg). The maximum lead concentration (230 mg/kg) was detected in the same sample that also contained the maximum detected concentration of antimony (sample OUE-DP-003 from 0 to 1 ft bgs, northwest of the former water treatment plant). Concentrations of lead relative to ecological PSLs are shown on Figure 4-15a; concentrations relative to the human health PSL are presented in Figure 4-15b.
- Zinc was detected above the ecological PSL (84 mg/kg) in four of 38 samples analyzed. The maximum zinc concentration (330 mg/kg) was detected in sample OUE-DP-004 from 3 to 4 ft bgs, south of the former water treatment plant. No detections of zinc exceeded the human health PSL (CHHSLr: 23,000 mg/kg).

4.4.1.1.2.2 Total Petroleum Hydrocarbons

During historical RI sampling and fuel line excavation activities, a total of 112 soil samples from 92 locations in the Water Treatment and Truck Dump AOI were analyzed for TPH. Thirty-one of these samples were confirmation samples collected as part of the fuel line excavation (Figure 4-16). Thirteen of these 31 soil samples were excavated as part of the fuel line excavation activities and data from these samples are therefore not discussed here. Ten of the samples whose locations were not excavated were analyzed for TPHg, and TPHg was either not detected or concentrations were below screening levels (Table 4-24). TPHmo was analyzed in 88 samples; TPHmo concentrations were not detected in six samples and were

Former Georgia-Pacific Wood Products Facility

below the aliphatic RBSC for direct contact/indoor air⁷ (281,346 mg/kg) in the remaining 82 samples. TPHd was not detected in five of the 99 samples. TPHd concentrations exceeded the TPH-LGW SL (1,045 mg/kg) in two samples and the TPHd C10-C12 aliphatic RBSC (74 mg/kg) in one sample as discussed below:

- TPHd concentrations exceeded the TPH-LGW SL in sample OUE-DP-004 from 1 to 2 ft bgs, near a drain line southwest of the former water treatment plant, and in sample OUE-DP-012 from 13.5 to 14.5 ft bgs, west of the fuel line excavation boundary. TPHd was detected in samples OUE-DP-004 and OUE-DP-012 at concentrations of 6,330 mg/kg and 2,684 mg/kg, respectively (Table 4-24).
- The TPHd C10-12 concentration in sample OUE-DP-004 (74 mg/kg) collected from 13.5 to 14.5 ft bgs exceeded the aliphatic RBSC.

Soil samples collected from locations OUE-DP-004 and OUE-DP-012 were also analyzed for forensic TPH and alkylated PAHs (see Section 4.2.1) to evaluate potential site-related and non-site-related sources of TPH concentrations in soil. Forensic TPH analysis indicated the sample collected between 3 and 4 ft bgs at OUE-DP-004 contained minor amounts of petroleum hydrocarbons compared to NOM, and sample OUE-DP-012 contained equal parts TPHd and NOM. Elevated concentrations of TPHd at location OUE-DP-012 are in the vicinity of the former fuel line; however, the forensic evaluation concluded that the TPH content of soil samples were predominantly associated with NOM, with low contributions of petroleum and pyrogenic material. Forensic analysis was not performed on the sample collected between 1 and 2 ft bgs at location OUE-DP-004, which exhibited a higher concentration of TPHd than the sample collected between 3 and 4 ft bgs. However, the results of the forensic analysis indicate that while a portion of TPH in samples such as OUE-DP-012 may be anthropogenic, NOM is also present as a significant fraction of detected TPH and is likely to be present in significant amounts in samples collected in these areas.

4.4.1.1.2.3 Polychlorinated Biphenyls

During historical and RI sampling activities, eight soil samples from within the Water Treatment and Truck Dump AOI were analyzed for PCB Aroclors and five soil samples were analyzed for PCB congeners. No PCB Aroclors were detected above laboratory reporting limits. Eleven of the 13 samples analyzed for PCBs did not contain a congener at detectable concentrations, and the remaining two samples contained total PCB concentrations below the human health PSL (USEPA RSL; 0.22 mg/kg) and the ecological PSL (direct contact invertebrate toxicity benchmark; 1 mg/kg) (Table 4-25).

⁷ Although no building construction is planned for the OU-E lowland area, soil TPH concentrations were compared to RBSC for direct contact and indoor air to be conservative.

Former Georgia-Pacific Wood Products Facility

4.4.1.1.2.4 Polycyclic Aromatic Hydrocarbons

During historical sampling, RI sampling, and the fuel line excavation activities, 82 soil samples were analyzed for PAHs (31 of these samples were confirmation samples). Two of these 82 sample locations were excavated during the fuel line excavation activities, leaving a total of 80 representative samples analyzed for PAHs. Additionally, 36 samples were analyzed for SVOCs including PAHs; one of these samples (DP-ROAD-4.3) was excavated. Several samples were analyzed for both SVOCs including PAHs and PAHs alone. Data are presented in Tables 4-26 and 4-27. The summary statistics tables avoid double counting of PAH analysis when both SVOC and PAH analysis were performed. Of all PAH constituents analyzed, seven (benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, chrysene, fluoranthene, phenanthrene, and pyrene) were detected at concentrations above their respective ecological PSLs in at least one sample, and six (benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene),were detected above their respective human health PSLs in at least one sample.

A B(a)P TEQ was calculated for each sample and compared with the residential CHHSL for B(a)P. Seventeen of the soil samples collected and analyzed for PAHs or SVOCs in the Water Treatment and Truck Dump AOI had a B(a)P TEQ that exceeded the CHHSLr. The maximum B(a)P TEQ concentration detected in the Water Treatment and Truck Dump AOI was 1.5 mg/kg at sample location OUE-DP-099 from 0.5 to 1.5 ft bgs, southwest of the former Water Treatment Plant (Figure 4-17a).

Total concentrations of low molecular weight (LMW) and high molecular weight (HMW) PAHs were calculated for each sample and compared with the lowest of the USEPA Eco-SSLs. The lowest Eco-SSL for LMW PAHs is for invertebrates (29 mg/kg). The lowest Eco-SSL for HMW PAHs is for mammals (1.1 mg/kg). No samples contained concentrations of total LMW PAHs exceeding the Eco-SSL. Eight samples contained concentrations of total HMW PAHs above the Eco-SSL. PAH results are presented in Tables 4-26 and 4-27 and included on Figure 4-19.

4.4.1.1.2.5 Volatile Organic Compounds

A total of 44 soil samples from 34 locations within the Water Treatment and Truck Dump AOI were collected and analyzed for VOCs. Ten samples were removed from the dataset because they are no longer representative of current conditions (the area where they were collected was removed during the fuel line excavation), leaving a total of 34 samples that are representative of current conditions (See Figure 4-3 for sample locations and excavation boundary). Eleven VOCs were detected in at least one sample. Three of the detected compounds (2-butanone, acetone, and methylene chloride) are common laboratory contaminants. Concentrations of the remaining eight detected VOCs were below their respective human health and ecological PSLs (Table 4-28).

Former Georgia-Pacific Wood Products Facility

4.4.1.1.2.6 Dioxins/Furans

During historical and RI sampling activities, one soil sample (OUE-DP-013 from 10.5 to 11 ft bgs, just west of the fuel line excavation boundary) from the Water Treatment and Truck Dump AOI was analyzed for dioxins/furans because sawdust and ash were observed at this location (Figure 4-18). The 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) TEQ concentration for birds (6.2 picograms per gram [pg/g]) exceeded the ecological PSL (Canadian Environmental Quality Guidance for Residential Soil [2006]; 4.0 pg/g). Table 4-29 summarizes analytical results for dioxins/furans.

4.4.1.1.3 Summary of Findings

The Water Treatment and Truck Dump AOI comprises the northwestern portion of the OU-E lowland area north of Pond 8. Historical and RI soil data representative of current conditions (i.e., excluding data representative of the excavated fuel line soil) indicate concentrations of TPHg, TPHmo, PCBs, and VOCs in soil are below PSLs. Concentrations of localized metals (antimony, barium, chromium, copper, lead, mercury, molybdenum, and zinc) exceed ecological PSLs; concentrations in three samples also exceed human health PSLs (one sample exceeding for arsenic, two for lead). PAHs were detected at concentrations greater than human health and ecological PSLs, primarily south and west of the former water treatment plant near sewer/drain lines, and east of the former fuel line excavation boundary. One sample collected west of the former truck dump and fuel oil pipeline excavation (OUE-DP-012) and one sample collected along the drain line south of the former Water Treatment Plant (OUE-DP-004) had TPHd concentrations that exceeded LGW screening levels (Figure 4-16). Concentrations of TPHd in sample OUE-DP-004 also exceeded the aliphatic RBSC. However, TPHd concentrations in the downgradient monitoring wells (MW-4.2 and MW-4.5) are consistently below screening levels or not detected (Figure 4-7). Forensic evaluation indicated the organic content in sample OUE-DP-012 may be related to the former fuel line release, but a significant fraction of the TPH is associated with NOM, with low contributions of petroleum and pyrogenic material.

Former Georgia-Pacific Wood Products Facility

Water Treatment and Truck Dump AOI							
	Range of Detections			Human Health		Ecological	
Constituent				PSL	Number of Exceedances/ Number of Samples	PSL	Number of Exceedances/ Number of Samples
Metals - (mg/kg)							
Antimony	0.19	-	4	30	0/36	0.97	3/36
Arsenic	0.45	-	13	10	1/36	18	0/36
Barium	18	-	505	5,200	0/36	330	1/36
Chromium	5.2	-	69	100,000	0/38	42	4/38
Copper	0.96	-	42	3,000	0/36	36	2/36
Lead	1.9	-	230	80	2/59	22	8/59
Mercury	0.013	-	0.27	18	0/36	0.12	1/36
Molybdenum	0.37	-	2.8	380	0/36	2	2/36
Zinc	8.3	-	330	23,000	0/38	84	4/38
Polycyclic Aromatic Hydrocarbo	ons - (ma/k	a)					•
Benzo(a)anthracene	0.0015	-	1.1	0.15	7/103	1	1/103
Benzo(a)pyrene	0.0012	-	1.1	0.038	16/103	1	1/103
Benzo(b)fluoranthene	0.00093	-	1.3	0.15	8/103	1	1/103
Benzo(k)fluoranthene	0.0012	-	0.39	0.38	1/103	1	0/103
Chrysene	0.00083	-	1.1	3.8	0/103	1	2/103
Dibenz(a,h)anthracene	0.001	-	0.11	0.015	7/103	1	0/103
Fluoranthene	0.001	-	1.6	2,300	0/103	1	4/103
Indeno(1,2,3-cd)Pyrene	0.0011	-	0.43	0.15	3/103	1	0/103
Phenanthrene	0.0015	-	1.4		0/103	0.6	2/103
Pyrene	0.00093	-	1.9	1,700	0/103	1.2	3/103
HMW-PAH ¹¹	0.003	-	8.900		0/103	1.1	8/103
USEPA B(a)P TEQ ⁴	0.0001	-	1.5	0.038	17/103		0/103
Dioxins/Furans - (pg/g)							
2,3,7,8-TCDD TEQ (Bird) ⁸	6.20	-	6.20		0/1	4	1/1
Total Petroleum Hydrocarbons	ons - (mg/kg)			RBSC		LGW	
Diesel C10-C12	0.18	-	74	51	1/83		
Total Diesel (C10-C24) ²	2.2	-	6,330	10,772	0/99	1,045	2/99
Footnotes:	•						

Summary Table: Water Treatment and Truck Dump AOI

Footnotes:

Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C24. Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Non-detects excluded.

8 11

2

4

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for birds. NDs excluded. Sum of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1.2,3cd)pyrene and pyrene.

Former Georgia-Pacific Wood Products Facility

4.4.1.2 Sawmill #1 AOI

The Sawmill #1 AOI is in the northern portion of the OU-E lowland area north of Pond 8, between the Water Treatment and Truck Dump AOI and the Compressor House and Lath Building AOI. This section presents an overview of the RI activities conducted within this AOI, followed by a discussion of the nature and extent of contamination in soil, including data from historical and RI sampling.

4.4.1.2.1 Overview of RI Activities

As discussed in Section 4.2.1, soil sampling occurred in June 2010 to address data gaps identified along the southern perimeter, the former Number 5 Shingle Mill Area, former Diesel AST, former Refuse Wood for Fuel Area, former Engine House Area, and the plant drain system pipelines that run through the AOI.

Results from the June 2010 sampling event identified the following areas for further investigation based on exceedances of screening levels and to identify the nature and extent of impacts:

- Lead concentration in a soil sample collected at the south end of the former Sawmill #1 Building (OUE-DP-017 from 1 to 1.5 ft bgs; Figure 4-15 inset).
- Lead concentration in a soil sample collected east end of the former Sawmill #1 Building (OUE-DP-024 from 2 to 2.5 ft bgs; Figure 4-15).
- PAHs in a soil sample collected south of the former Sawmill #1 Building (OUE-DP-026 from 2 to 3.5 ft bgs; Figure 4-17).

Step-out sampling occurred in October and November 2010 to further identify the lateral and vertical extents of these constituents in soil, as discussed in Section 4.2.2.

Three locations were proposed to evaluate lead in the vicinity of OUE-DP-017, at the south end of the former Sawmill #1 Building (Figure 4-15 inset). Refusal was encountered during sampling with a hand auger at the three proposed sample locations (Table 4-9). Sampling at these locations was re-attempted with a drill rig in the December 2010 step-out sampling event. Results of the step-out investigation are summarized in Table 4-9.

4.4.1.2.2 Nature and Extent of Contamination

A total of 108 soil samples were collected from the Sawmill #1 AOI during the course of historical and RI activities. These samples were analyzed for metals, TPH, PCBs, PAHs, SVOCs, and VOCs, as presented in

Former Georgia-Pacific Wood Products Facility

Table 4-2. Statistical summary of data in this AOI is presented in Table 4-47. A summary table is provided at the end of the section.

4.4.1.2.2.1 Metals

During historical and RI sampling activities, 24 soil samples from 14 locations in this AOI were analyzed for metals. An additional 33 soil samples from 18 locations were analyzed for lead. Table 4-23 shows the results for metals detected in soil within the Sawmill #1 AOI. Six of the CAM 17 metals (beryllium, cadmium, cobalt, selenium, silver, and thallium) were either not detected or were below PSLs. Eleven of the CAM 17 metals (antimony, arsenic, barium, chromium, copper, lead, mercury, molybdenum, nickel, vanadium, and zinc) were detected at concentrations above PSLs (see table at end of section). Exceedances of arsenic, molybdenum, nickel, and vanadium PSLs were infrequent, and the highest concentrations of these metals were generally identified in fill material. Seven metals (antimony, barium, chromium, copper, lead, mercury, and zinc) were detected at concentrations above PSLs in at least 10% of the total samples collected and are discussed below:

- Antimony was detected above the ecological PSL (0.97 mg/kg) in four of the 24 samples analyzed. The maximum concentration of antimony was 6.3 mg/kg (OUE-DP-024 from 2 to 2.5 ft bgs; Table 4-23 and Figure 4-3). All the antimony concentrations were below the human health PSL.
- Barium was detected above the ecological PSL (330 mg/kg) in three of the 24 samples analyzed. The maximum concentration of barium was 470 mg/kg (sample DP-5.54 from 1 to 1.5 ft bgs). All the barium concentrations were below the human health PSL.
- Chromium was detected above the ecological PSL (42 mg/kg) in five of the 24 samples analyzed. The maximum chromium concentration detected was 94 mg/kg (sample OUE-DP-028 from 0.5 to 1.5 ft bgs). All chromium concentrations were below the human health PSL (100,000 mg/kg).
- Copper was detected above the ecological PSL (36 mg/kg) in seven of the 24 samples analyzed. All seven samples were identified as fill material, and one sample (OUE-DP-031 from 0 to 0.5 ft bgs; Table 4-23 and Figure 4-3) contained copper at a concentration more than two times the PSL. All the copper concentrations were below the human health PSL.
- Lead was detected above the ecological PSL (22 mg/kg) in 19 of the 57 samples (Figure 4-15). Eight of the 17 samples had lead concentrations exceeding the human health PSL (CHHSLr; 80 mg/kg). Six of the 17 samples contained lead concentrations more than an order of magnitude greater than PSLs, and one of these samples (OUE-DP-070 from 3 to 4 ft bgs) contained lead at a concentration of 3,800 mg/kg. This sample location is within the footprint of the former Sawmill #1, under a cap north of

Former Georgia-Pacific Wood Products Facility

the former press building. Concentrations of lead relative to the ecological PSL are shown on Figure 4-15a; concentrations relative to the human health PSL are presented in Figure 4-15b.

- Mercury was detected above the ecological PSL of 0.12 mg/kg in five of the 24 samples analyzed. Only
 one of these five samples (OUE-DP-026 from 0.5 to 2 ft bgs; Table 4-23 and Figure 4-3) contained
 mercury at a concentration of 0.35 mg/kg, which is more than two times the ecological PSL. All the
 mercury concentrations were below the human health PSL.
- Zinc was detected above the ecological PSL (fill: 160 mg/kg and marine/sediment bedrock (MSB): 84 mg/kg) and ecological PSL for soil (Eco-SSL for avians: 46 mg/kg) in nine of the 24 samples analyzed. All nine samples were identified as fill material, and only one sample (DP-5.54 from 1 to 1.5 ft bgs; Table 4-23 and Figure 4-3) contained zinc at a concentration of 400 mg/kg, which is more than two times the ecological PSL. All the zinc concentrations were below the human health PSL.

4.4.1.2.2.2 Total Petroleum Hydrocarbons

During historical and RI sampling activities, 72 soil samples from 53 locations in the Sawmill #1 AOI were analyzed for TPH. TPHd results are depicted on Figure 4-16. Total TPHd was not detected in two samples, was detected below all screening levels in 58 samples, and exceeded the TPH-LGW SL (1,045 mg/kg) in 12 of the 72 samples. Two of 60 samples analyzed for working group carbon ranges exceeded aliphatic RBSCs for direct contact/indoor air. The sample collected from OUE-T5-3 exceeded the RBSC for Diesel C10-C12 (51 mg/kg), and the sample collected from OUE-DP-025 exceeded the RBSC for Diesel C16-C24 (10,772 mg/kg). Seven of the 72 samples were also analyzed for TPHg; concentrations were either not detected or were below screening levels (Table 4-24). TPHmo was analyzed in 63 samples; TPHmo was not detected in one sample, and concentrations were below the aliphatic RBSC for direct contact/indoor air (281,346 mg/kg) in the remaining 62 samples (Table 4-24). TPHd and TPHmo results in soil and groundwater samples along an east-west cross section of the AOI are presented in Figures 4-11 and 4-12, respectively. TPHd and TPHmo results along a north-south cross section are presented in Figures 4-13 and 4-14, respectively. As illustrated by these results, most of the exceedances of TPH screening levels at the Sawmill #1 AOI were for TPHd.

The greatest concentrations of TPHd were detected within the footprint of the former Sawmill #1 building or just south of the former building (Figure 4-16). TPHd concentrations exceeding the TPH-LGW SL were typically detected toward the east end of the building footprint and were isolated to the top 5 ft of soil, where the average water table is at two to three feet below ground surface (Figure 4-11).

The maximum total TPHd concentration of 12,634 mg/kg was detected in OUE-DP-025 at 4 to 5 ft bgs, at the east end of the former Sawmill #1 Building. The grab groundwater sample collected from OUE-DP-025 had a concentration of 21.625 milligrams per liter (mg/L), which exceeds the aliphatic RBSC of 1.22 mg/L.

ARCADIS

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

Groundwater grab samples taken from just upgradient of this location at OUE-DP-024 and P5-4 also contained concentrations exceeding the RBSC (2.2 mg/L and 22 mg/L, respectively). The forensic evaluation of soil and groundwater samples indicated TPH impacts to groundwater in grab sample OUE-DP-025; however, grab groundwater sample results are generally not as representative of groundwater concentrations as monitoring well sample results due to the potential presence of sorbed contaminant mass associated with soil particles likely captured in grab samples. Samples taken from downgradient monitoring wells MW-4.4 and MW-5.9 are consistently below screening levels, indicating that TPHd impacts to groundwater are localized. Section 4.4.3.3 presents a discussion of the nature and extent of TPH in groundwater across OU-E.

Three soil samples collected in June 2010 from the Sawmill #1 AOI (OUE-DP-023 from 1.5 to 2 ft bgs, OUE-DP-026 from 2 to 3.5 ft bgs, and OUE-DP-031 from 0.5 to 1.5 ft bgs) were analyzed for forensic TPH and alkylated PAHs (see Section 4.2.1). The forensic evaluation concluded that the contribution of petroleum to the overall TPH content is estimated to be small.

4.4.1.2.2.3 Polychlorinated Biphenyls

During historical and RI sampling activities, six soil samples were analyzed for PCB Aroclors and four soil samples were analyzed for PCB congeners (Table 4-25). No PCB Aroclors were detected at concentrations above laboratory reporting limits. Two of the four samples analyzed for PCB congeners did not contain any congener at detectable concentrations, and the remaining two samples contained total PCB concentrations below the human health PSL (USEPA RSL; 0.22 mg/kg) and the ecological PSL (direct contact invertebrate toxicity benchmark; 1 mg/kg) (Table 4-25).

4.4.1.2.2.4 Polycyclic Aromatic Hydrocarbons

During historical and RI sampling activities, 31 soil samples were analyzed for PAHs (Table 4-27). Additionally, 33 samples were analyzed for SVOCs including PAHs (Table 4-26), six of which are also included within the 31 soil samples analyzed for PAHs and listed in Table 4-27. Of all PAHs analyzed, 13 (acenaphthylene, anthracene, benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene) were detected at concentrations above their respective ecological PSLs in at least one sample, and seven (benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) were detected at concentrations above their respective human health PSLs in at least one sample (Tables 4-26 and 4-27).

A B(a)P TEQ was calculated for each sample and compared with the residential CHHSL for B(a)P (Figure 4-17). Of all soil samples collected and analyzed for PAHs or SVOCs in the Sawmill #1 AOI, 12 samples from seven locations had a B(a)P TEQ that exceeded the CHHSLr. The maximum B(a)P TEQ concentration

Former Georgia-Pacific Wood Products Facility

detected in the Sawmill #1 AOI was 7.5 mg/kg, which occurred in sample OUE-DP-073 from 2 to 3 ft bgs, within the footprint of the former press building (Figure 4-17).

Total concentrations of LMW and HMW PAHs were calculated for each sample and compared with the lowest of the USEPA Eco-SSLs. The lowest Eco-SSL for LMW PAHs is for invertebrates (29 mg/kg). The lowest Eco-SSL for HMW PAHs is for mammals (1.1 mg/kg). No samples contained concentrations of total LMW PAHs in exceedance of the Eco-SSL for invertebrates. Nine samples contained concentrations of total HMW PAHs above the Eco-SSL for mammals. Consistent with the results of the human health screening level comparison discussed above, the maximum HMW PAH concentration was detected at OUE-DP-073 (2 to 3 ft bgs). HMW PAH analytical results are presented in Tables 4-26 and 4-27 and depicted on Figure 4-19.

4.4.1.2.2.5 Volatile Organic Compounds

During historical and RI sampling activities, 44 soil samples from 35 locations were analyzed for VOCs. Thirteen of the 70 VOCs analyzed were detected in one or more samples. Three of the detected compounds (2-butanone, acetone, and methylene chloride) are common laboratory contaminants. The remaining 10 VOCs were detected at concentrations below their respective human health and ecological PSLs (Table 4-28).

4.4.1.2.3 Summary of Findings

The Sawmill #1 AOI consists of the east central portion of the OU-E lowland area north of Pond 8. Historical and RI soil sample results indicate concentrations of TPHg, TPHmo, PCBs, and VOCs in soil are either not detected or are below PSLs. There is a localized area under the east end of the former Sawmill #1 building where TPHd (leaching to groundwater only) and PAH concentrations were more than ten times their respective screening levels. Groundwater grab samples from this area also showed elevated concentrations of TPHd, while concentrations in downgradient monitoring wells (MW-4.4 and MW-5.9) are consistently below screening levels. Two samples collected in the east end of the former Sawmill #1 also exceeded aliphatic RBSCs for direct contact/indoor air. PAH exceedances of ten times the screening level were also detected along the drain line south of the Former Sawmill #1. Ecological and human health exceedances were most notably observed for lead. Nine other metals (antimony, barium, chromium, copper, mercury, molybdenum, nickel, vanadium, and zinc) were detected at concentrations exceeding ecological PSLs, and one other metal (arsenic) was detected above the human health PSL.

Former Georgia-Pacific Wood Products Facility

Summary Table: Sawmill #1 AOI

Sawmill #1 AOI **Human Health** Ecological Number of Number of Constituent Range of Detections Exceedances/ Exceedances/ PSL PSL Number of Number of Samples Samples Metals - (mg/kg) 30 Antimony 0.39 6.3 0/24 0.97 4/24 -Arsenic 1.8 -15 10 1/24 18 0/24 5.200 330 24 470 0/24 3/24 Barium -Chromium 4.3 94 100,000 0/24 42 5/24 -Copper 2.1 110 3,000 0/24 36 7/24 3.1 3800 8/57 22 19/57 80 Lead 0.019 0.35 18 0/24 0.12 5/24 Mercury -380 0/24 2/24 Molybdenum 0.33 5.2 2 -4 78 1.600 0/24 41 1/24 Nickel -91 0/24 90 Vanadium 6.9 530 1/24 -400 23,000 84 9/24 8.7 0/24 Zinc Polycyclic Aromatic Hydrocarbons - (mg/kg) 0.0017 0.81 0/58 1/58 0.6 Acenaphthylene 0.0011 0.87 17.000 0/58 0.6 1/58 Anthracene Benzo(a)anthracene 0.0011 -3.6 0.15 8/58 1 2/58 0.003 5.6 0.038 11/58 4/58 Benzo(a)pyrene -1 0.0014 5.6 0.15 6/58 3/58 Benzo(b)fluoranthene 1 0.0014 2/58 Benzo(g,h,i)perylene 2.1 0/58 1 0.002 1.7 0.38 2/58 1/58 Benzo(k)fluoranthene 1 0.0019 3.9 3.8 1/58 4/58 1 Chrysene -Dibenz(a,h)anthracene 0.0026 0.58 0.015 5/58 1 0/58 -0.0039 0/58 4/58 Fluoranthene 5.6 2,300 1 -0.0024 2,300 0/58 2/58 1.5 0.6 Fluorene -Indeno(1,2,3-cd)Pyrene 0.0036 1.9 0.15 4/58 1/58 1 0.0044 0.6 5/58 0/58 Phenanthrene 2 1,700 0.0013 7.7 0/58 1.2 4/58 Pyrene HMW-PAH¹¹ 0.00 38.00 0/58 1.1 9/58 USEPA B(a)P TEQ⁴ 0.000019 -7.5 0.038 12/60 ---0/60 Total Petroleum Hydrocarbons - (mg/kg) LGW RBSC 78 1/60 Diesel C10-C12 0.15 51 ------Diesel C16-C24 0.41 12000 10,772 1/60 -Total Diesel (C10-C24) 12634 10,772 1/72 1,045 12/72 0.41 -

Footnotes:

2 4 Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Non-detects excluded.

11

Sum of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1.2,3-cd)pyrene and pyrene.

Former Georgia-Pacific Wood Products Facility

4.4.1.3 Compressor House and Lath Building AOI

The Compressor House and Lath Building AOI is in the northeastern portion of the OU-E lowland area north of Pond 8 (Figure 2-1). Metal- and TPH-impacted soils were excavated from the Compressor House area in the summer of 2008, as discussed in Section 3.3.3; the excavation boundary is shown on Figure 4-3. Data representative of soil that was excavated in 2008 are presented in Tables 4-23 through 4-28. Table 4-48 summarizes statistical data for the Compressor House and Lath Building AOI. A summary table is provided at the end of the section. This section presents an overview of the remedial investigation activities conducted within this AOI, followed by a discussion of the nature and extent of impacts in soil, including data from historical and RI sampling that represent current site conditions.

4.4.1.3.1 Overview of RI Activities

As discussed in Section 4.2.1, soil sampling occurred in June 2010 to address data gaps identified near the sanitary sewer and plant drain system pipelines that run through the AOI, under the Lath Building, near the three transformers formerly located north of Compressor House 2, and the Electrical Shop. Analytical results from the June 2010 sampling event identified elevated PAH concentrations in a soil sample (OUE-DP-053) collected from 4 to 5 ft bgs in the backfilled TPH excavation (Figure 4-17).

Step-out sampling occurred in October and November 2010 to further evaluate background PAH concentrations in the backfill material, as discussed in Section 4.2.2. PAH concentrations in soil samples collected in step-out location OUE-DP-067 (Figure 4-17) were below the human health PSLs and therefore no additional sampling was recommended for this AOI.

4.4.1.3.2 Nature and Extent of Contamination

A total of 120 soil samples were collected from the Compressor House and Lath Building AOI during the course of historical and RI activities. These samples were analyzed for metals, TPH, PCBs, PAHs, SVOCs, and VOCs, as presented in Table 4-2. Sixty-three of these samples were subsequently removed during excavation activities as part of the Compressor House excavation discussed in Section 3.3.3. These samples are identified as "EXCAVATED" in Table 4-2. Table 4-48 summarizes statistical data for this AOI and sample locations and excavation boundary are shown on Figure 4-3.

4.4.1.3.2.1 Metals

During historical and RI sampling activities, 59 soil samples from the Compressor House and Lath Building AOI were analyzed for metals, as shown in Table 4-2. Forty-four of these sample locations were subsequently removed during excavation activities. Of the 15 metals samples identified in the Summary Table for the AOI, 14 were analyzed for all metals, while one was analyzed for only lead. Table 4-23 shows

Former Georgia-Pacific Wood Products Facility

analytical results for metals detected in soil samples collected within the AOI. Nine of the CAM-17 metals (beryllium, cadmium, cobalt, mercury, molybdenum, selenium, silver, thallium, and vanadium) were either not detected or were below PSLs. Eight of the CAM-17 metals (antimony, arsenic, barium, chromium, copper, lead, nickel, and zinc) were detected at concentrations above PSLs. Few of these exceedances remain after excavation activities (Table 4-23). Four metals (copper, lead, nickel, and zinc) exceeded PSLs in at least 10% of the samples remaining and are discussed below:

- Copper was detected above the ecological PSL (36 mg/kg) in two of the 14 samples analyzed for copper and remaining after excavation activities. The maximum copper concentration (71 mg/kg) was detected in sample OUE-DP-035 from 0.5 to 1.5 ft bgs. All of the copper concentrations were below the human health PSL.
- Lead was detected above the ecological PSL (22 mg/kg) in three of the 15 samples analyzed for lead and remaining after excavation activities (Figure 4-15a). The maximum lead concentration (72 mg/kg) was detected in sample OUC-HA-020 from 0 to 0.5 ft bgs.
- Nickel was detected above the ecological PSL (41 mg/kg) in two of the 14 samples analyzed for nickel and remaining after excavation activities. Both samples collected (OUE-DP-034 from 0 to 0.5 ft bgs and OUE-DP-035 from 0.5 to 1.5 ft bgs) had concentrations of 46 mg/kg.
- Zinc was detected above the ecological PSL (84 mg/kg) in two of the 14 samples analyzed for zinc and remaining after excavation activities. The maximum zinc concentration (110 mg/kg) was detected in sample OUE-DP-032 from 0 to 0.5 ft bgs.

4.4.1.3.2.2 Total Petroleum Hydrocarbons

A total of 66 soil samples collected from the Compressor House and Lath Building AOI were analyzed for TPH. Nineteen of these samples were confirmation samples collected as part of the excavation activities. Nineteen of the 66 samples were subsequently removed during excavation activities, leaving 47 samples representative of current conditions. The excavated samples are identified as "EXCAVATED" in Table 4-2. Analytical results for all samples are presented in Table 4-24.

TPHg and TPHmo concentrations either did not exceed screening levels or were sampled from locations that have since been excavated. Two of the remaining 47 samples were analyzed for TPHg and were below screening levels. None of the 47 remaining samples exhibited TPHmo concentrations above screening levels. TPHmo results in soil and groundwater samples along a north-south cross section of the AOI are presented in Figure 4-14.

ARCADIS

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

All 66 samples were analyzed for TPHd. Twelve samples exceeded the TPH-LGW SL (1,045 mg/kg), and one sample also exceeded the aliphatic RBSC for direct contact/indoor air (10,772 mg/kg for TPHd C10-C12 and TPHd C12-C16). Eight of the 12 sample locations with exceedances were removed during excavation activities and are not discussed further. Figure 4-16 shows the analytical results for samples at locations within this AOI that have not been excavated. Figure 4-13 shows analytical results for soil and groundwater samples along a north-south cross section of the AOI. In the area of the Compressor House Excavation, three samples had total TPHd concentrations exceeding the TPH-LGW SL of 1,045 mg/kg. The sample depths ranged from 6 to 9 ft bgs, the average water table elevation is approximately three to four feet below ground surface (Figure 4-13). The maximum total TPHd concentration of 5,730 mg/kg was collected from R37-CS-009 at 6 to 6.5 ft bgs. Samples taken from cross-gradient monitoring well MW-5.8 and downgradient monitoring well MW-5.16 are consistently below screening levels, indicating that TPHd impacts are isolated to soil and not impacting groundwater.

Total TPHd detected in sample OUE-DP-033 (0 to 0.5 ft bgs) at the western end of the former Lath Building also exceeded the TPH-LGW SL, with a concentration of 1,533 mg/kg (Table 4-24). A grab groundwater sample from this location had a concentration of 0.11 mg/L, which exceeds the RWQCB taste and odor value of 0.05 mg/L, but is below the aliphatic RBSC of 1.22 mg/L. The TPHd concentration at nearby grab groundwater sample OUE-DP-032 is below screening levels, indicating that the elevated TPHd concentration in the grab sample at OUE-DP-033 was likely associated with sorbed mass present on soil particles captured in the sample, and not representative of groundwater concentrations. These observations indicate that TPHd impacts are isolated to soil in this area, and are not impacting groundwater. Section 4.4.3.3 presents a discussion of the nature and extent of TPH in groundwater across OU-E.

Two soil samples collected in June 2010 from the Compressor House and Lath Building AOI (OUE-DP-033 and OUE-DP-035) were analyzed for forensic TPH and alkylated PAHs (see Section 4.2.1). The forensic evaluation concluded that the contribution of petroleum to the overall TPH content is estimated to be small.

4.4.1.3.2.3 Polychlorinated Biphenyls

During historical and RI sampling activities, one soil sample within the AOI was analyzed for PCB Aroclors and six soil samples were analyzed for PCB congeners. No PCB Aroclors were detected above laboratory reporting limits. One of the six samples analyzed for PCB congeners did not contain any congener at detectable concentrations, and the remaining five samples had total PCB concentrations less than the human health PSL (USEPA RSL; 0.22 mg/kg) and the ecological PSL (direct contact invertebrate toxicity benchmark; 1 mg/kg) (Table 4-25).

Former Georgia-Pacific Wood Products Facility

4.4.1.3.2.4 Polycyclic Aromatic Hydrocarbons

During historical and RI sampling activities, 32 soil samples from the Compressor House and Lath Building AOI were analyzed for PAHs (Table 4-27). Additionally, 14 samples from this AOI were analyzed for SVOCs including PAHs (Table 4-26), 12 of which are also included within the 32 soil samples analyzed for PAHs and listed in Table 4-27. Four of the constituents analyzed (benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, and dibenzo(a,h)anthracene) were detected at concentrations above their respective human health PSLs in at least one sample. Several samples were analyzed for both SVOCs including PAHs and PAHs alone. Data are presented in Tables 4-26 and 4-27. The summary statistics tables avoid double counting of PAH analysis when both SVOC and PAH analysis were performed.

A B(a)P TEQ was calculated for each sample and compared with the residential CHHSL for B(a)P. Only three of the soil samples collected and analyzed for PAHs or SVOCs in the AOI had a B(a)P TEQ that exceeded the CHHSLr of 0.038 mg/kg. The maximum B(a)P TEQ concentration detected in the AOI was 0.25 mg/kg at sample location OUC-HA-053 from 4.0 to 5.0 ft bgs, within the extent of the Compressor House excavation (Figure 4-17).

Total concentrations of LMW and HMW PAHs were calculated for each sample and compared with the lowest of the USEPA Eco-SSLs. The lowest Eco-SSL for LMW PAHs is for invertebrates (29 mg/kg). The lowest Eco-SSL for HMW PAHs is for mammals (1.1 mg/kg). No samples contained LMW PAH concentrations in excess of the Eco-SSL. One sample (OUC-HA-53 from 4 to 5 ft bgs, just below the extent of the Compressor House excavation) contained HMW PAH at a concentration of 1.8 mg/kg, which is greater than the Eco-SSL of 1.1 mg/kg. This sample also contained the maximum B(a)P TEQ concentration detected in the AOI. HMW PAH analytical results are presented in Tables 4-26 and 4-27 and depicted on Figure 4-19.

4.4.1.3.2.5 Volatile Organic Compounds

During historical and RI sampling activities, 10 soil samples from five locations were analyzed for VOCs. Six of the 70 VOCs analyzed were detected in one or more sample from this AOI. Three of the detected compounds (2-butanone, acetone, and methylene chloride) are common laboratory contaminants. The remaining three VOCs (naphthalene, toluene, and carbon disulfide) were detected at concentrations below their respective human health and ecological PSLs (Table 4-28).

4.4.1.3.3 Summary of Findings

The Compressor House and Lath Building AOI comprises the northeastern portion of the OU-E lowland area north of Pond 8. Metal and TPH-impacted soils were excavated from the Compressor House area in 2008. Historical and RI soil data representative of current conditions (i.e., excluding data representative of the

Former Georgia-Pacific Wood Products Facility

excavated fuel line soil) indicate impacts to soil below PSLs from TPHg, TPHmo, PCBs, or VOCs. Remaining soil contaminants above PSLs include TPHd, metals, and PAHs. There are infrequent exceedances of the TPHd screening levels, primarily the leaching to groundwater PSL. One sample out of 47 collected samples exceeded aliphatic RBSC criteria, and four samples exceed leaching to groundwater criteria. TPHd concentrations in downgradient monitoring well MW-5.16 are consistently below screening levels, indicating that TPH impacts are isolated to soil. PAH concentrations exceeding the respective screening levels are found primarily within the extent of the former Compressor House excavation.

Summary Table: Compressor House and Lath Building AOI

Compressor House and Lath Building AOI									
	Range of Detections			Hu	man Health	Ecological			
Constituent				PSL	Number of Exceedances/ Number of Samples	PSL	Number of Exceedances/ Number of Samples		
Metals (mg/kg)									
Antimony	0.03	-	1.1	30	0/14	0.97	1/14		
Arsenic	0.56	-	13	10	2/14	18	0/14		
Barium	29	-	380	5,200	0/14	330	1/14		
Chromium	4.2	-	48	100,000	0/14	42	1/14		
Copper	1	-	71	3,000	0/14	36	2/14		
Lead	2.3	-	72	80	0/15	22	3/15		
Nickel	1.9	-	46	1,600	0/14	41	2/14		
Zinc	2.3 - 110		23,000	0/14	84	2/14			
Polycyclic Aromatic Hydro	carbons (P	AH)	(mg/kg)						
Benzo(a)anthracene	0.00096	-	0.2	0.15	1/34	1	0/34		
Benzo(a)pyrene	0.001	-	0.17	0.038	3/34	1	0/34		
Benzo(b)fluoranthene	0.0012	-	0.21	0.15	1/34	1	0/34		
Dibenz(a,h)anthracene	0.0021	-	0.023	0.015	1/34	1	0/34		
HMW-PAH ¹¹	0.005	-	1.800		0/32	1.1	1/32		
USEPA B(a)P TEQ ⁴	0.0000	-	0.2500	0.038	3/34		0/34		
Total Petroleum Hydrocarbons - (mg/kg)			RBSC		LGW				
Diesel C10-C12	0.2	-	430	51	1/47				
Diesel C12-C16	0.32	-	1700	648	1/47				
Total Diesel (C10-C24) ²	0.21	-	5730	10,772	0/47	1,045	4/47		

Footnotes:

2

4

11

Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C2 Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Non-detects excluded.

Sum of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1.2,3-cd)pyrene and pyrene.

Former Georgia-Pacific Wood Products Facility

4.4.1.4 Powerhouse and Fuel Barn AOI

The Powerhouse and Fuel Barn AOI is in the central portion of the OU-E lowland area north of Pond 8 (Figure 4-1) and contains the North Pond and Ponds 6 and 7. This section presents an overview of the remedial investigation activities conducted for soil within this AOI, followed by a discussion of the nature and extent of impacts in soil, including data from historical and RI sampling. Sediment investigation for the North Pond, Pond 6, and Pond 7 are discussed in Section 4.4.2 and groundwater was discussed in Section 4.4.3.

4.4.1.4.1 Overview of RI Activities

As discussed in Section 4.2.1, soil sampling occurred in June 2010 to address data gaps for the Powerhouse and Fuel Barn AOI. Site features are shown on Figure 2-1. These data gaps were outlined in the Work Plan (ARCADIS, 2010d) and are summarized below:

- Lead was not sufficiently characterized in soil at the west end of the Dewatering Slabs.
- No previous investigation has been conducted for PCBs near the three transformers. One transformer
 was formerly located between Pond 6 and the Former South Pond, and the other two were north of the
 former Powerhouse.
- PAHs were not sufficiently characterized in soil from the former Equipment Fueling Area by the Hog Fuel Pile.
- Metals, TPHd, and PAH concentrations in groundwater upgradient of HSA-4.5 and HSA-4.6 were not sufficiently characterized.
- Former South Pond Area was not previously investigated for dioxins/furans.
- No previous investigation had been conducted at the Chemical Storage Tank.
- No previous investigation had been conducted at the Paint Storage Shed.
- No previous investigation had been performed on the berm along the western perimeter of the AOI where fly ash was observed.
- No soil or groundwater samples had been collected along the drain lines that run through the AOI.

Former Georgia-Pacific Wood Products Facility

- No previous investigation had been conducted to assess the impacts of LBP to soil around the perimeter of the Fuel Barn or Powerhouse Building.
- TPHd impacts to subsurface soil at P4-PH1 had not been adequately delineated.
- No previous investigation had been conducted to assess the impacts of fly ash in the vicinity of the former Powerhouse Building.
- No previous investigation had been conducted in the former Boiler House Area.
- Additional sampling was needed at the former Fly Ash Reinjection System and former Open Fire Refuse areas to assess the presence of dioxin/furans in soil from the historical use of these areas. The Powerhouse area should also be investigated for potential impacts.
- Arsenic, lead, PAHs, and dioxins/furans were not sufficiently characterized in soil north of the former Concrete-Lined Tank.

A total of 92 soil samples were collected within this AOI during the June 2010 sampling event. Analytical results from the June 2010 sampling event identified the following areas for further investigation based on exceedances of screening levels and to identify the nature and extent of impacts:

- Potential impacts from unidentified material in the aboveground tank located north of the former South Pond need to be investigated.
- Elevated PAH concentrations were detected in soil samples collected northwest of the former Fuel Barn (OUE-HA-016 from 0.5 to 1.5 ft bgs and OUE-HA-018 from 0.5 to 1.5 ft bgs, respectively).
- Elevated lead concentrations were detected in a soil sample collected north of the concrete-lined tank (OUE-HA-023B from 6.5 to 8 ft bgs).
- Elevated lead, PAH, and dioxin/furan concentrations were detected at location HA-4.90 during previous investigation, and boring logs from locations OUE-HA-023A and OUE-HA-024 suggest the cap extends to 10 or 11 ft bgs. Therefore, additional investigation needs to be conducted to address potential impacts at the soil/cap interface.
- Elevated dioxin/furan concentrations were detected in soil samples from the Fly Ash Reinjection system (OUE-DP-052 from 0 to 0.5 ft bgs and 0.5 to 1.5 ft bgs).

Former Georgia-Pacific Wood Products Facility

As discussed in Section 4.2.2, step-out sampling occurred in October and November 2010 to further identify the lateral and vertical extents of these constituents in soil, as well as to make one more attempt to collect soil samples closer to the retaining wall at the southern perimeter of the former Powerhouse to address a lead and dioxin data gap. Sample locations are shown on Figure 4-4. Deeper samples could not be collected at two of the six proposed step-out locations (OUE-HA-036 and OUE-HA-038) northwest of the former Fuel Barn due to refusal.

B(a)P TEQ concentrations exceeded the human health PSL (CHHSLr; 0.038 mg/kg) in five out of 16 samples (OUE-HA-034 at 3 to 4 ft bgs; OUE-HA-037 at 0 to 0.5 ft bgs, 0.5 to 1.5 ft bgs ,and 2 to 2.5 ft bgs; and OUE-HA-038 at 0.5 to 1.5 ft bgs). Elevated lead concentrations were detected in seven out of nine soil samples in step-out locations north of the concrete-lined tank. Elevated lead concentrations were detected in step-out location OUE-DP-087, northwest of the Powerhouse. Lead and dioxin/furan concentrations were above screening levels in step-out locations east of the Powerhouse and the Fly Ash Reinjection system (OUE-DP-052 at 0 to 0.5 ft bgs and 0.5 to 1.5 ft bgs, and HA-4.90 at 2 to 2.5 ft bgs). Lead and dioxin/furan concentrations were below human health PSLs at step-out location OUE-DP-093, near the retaining wall at the southern perimeter of the former Powerhouse. Additionally, transect samples OUE-T1-1 and OUE-T2-2 were collected in two locations based on observed ash (Figure 4-4 inset). The dioxin concentration in sample OUE-T1-1 was below the human health PSL, and dioxin concentrations in samples collected at OUE-T2-2 exceeded the human health PSL.

As discussed in Section 4.2.3, step-out sampling occurred in December 2010 to further investigate the extent of lead concentrations detected at location OUE-DP-087 and the extent of dioxin/furan concentrations detected at location T2-2. Three of the six soil samples collected from two step-out locations (OUE-DP-099 and OUE-DP-100) contained B(a)P TEQ concentrations exceeding the CHHSL of 0.038 mg/kg.

4.4.1.4.2 Nature and Extent of Contamination

A total of 301 soil samples were collected from the Powerhouse and Fuel Barn AOI during the course of historical and RI activities. These samples were analyzed for metals (including hexavalent chromium), TPH, PCBs, PAHs, SVOCs, VOCs, and dioxins/furans, as presented in Table 4-2. Table 4-49 summarizes the statistical data for this AOI. A summary table is provided at the end of the section.

4.4.1.4.2.1 Metals

During historical and RI sampling activities, 186 soil samples collected from the Powerhouse and Fuel Barn AOI were analyzed for metals, as shown in Table 4-2. Not all 186 samples collected were analyzed for the entire CAM-17 metals list. Table 4-23 summarizes analytical results for metals detected in soil samples collected within the AOI. Two of the CAM-17 metals (beryllium and thallium) were either not detected or were below PSLs. Fifteen of the CAM 17 metals (antimony, arsenic, barium, cadmium, chromium, cobalt,

Former Georgia-Pacific Wood Products Facility

copper, lead, mercury, molybdenum, nickel, selenium, silver, vanadium, and zinc) were detected at concentrations above PSLs. Seven metals (antimony, barium, copper, lead, mercury, molybdenum, and zinc) were detected at concentrations above screening levels in at least 10% of the samples and are discussed below:

- Antimony was detected above the ecological PSLs (0.97 mg/kg) in 40 of the 108 samples analyzed. One sample with a concentration of 33 mg/kg (OUE-HA-023B from 6.5 to 8 ft bgs) exceeded the human health PSL (CHHSLr; 30 mg/kg) (Table 4-23 and Figure 4-4).
- Barium was detected above the ecological PSL (Eco-SSL for invertebrates; 330 mg/kg) in 26 of the 108 samples analyzed. Three samples exceeded the human health PSL (CHHSLr; 5,200 mg/kg). The maximum barium concentration (8,200 mg/kg) was detected in OUE-HA-023B from 5 to 6.5 ft bgs, under the cap area of the former Power House (Table 4-23 and Figure 4-4). The majority of the samples with barium concentrations that exceed the PSLs were primarily collected under the cap area of the former Power House in the area south of Pond 7.
- Copper was detected above ecological PSLs (36 mg/kg) in 26 of the 108 samples analyzed. Twelve of the 26 samples contained copper concentrations more than two times the PSL (Table 4-23 and Figure 4-4); nine of these samples were primarily collected under the cap area of the former Power House, and three samples were collected south of Pond 7. None of the samples exceeded the human health PSL (CHHSLr; 3,000 mg/kg).
- Lead was detected above the ecological PSL (22 mg/kg) in 64 of the 182 samples collected. Lead exceeded the human health PSL (CHHSLr; 80 mg/kg) in 29 samples. The maximum lead concentration (3,600 mg/kg) was detected in sample OUE-HA-023B from 6.5 to 8 ft bgs. Lead concentrations exceeding the ecological PSL are depicted on Figure 4-15a; concentrations relative to the human health PSL are presented in Figure 4-15b.
- Mercury was detected above the ecological PSL (0.12 mg/kg) in 11 of the 108 samples collected. Seven
 of these samples contained mercury concentrations more than two times the PSL. Five of these
 samples were collected under the cap area of the former Power House at depths greater than 4 ft bgs,
 and the remaining two samples were collected under the cap area of the former dewatering slab. None
 of the samples exceeded the human health PSL (CHHSLr; 18 mg/kg).
- Molybdenum was detected above the ecological PSL (toxicity benchmark for plants; 2 mg/kg) in 15 of the 108 samples collected. All 15 samples are identified as fill material. Twelve of these samples contained molybdenum concentrations more than two times the PSL; these samples were collected under the cap area of the former Power House at more than 4.0 ft bgs, except sample HA-4.90, which

Former Georgia-Pacific Wood Products Facility

was collected at 2 ft bgs and HA-4.76, which was collected at 3.5 ft. None of the samples exceeded the human health PSL (CHHSLr; 380mg/kg).

Zinc was detected above ecological PSL (84 mg/kg) in 29 of the 108 samples collected. All 29 samples are identified as fill material. Sixteen of the samples contained concentrations more than two times the PSL. Thirteen of these samples were collected under the cap area of the former Power House, two samples were collected west of the cap area of the former Power House, two samples were collected west of the former Power House, and one sample was collected west of the former dewatering slabs. No samples exceeded the human health PSL (CHHSLr; 23,000 mg/kg).

In addition to CAM-17 metals, the soil in the area of the former Cooling Towers along the Pond 8 berm was investigated for Hexavalent chromium due to the use of corrosion inhibitors that contained hexavalent chromium compounds. A total of 22 soil samples were collected from 14 locations (HA-4.95 to HA-4.98, HA-4.100 to HA-4.103, HA-4.105, HA-4.106, HA-4.156, HA-4.157, P4-36, and P4-37). No concentrations were detected above the laboratory reporting limit (0.05 mg/kg).

4.4.1.4.2.2 Total Petroleum Hydrocarbons

During historical and RI sampling activities, 164 soil samples were collected from 105 locations in the Powerhouse and Fuel Barn AOI and analyzed for TPH (Figure 4-16).

TPHg and TPHmo either were not detected or did not exceed screening levels. Fifteen of these samples were analyzed for TPHg; TPHg concentrations were either not detected or were below screening levels (Table 4-24). A north-south cross section of TPHmo concentrations in soil and groundwater across the western portion of the AOI is presented in Figure 4-10. TPHmo was analyzed in 164 soil samples; TPHmo concentrations were not detected in five samples and were below the aliphatic RBSC for direct contact/indoor air (281,346 mg/kg) in the remaining 159 samples. Grab ground water samples of TPHmo exceeded the aliphatic RBSC (31.3 mg/L) at location HSA-4.5 (130 mg/L), and the RWQCB taste and odor threshold (0.175 mg/L) at four additional locations (0.59 mg/L at HAS-4.4, 0.32 mg/L at OUE-DP-039 upper screen interval, 0.48 mg/L at OUE-DP-039 lower screen interval, and 3 mg/L at HAS-4.6) (Figure 4-10). However, concentrations in these samples are likely elevated due to suspended soil particles captured during grab sampling, and may not be representative of groundwater concentrations.

A north-south cross section of TPHd concentrations in soil and groundwater across the western portion of the AOI is presented in Figure 4-9. Total TPHd was detected at concentrations below all screening levels in 162 samples, and exceeded the TPH-LGW SL (1,045 mg/kg) in two samples. The maximum total TPHd concentration (3,600 mg/kg) was detected in P4-PH1 from 6 to 6.5 ft bgs. None of the samples exceeded the aliphatic RBSC for direct contact/indoor air (10,772 mg/kg). A grab groundwater sample taken from location HSA-4.5 (16 mg/L) exceeded the aliphatic RBSC of 1.22 mg/L. However, at all nearby locations

Former Georgia-Pacific Wood Products Facility

TPHd was either not detected, or detected below the screening level, indicating that the concentration in the sample taken from HAS-4.5 was likely elevated due to suspended soil particles, and was not representative of groundwater concentrations. Section 4.4.3.3 presents a discussion of the nature and extent of TPH in groundwater across OU-E.

Four soil samples collected in June 2010 from the Powerhouse and Fuel Barn AOI (OUE-DP-055 from 2 to 3 ft bgs, OUE-DP-038 from 0 to 2.5 ft bgs, OUE-HA-016 from 4 to 5 ft bgs, and OUE-HA-018 from 0.5 to 1.5 ft bgs) were analyzed for forensic TPH and alkylated PAHs (see Section 4.2.1). The forensics analysis concluded that the contribution of petroleum to the overall TPH content is estimated to be small.

4.4.1.4.2.3 Polychlorinated Biphenyls

During historical and RI sampling activities within the Powerhouse and Fuel Barn AOI, 15 soil samples were analyzed for PCB Aroclors and 29 soil samples were analyzed for PCB congeners. PCB Aroclors were detected above laboratory reporting limits in two of the 15 samples. No PCB Aroclor or congener concentrations exceeded the PSL. Fourteen of the 29 samples analyzed for PCB congeners did not contain detectable concentrations of any congeners, and the remaining 15 samples had total PCB concentrations less than the human health PSL (USEPA RSL; 0.22 mg/kg) and the ecological PSL (direct contact invertebrate toxicity benchmark; 1 mg/kg) (Table 4-25).

4.4.1.4.2.4 Polycyclic Aromatic Hydrocarbons

During historical and RI sampling activities, 73 soil samples collected within the Powerhouse and Fuel Barn AOI were analyzed for PAHs. Additionally, 93 samples were analyzed for SVOCs including PAHs (Table 4-26), 13 of which are also included within the 73 soil samples analyzed for PAHs and listed in Table 4-27. Several samples were analyzed for both SVOCs including PAHs and PAHs alone. Data are presented in Tables 4-26 and 4-27. The summary statistics tables avoid double counting of PAH analysis when both SVOC and PAH analysis were performed. Fifteen of the constituents analyzed (acenaphthylene, anthracene, benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene) were detected at concentrations above their respective ecological PSLs in at least one sample, and seven (benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) were detected at concentrations above their respective ecological PSLs in at least one sample, and seven (benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) were detected at concentrations above their respective burne health PSLs in at least one sample.

A B(a)P TEQ was calculated for each sample and compared with the residential CHHSL for B(a)P (Figure 4-17). Twenty-two of the soil samples collected and analyzed for PAHs or SVOCs in the Powerhouse and Fuel Barn AOI had a B(a)P TEQ that exceeded the CHHSLr. The maximum B(a)P TEQ concentration detected in

Former Georgia-Pacific Wood Products Facility

the Powerhouse and Fuel Barn AOI was 27 mg/kg at sample location HSA-4.3 from 2 to 2.5 ft bgs, at the northwest corner of the former fuel barn (Figure 4-17).

Total concentrations of LMW and HMW PAHs were calculated for each sample and compared with the lowest of the USEPA Eco-SSLs. The lowest Eco-SSL for LMW PAHs is for invertebrates (29 mg/kg). The lowest Eco-SSL for HMW PAHs is for mammals (1.1 mg/kg). One sample contained a concentration of total LMW PAHs in exceedance of the Eco-SSL for invertebrates. Soil sample HAS-4.3 contained a concentration of 37 mg/kg from 2 to 2.5 ft bgs. Seven samples contained concentrations of total HMW PAHs above the Eco-SSL for mammals. The maximum HMW PAH concentration of 204 mg/kg was detected in soil sample HSA-4.3 from 2 to 2.5 ft bgs. HMW PAH analytical results are presented in Tables 4-26 and 4-27 and depicted on Figure 4-19.

4.4.1.4.2.5 Volatile Organic Compounds

During historical and RI sampling activities, 103 soil samples from 67 locations within the Powerhouse and Fuel Barn AOI were analyzed for VOCs. Twenty-four of the 70 VOCs analyzed were detected in at least one sample. Three of the detected compounds (2-butanone, acetone, and methylene chloride) are common laboratory contaminants. The remaining 21 VOCs were detected at concentrations below their respective human health and ecological PSLs (Table 4-18).

4.4.1.4.2.6 Dioxins/Furans

During historical and RI sampling activities, 80 soil samples were analyzed for dioxins/furans (Figure 4-18). The 2,3,7,8-TCDD TEQ concentration exceeded the human health PSL (CHHSLr; 4.6 pg/g) in 20 of the 80 samples (Figure 4-18b) and exceeded the ecological PSL (Canadian Environmental Quality Guidelines for Residential Soil [2006]; 4.0 pg/g) in 28 samples (Figure 4-18a). The maximum concentration (2,729 pg/g) was detected at OUE-DP-052 from 0.5 to 1.5 ft bgs, within the extent of the former Open Refuse Fire Area. Table 4-29 summarizes analytical results for dioxins/furans.

4.4.1.4.3 Summary of Findings

The Powerhouse and Fuel Barn AOI is in the central portion of the OU-E lowland area north of Pond 8. Historical and RI soil sample results indicate concentrations of TPHg, TPHmo, PCBs, and VOCs in soil are below PSLs.

Lead concentrations in surface and subsurface soil in proximity of the former Powerhouse building exceed ecological and human health PSLs, with the highest concentrations detected in subsurface soil east of the former Powerhouse building. Data also indicate detections of arsenic and barium above human health screening levels, and antimony, barium, cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel,

Former Georgia-Pacific Wood Products Facility

selenium, silver, vanadium, and zinc above ecological PSLs. Concentrations of dioxins/furans above human health and ecological PSLs were also detected. The maximum concentration of dioxin in OUE was detected at up to three orders of magnitude higher than the PSL in shallow soil from 0.5 to 1.5 ft bgs within the extent of the former Open Refuse Fire Area. Elevated PAH concentrations are primarily located northwest of the former Fuel Barn, and in the proximity of the former dewatering slabs.

Former Georgia-Pacific Wood Products Facility

		Hum	an Health	Ecological		
Constituent	Range of Detections	PSL	Number of Exceedances/ Number of Samples	PSL	Number of Exceedances/ Number of Samples	
Metals - (mg/kg)						
Antimony	0.16 - 33	30	1/108	0.97	40/108	
Arsenic	0.47 - 52	10	4/108	18	1/108	
Barium	25 - 8200	5,200	3/108	330	26/108	
Cadmium	0.051 - 4.1	39	0/108	2.8	2/108	
Chromium	4.5 - 75	100,000	0/112	42	10/112	
Cobalt	0.67 - 55	660	0/108	20	4/108	
Copper	0.61 - 290	3,000	0/108	36	26/108	
Lead	0.93 - 3600	80	29/182	22	64/182	
Mercury	0.015 - 0.87	18	0/108	0.12	11/108	
Molybdenum	0.25 - 70	380	0/108	2	15/108	
Nickel	3.3 - 78	1,600	0/108	41	4/108	
Selenium	0.051 - 1.9	380	0/108	0.82	3/108	
Silver	0.044 - 12	380	0/108	2	2/108	
Vanadium	6 - 130	530	0/108	90	1/108	
Zinc	3.8 - 1100	23,000	0/108	84	29/108	
Polychlorinated Biphenyls	- (mg/kg)					
PCB #1260	0.00021 - 0.0002	#N/A	1/26	#N/A	0/26	
Polycyclic Aromatic Hydro	carbons - (mg/kg)					
2-Methylnaphthalene	0.0015 0.035	310	0/61		0/61	
Acenaphthylene	0.0014 - 2.1		0/153	0.6	1/153	
Anthracene	0.0012 - 2.8	17,000	0/153	0.6	1/153	
Benzo(a)anthracene	0.0015 - 13	0.15	3/149	1	2/149	
Benzo(a)pyrene	0.0011 - 18	0.038	15/149	1	1/149	
Benzo(b)fluoranthene	0.00079 - 27	0.15	5/149	1	1/149	
Benzo(g,h,i)perylene	0.0014 - 7.4		0/153	1	1/153	
Benzo(k)fluoranthene	0.0011 - 17	0.38	2/149	1	1/149	
Chrysene	0.0015 - 22	3.8	1/149	1	2/149	
Dibenz(a,h)anthracene	0.0015 - 2.1	0.015	6/153	1	1/153	
Fluoranthene	0.0014 - 40	2,300	0/149	1	2/149	
Fluorene	0.0012 - 1.3	2,300	0/153	0.6	1/153	
Indeno(1,2,3-cd)Pyrene	0.0011 - 7.3	0.15	3/153	1	1/153	
Naphthalene	0.0013 - 1.3	3.6	0/149	0.6	1/149	
Phenanthrene	0.0014 - 29		0/149	0.6	1/149	
Pyrene	0.0013 - 50	1,700	0/149	1.2	2/149	
LMW-PAH ¹⁰	0.0016 - 37		0/149	29	1/149	
	0.002 - 204		0/149	1 1	7/149	
	0.002 - 204	0.038	27/140	1.1	0/140	
	0.0001 - 21	0.000	22/143		0/143	
Dioxins/Furans - (pg/g)			, , , , , , , , , , , , , , , , , , ,			
2,3,7,8-TCDD TEQ						
(Human/Mammal) ⁷	0.00048 - 2729	4.6	20/80	4	28/80	
2,3,7,8-TCDD	0.0744 - 176	4.6	2/80		2/80	
1,2,3,4,7,8-H×CDD	0.169 - 494	94	1/80		1/80	
1,2,3,6,7,8-H×CDD	0.256 - 1430	94	3/80		3/80	
1,2,3,7,8,9-H×CDD	0.179 - 1040	94	3/80		3/80	
Total Petroleum Hydrocarb	ons - (mg/kg)		· · ·			
Total Diesel (C10-C24) ²	0.57 - 3600	10,772	0/164	1.045	2/164	

Summary Table: Powerhouse and Fuel Barn AOI

Former Georgia-Pacific Wood Products Facility

Footnotes:

 2	Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C2
4	Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Non-detects excluded.
7	Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for human/mammal. NDs excluded.
10	Sum of 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene and phenanthrene.
11	Sum of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1.2,3-cd)pyrene and pyrene.

4.4.1.5 Pond 8 Fill Area AOI

The Pond 8 Fill Area AOI comprises the terrestrial area west and along the southern perimeter of Pond 8. No data gaps were identified based on evaluation of the historical land use and previously collected analytical data. This section presents the nature and extent of impacts in soil and discusses data from historical sampling.

A total of 19 soil samples were collected from the Pond 8 Fill Area AOI during the course of historical investigations. These samples were analyzed for metals (including hexavalent chromium), TPH, SVOCs, and VOCs, as presented in Table 4-2. Table 4-50 summarizes the statistical data from this AOI.

4.4.1.5.1 Metals

Seventeen soil samples collected from the Pond 8 Fill Area AOI were analyzed for metals, as shown in Table 4-2. Table 4-13 summarizes analytical results for all metals detected in soil samples collected within the AOI. Sixteen of the CAM-17 metals were either not detected or were below PSLs. Zinc was detected above the ecological PSL (84mg/kg) in sample HSA-6.29 collected from 11.0 to 11.5 ft bgs at a concentration of 160 mg/kg; the sample did not exceed the human health PSL (23,000 mg/kg). Comparison of the PSL exceedances with the background concentration specific to fill (160 mg/kg) presented in Table D-1 indicates that the PSL exceedance is characteristic of background conditions.

Hexavalent chromium was also analyzed in four samples from two locations in the vicinity of the former Cooling Towers due to its use in corrosion inhibitors. Hexavalent chromium was not detected above laboratory reporting limits (0.05 mg/kg).

4.4.1.5.2 Total Petroleum Hydrocarbons

Fifteen soil samples collected from six locations in the Pond 8 Fill Area AOI were analyzed for TPHd and TPHmo (Table 4-24). TPHmo was analyzed in 15 samples; TPHd and TPHmo concentrations were not detected in two samples and were below the aliphatic RBSC for direct contact/indoor air (281,346 mg/kg) in

Former Georgia-Pacific Wood Products Facility

the remaining 13 samples. Total TPHd was not detected in one of the 15 samples and was detected below screening levels in the remaining 14 samples.

4.4.1.5.3 Semi-Volatile Organic Compounds

Thirteen soil samples collected within the Pond 8 Fill Area AOI were analyzed for SVOCs. Two of the constituents (fluoranthene and phenanthrene) were detected in at least one sample; neither exceeded their respective PSLs.

A B(a)P TEQ was calculated for each sample and compared with the residential CHHSL for B(a)P. None of the soil samples collected in the Pond 8 Fill Area AOI and analyzed for SVOCs had a detectable B(a)P TEQ.

Total concentrations of LMW and HMW PAHs were calculated for each sample and compared with the lowest of the USEPA Eco-SSLs. The lowest Eco-SSL for LMW PAHs is for invertebrates (29 mg/kg). The lowest Eco-SSL for HMW PAHs is for mammals (1.1 mg/kg). One sample contained detectable LMW and HMW PAH (HSA-6.29 from 20.5 to 21 ft bss) and no samples contained concentrations of LMW and HMW PAHs in exceedance of the respective ecological PSLs. SVOC results are presented in Table 4-26

4.4.1.5.4 Volatile Organic Compounds

Seven soil samples from two locations (HSA-6.29 and HAS-6.30) were analyzed for VOCs. Only three of the 70 VOCs analyzed were detected in at least one sample. Two of the detected compounds (2-butanone and acetone) are common laboratory contaminants. The remaining VOC was detected at concentrations below its human health and ecological PSLs (Table 4-28).

4.4.1.5.5 Summary of Findings

The Pond 8 Fill Area AOI comprises the terrestrial area west and along the southern perimeter of Pond 8. Soil sample results indicate concentrations of TPHmo, TPHd, SVOCs, and VOCs are below PSLs. Metals in collected soil samples were either not detected or were below PSLs with the exception of zinc, which exceeded the ecological PSL in sample HSA-6.29. Comparison of the concentration in HAS-6.29 with media specific background concentrations indicates that the detected concentration is characteristic of background conditions. As only one sample was found to exceed screening levels, no summary table is provided. Statistical summaries are discussed in Section 4.4.1.5.1, and provided in Table 4-50.

Former Georgia-Pacific Wood Products Facility

4.4.2 Sediment

4.4.2.1 Pond 8 AOI

Pond 8 is located in the central portion of the site, south of the Former Powerhouse AOI. Pond 8 was also known as the Log Pond or Mill Pond. This section presents the nature and extent of impacts in sediment and discusses data from historical and RI sampling. A total of 61 sediment samples were collected from Pond 8 during historical and RI activities. These samples were analyzed for metals (including hexavalent chromium), TPH, PCBs, PAHs, pesticides, dioxins/furans, VOCs, SVOCs, chlorophenols, and cyanide as presented in Table 4-3. Table 4-51 summarizes statistical data for sediment in Pond 8. A summary table is provided at the end of the section.

4.4.2.1.1 Metals

During historical and RI sampling activities, 56 sediment samples from 24 locations were analyzed for metals. Table 4-30 shows results for metals detected in Pond 8 sediments. Figure 4-4 shows the sample locations for Pond 8. Eight of the CAM-17 metals (antimony, barium, beryllium, cadmium, selenium, silver, thallium, and vanadium) were either not detected or were below the soil background concentrations and/or both PSLs⁸. As shown in the embedded table in Section 4.4.2.1.7, arsenic, cadmium, copper, lead, molybdenum, nickel, and zinc exceeded the ecological PSL (or background if higher) in more than 10 samples from Pond 8. Nine of the 17 metals analyzed were detected at concentrations that exceeded background levels and at least one PSL. These metals are discussed below:

- Arsenic was detected above the ecological PSL for sediment (9.79 mg/kg) in 19 of the 56 samples analyzed, and above and the human health PSL (0.07 mg/kg) in each of the 56 samples analyzed. Note that the site-specific arsenic soil background concentration of 10 mg/kg is above the human health PSL. The maximum arsenic concentration (27.6 mg/kg) was detected at sample location Pond8-04 in sediment from 0 to 0.5 ft bss (Figure 4-20). This was also the only location where arsenic was present at more than twice the soil background concentration in the upper 2 ft of sediment.
- Chromium was detected above the ecological PSL for sediment (threshold effects concentration [TEC]; 43.4 mg/kg) in 18 of the 56 samples analyzed; no chromium concentrations exceeded the human health PSL (CHHSLr; 100,000 mg/kg). Chromium was above site-specific background concentrations (60

⁸ Soil background values are considered a conservative representation of sediment background concentrations. Generally, metals associated with fine-grained materials accumulate in sediment depositional areas. As a result of this process, sediment background concentrations are generally higher than soil background concentrations from the same general area.

Former Georgia-Pacific Wood Products Facility

mg/kg in fill and 42 mg/kg in MSB) in four of 18 ecological PSL exceedances. The maximum detected chromium concentration (65.6 mg/kg) was detected at sample location Pond08-10 in sediment from 0 to 0.5 ft bss.

- Cobalt was detected above the ecological PSL (TEC; 20 mg/kg) in one of the 56 samples analyzed; no cobalt concentrations exceeded the human health PSL (CHHSLr; 660 mg/kg). Cobalt was above the site-specific background concentration (20 mg/kg in fill and MSB) for the PSL exceedance. The sample collected at sample location Pond08-11 from 0 to 0.5 ft bss contained a cobalt concentration of 20.3 mg/kg.
- Copper was detected above the ecological PSL for sediment (TEC; 31.6 mg/kg) in 39 of the 56 samples analyzed; no copper concentrations exceeded the human health PSL (CHHSLr; 3,000 mg/kg). Copper was above site-specific background concentrations (53 mg/kg in fill and 36 mg/kg in MSB) in 34 of 39 ecological PSL exceedances. The maximum detected copper concentration (251 mg/kg) was detected at sample location Pond8-04 in sediment from 1.5 to 2.5 ft bss.
- Lead was detected above the ecological PSL (TEC; 35.8 mg/kg) in 27 of the 56 samples analyzed (Figure 4-21). Lead concentrations in 13 of these samples also exceeded the human health PSL (CHHSLr; 80 mg/kg). Lead exceeded the human health PSL in the upper two feet of sediment at seven locations; six of the seven locations are located in the eastern half of Pond 8. Figure 4-21 shows lead concentrations relative to the ecological PSL. The maximum lead concentration in the upper two feet of sediment (237 mg/kg) was detected at sample location Pond8-16 from 0 to 0.5 ft bss. Lead was detected above site-specific background concentrations (25 mg/kg for fill and 22 mg/kg for MSB) in all 27 exceedances. Five additional background concentration exceedances were detected below ecological and human health PSLs. The maximum lead concentration detected in Pond 8 (302 mg/kg) was detected at sample location Pond8-07 from 2.5 to 3.5 ft bss.
- Mercury was detected above the ecological PSL (TEC; 0.18 mg/kg) in 10 of the 56 samples analyzed; no mercury concentrations exceeded the human health PSL (CHHSLr; 18 mg/kg). Mercury was detected above the site-specific background concentration (0.12 mg/kg for fill and MSB) in all 10 of the ecological PSL exceedances. Nine additional background concentration exceedances were detected below ecological and human health PSLs. The maximum mercury concentration (0.305 mg/kg) was detected at sample location Pond8-16 from 0 to 0.5 ft bss.
- Molybdenum was detected above the ecological PSL for sediment (TEC; 3.0 mg/kg) in 24 of the 56 samples analyzed; no molybdenum concentrations exceeded the human health PSL (CHHSLr; 380 mg/kg).Molybdenum was above site-specific background concentration (4.6 mg/kg in fill and 0.7 mg/kg in MSB) in 20 of 24 ecological PSL exceedances. The maximum molybdenum concentration (96.4 mg/kg) was detected at sample location Pond8-04 from 0 to 0.5 ft bss.

Former Georgia-Pacific Wood Products Facility

- Nickel was detected above the ecological PSL for sediment (TEC; 22.7) in 38 of the 56 samples analyzed; no nickel concentrations exceeded the human health PSL (CHHSLr; 1,600 mg/kg). Nickel was detected above site-specific background concentration (41 mg/kg in fill and MSB) in 13 of 38 ecological PSL exceedances. The maximum nickel concentration (52.4 mg/kg) was detected at sample location Pond08-18 from 0 to 0.5 ft bss.
- Zinc was detected above the ecological PSL for sediment (TEC; 121 mg/kg) in 31 of the 56 samples analyzed; no zinc concentrations exceeded the human health PSL (CHHSLr; 23,000 mg/kg). Zinc was detected above site-specific background concentrations (160 for fill and 84 for MSB) in 30 of 31 ecological PSL exceedances. The maximum zinc concentration (675 mg/kg) was detected at sample location Pond8-08 from 0 to 0.5 ft bss.

Hexavalent chromium was analyzed in 21 samples collected from seven locations. No concentrations were detected above the laboratory reporting limit (0.05 mg/kg).

4.4.2.1.2 Total Petroleum Hydrocarbons

During historical and RI sampling activities, 51 sediment samples collected from 24 locations in and around Pond 8 were analyzed for TPH (Figure 4-22). All 51 sediment samples were analyzed for TPHd and TPHmo, and 19 of the 51 collected samples were analyzed for TPHg. Nine of the samples were re-extracted and analyzed for TPHd, resulting in 60 total analytical results reported in Table 4-31. TPHmo concentrations were either below the aliphatic RBSC for direct contact/indoor air (281,346 mg/kg) or were not detected (Table 4-31). TPHd concentrations were below screening levels or not detected in 24 of the 51 samples, and exceeded the TPH-LGW SL (1,045 mg/kg) in the remaining 34 samples. Eight of these samples also exceeded the aliphatic RBSC for direct contact (10,772 mg/kg). The maximum TPH concentration (36,900 mg/kg) was detected in sample Pond8-16 (0 to 0.5 ft bss) on the eastern side of Pond 8 (Figure 4-22).

4.4.2.1.3 Polychlorinated Biphenyls

During historical and RI sampling activities, 23 sediment samples from 13 locations were analyzed for PCB congeners. PCBs were not detected in four of the 23 samples analyzed, and 17 samples had total PCB concentrations below both the human health PSL (USEPA RSL; 0.22 mg/kg) and the ecological PSL (TEC; 0.0598 mg/kg). Total PCBs were detected above the ecological PSL for sediment in two samples (Pond8-06 from 0.5 to 1.5 ft, and Pond8-02 from 0.5 to 1.5 ft) with concentrations of 0.15 mg/kg and 0.069 mg/kg, respectively. No total PCB concentrations exceeded the human health PSL (Table 4-32).

Former Georgia-Pacific Wood Products Facility

4.4.2.1.4 Polycyclic Aromatic Hydrocarbons

During historical and RI sampling activities, a total of 39 samples from 15 locations within Pond 8 were analyzed for PAHs (Figure 4-23). A B(a)P TEQ was calculated for each sample and compared with the residential CHHSL for B(a)P. Fifteen of the 39 samples collected in Pond 8 sediments and analyzed for PAHs contained B(a)P TEQ concentrations that exceeded the CHHSLr (0.038 mg/kg). The maximum B(a)P TEQ concentration (2.8 mg/kg) was detected at sample location Pond8-07 from 0.5 to 1.5 ft bss (Table 4-33).

Total PAH concentrations were calculated for each sample and compared with total PAH TEC (1.61 mg/kg). Eleven samples contained total PAH concentrations exceeding this screening value. The maximum total PAH concentration (9.30 mg/kg) was detected in two samples (Pond8-03 from 0.5 to 1.5 ft bss, and Pond8-08 from 0 to 0.5 ft bss). Total PAH concentrations in Pond 8 relative to the TEC are shown on Figure 4-23. Table 4-33 summarizes analytical results for all PAHs detected in sediment.

4.4.2.1.5 Volatile Organic Compounds

During historical and RI sampling activities, 20 sediment samples collected from seven locations in Pond 8 were analyzed for VOCs. Six of the 70 VOCs analyzed were detected in one or more samples. Three of these detected VOCs (2-butanone, acetone, and methylene chloride) are common laboratory contaminants. The three remaining VOCs (benzene, chlorobenzene, and toluene) were detected at concentrations below their respective human health and ecological PSLs (Table 4-34).

4.4.2.1.6 Dioxins/Furans

During historical and RI sampling activities, a total of 45 sediment samples collected from 22 locations within Pond 8 were analyzed for dioxins/furans (Figures 4-24a and b). Concentrations of 2,3,7,8-TCDD TEQ were detected above the human health PSL for sediment (CHHSLr; 4.6 pg/g) in 38 of the 45 samples analyzed (Figure 4-24a). Thirty-six of the 38 samples exceeding the human health PSL also exceed the ecological PSL for sediment (Canadian Council of Ministers of the Environment [CCME]⁹ PEL [includes a safety factor of 10]; 21.5 pg/g) (Figure 4-24b and Table 4-35).

⁹ The CCME value was developed with World Health Organization (WHO) fish toxicity equivalency factors (TEFs), therefore it was more appropriate to compare the CCME value with the 2,3,7,8-TCDD TEQ concentrations for fish.

Former Georgia-Pacific Wood Products Facility

4.4.2.1.7 Summary of Findings

Historical and RI sediment sample results for Pond 8 indicate concentrations of TPHg and TPHmo below PSLs. Metals, PCBs, PAHs, VOCs, dioxins/furans, pesticides, and TPHd were detected at concentrations greater than PSLs. Arsenic and lead were detected above human health screening levels. As shown in the table below, arsenic, copper, lead, molybdenum, nickel, and zinc exceeded the ecological PSL (or background if higher) in more than 10 samples from Pond 8. Additional data were collected from Pond 8 in 2012 and further sampling is anticipated as part of the BHHERA. Additional discussion of the magnitude, distribution, and risk associated with COIs in Pond 8 will be provided in the BHHERA Report.

Former Georgia-Pacific Wood Products Facility

Summary Table: Pond 8 AOI

Pond 8 A01										
Constituent Range of Detections			Human Hea	alth	Ecological					
		PSL	Number of Exceedances/ Number of Samples	E xceedances Above Background/ Total HH P SL E xceedances	PSL	Number of Exceedances/ Number of Samples	Exceedances Above Background/ Total Eco PSL Exceedances			
Metals - (mg/kg)				_			_			
Arsenic	0.58 -	27.6	0.07	56/56	19/56	9.79	19/56	19/19		
Cadmium	0.048 -	1.94	39	0/56		0.99	19/56	0/19		
Chromium	6.9 -	65.6	100,000	0/56		43.4	18/56	4/18		
Cobalt	1.9 -	20.3	660	0/56		20	1/56	1/1		
Copper	0.52 -	251	3,000	0/56		31.6	39/56	34/39		
Lead	1.9 -	302	80	13/56	13/13	35.8	27/56	27/27		
Mercury	0.021 -	0.305	18	0/56		0.18	10/56	10/10		
Molybdenum	0.13 -	96.4	380	0/56		3	24/56	20/24		
Nickel	6.35 -	52.4	1,600	0/56		22.7	38/56	13/38		
Zinc	9.4 -	675	23,000	0/56		121	31/56	30/31		
Polychlorinated Biphenyls - (marka)										
PCB #169	0.00044 -	0.00095	0.00011	4/23			0/23			
Total PCB Congeners ⁶	0.001 -	0.150	0.22	0/23		0.0598	2/23			
Polycyclic Aromatic Hydrocarbons -	(ma/ka)				•					
2-Methylnaphthalene	0.012 -	0.24	310	0/15		0.0202	11/15			
Acenaphthene	0.0037 -	0.067	3.400	0/39		0.00671	13/39			
Acenaphthylene	0.0089 -	0.45		0/39		0.00587	17/39			
Anthracene	0.012 -	0.3	17.000	0/39		0.0572	8/39			
Benzo(a)anthracene	0.031 -	11	0.15	8/39		0.108	10/39			
Benzo(a)pwene	0.001 -	1.7	0.039	15/29		0.100	10/33			
Benzo(h)fuorenthene	0.021	25	0.030	10/20		40.4	0/20			
Benzo(a h i berviene	0.066 -	1.0	0.15	10/39		0.47	10/39			
Denzo(g,n, geryrene Denzo(g,n, geryrene	0.000 -	1.3		0/39		0.17	10/39			
Chryster	0.014 -	1.0	0.38	1/39		0.24	3/39			
Chrysene Dihaania kaantavaana	0.047 -	1.3	4	0/39		0.166	10/39			
Dibenz(a,n)anthracene	0.0003 -	0.4	0.015	8/39		0.033	8/39			
Fluoranthene	0.027 -	2.0	2,300	0/39		0.423	11/39			
	0.015 -	0.26	2,300	0/39		0.0774	5/39			
Indeno(1,2,3-cd)Pyrene	0.036 -	2	0.15	9/39		0.2	7/39			
Naphthalene	0.039 -	1.3	4	0/39		0.176	9/39			
Phenanthrene	0.053 -	1.8		0/39		0.204	18/39			
Pyrene	0.031 -	2.9	1,700	0/39		0.195	14/39			
Total PAH ^a	0.11 -	9.3		0/39		1.61	11/39			
USEPA B(a)P TEQ*	0.00047 -	2.8	0.038	15/39			12/39			
Volatile Organic Compounds - (mg/k	g)									
Acetone	0.003 -	0.026	61,000	0/20		0.0099	7/20			
Dioxins/Furans - (pg/g)				-	-					
2,3,7,8-TCDD TE Q	0.00029	231								
(Human/Mammal)'			5	38/45		21.5	36/45			
2,3,7,8-TCDD TE Q (Bird) ⁸	9.5E-05 -	362		0/45		21.5	37/45			
2,3,7,8-TCDD TE Q (Fish) ⁹	0.001 -	194		0/45		21.5	35/45			
2,3,7,8-TCDD	0.218 -	28.5	5	31/45			0/45			
1,2,3,6,7,8-HxCDD	0.387 -	301	94	21/45			0/45			
1,2,3,7,8,9-HxCDD	0.524 -	234	94	15/45			0/45			
Pesticides - (mg/kg)										
4,4'-DDD	0.0032 -	0.013	2	0/6		0.00488	2/6			
4,4'-DDE	0.002 -	0.0055	2	0/6		0.00316	2/6			
Dieldrin	0.0023 -	0.0023	0.035	0/6		0.0019	1/6			
Heptachlor	0.0015 -	0.0015	0,13	0/6		0.00065	1/6			
Total Petroleum Hydrocarbons - (moliko)										
Diesel C10.C12 17 - 8700 51 33450										
Diesel C12-C16	24 -	7100	648	13/60		_	-			
Diesel C16-C24	1.7	25000	10,772	5/60		-	-			
Total Diagal (C10 C24) ²	1.3	20000	10,772	9/00		1.045	24/60			
Total Diesel (CT0-C24)	1.3	30300	10,772	0/60		1,040	34/60			

Foot

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

inotes:		
z	:	Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C24.
3	ı	Sum of 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene and pyrene.
•		Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah) anthracene (USEPA, 2000). Non- detects excluded.
6	i	Total PCB congener concentration is twice the sum of detected PCB congeners.
7		Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for human/mammal. NDs
8	:	Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for birds. NDs excluded.
9	,	Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for fish. NDs excluded.

4.4.2.2 North Pond and Ponds 6 and 7AOIs

The North Pond and Ponds 6 and 7 are located within the boundary of the Powerhouse and Fuel Barn AOI. This section presents the nature and extent of impacts in sediment and discusses data from historical and RI sampling. A total of 45 sediment samples have been collected from pond sediments in the North Pond and Ponds 6 and 7 during historical and RI activities. This includes five samples from the North Pond, 24 samples from Pond 6, and 16 samples from Pond 7. These samples were analyzed for metals (including hexavalent chromium), TPH, PCBs, PAHs, SVOCs, VOCs, and dioxin/furans, as presented in Table 4-3. Samples collected from Pond 6 were additionally analyzed for chlorophenols. Table 4-52 summarizes statistical data for sediment in the North Pond and Ponds 6 and 7.

4.4.2.2.1 Metals

During historical and RI sampling activities, 40 sediment samples collected from 12 locations in the North Pond, Pond 6, and Pond 7 were analyzed for metals. Table 4-30 shows results for metals detected in sediment. Figure 4-4 shows the sample locations for the North Pond, Pond 6, and Pond 7.

Nine of the CAM-17 metals (arsenic, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, and zinc) analyzed were detected at concentrations that exceeded at least one PSL. Three of these metals (cadmium, chromium, and nickel) were detected at concentrations slightly above site-specific background levels for soil. Concentrations of these metals in sediment were compared with site-specific background levels for soil using box and whisker plots (presented in Appendix D). This comparison indicates that these concentrations are consistent with background levels and are possibly unrelated to site activities. COIs with detections above screening levels will be carried forward into the BHHERA as chemicals of potential concern.

Concentrations of the remaining six metals (arsenic, copper, lead, mercury, molybdenum, and zinc) that were detected at concentrations above background and screening levels are discussed below:

• Arsenic was detected above the ecological PSL (TEC; 9.79 mg/kg) in 18 of the 40 samples analyzed and above and the human health PSL (0.07 mg/kg) in each of the 40 samples analyzed. Note that the

Former Georgia-Pacific Wood Products Facility

site-specific arsenic soil background concentration of 10 mg/kg is above the human health PSL. Arsenic concentrations relative to the TEC, which is approximately equal to the site-specific soil background concentration, are shown on Figure 4-20.

- In the North Pond, one of the five samples analyzed exceeded background levels and the PSLs. The maximum arsenic concentration (32.7 mg/kg) was detected in sample North Pond-01 from 0 to 0.5 ft bss.
- In Pond 6, seven of the 22 samples analyzed exceeded the PSLs. The maximum arsenic concentration (30.2 mg/kg) was detected in (sample Pond6-02 from 0.5 to 1.5 ft bss. One of the seven PSL exceedances (9.8 mg/kg) was detected below site-specific background levels.
- In Pond 7, 10 of the 13 samples analyzed exceeded background levels and the PSLs. The maximum arsenic concentration (115 mg/kg) was detected in sample Pond7-02 from 0.5 to 1.5 ft bss.
- Copper was detected above the ecological PSL (TEC; 31.6 mg/kg) in 17 of the 40 samples analyzed (Table 4-30, Figure 4-4). No samples exceeded the human health PSL (CHHSLr; 3,000 mg/kg). Copper was above site-specific background concentrations (53 mg/kg in fill and 36 mg/kg in MSB) in 14 of 17 ecological PSL exceedances.
 - In the North Pond, one of the five samples analyzed exceeded the ecological PSL. The maximum copper concentration (53.2 mg/kg) was detected in sample North Pond-01 from 0 to 0.5 ft bss.
 - In Pond 6, five of the 22 samples analyzed exceeded the ecological PSL. The maximum copper concentration (123 mg/kg) was detected in sample Pond6-02 from 4.5 to 5.5 ft bss.
 - In Pond 7, 11 of the 13 samples analyzed exceeded the ecological PSL. The maximum copper concentration (234 mg/kg) was detected in sample Pond7-01 from 0 to 0.5 ft bss.
- Lead was detected above the ecological PSL (TEC; 35.8 mg/kg) in 11 of the 40 samples analyzed, and seven samples exceeded the human health PSL (CHHSLr; 80 mg/kg). Lead was detected above sitespecific background concentrations (25 mg/kg for fill and 22 mg/kg for MSB) in all 11 exceedances. Lead concentrations relative to the TEC are shown in Figure 4-21.
 - No samples from the North Pond exceeded lead PSLs.
 - In Pond 6, three of the 22 samples analyzed exceeded the ecological PSL, and two samples also exceeded the human health PSL (CHHSLr; 80 mg/kg). The maximum lead concentration in Pond 6 (188 mg/kg) was detected in sample Pond6-02 from 0.5 to 1.5 ft bss.
 - In Pond 7, eight of the 13 samples analyzed exceeded the ecological PSL, and five samples also exceeded the human health PSL. The maximum lead concentration in Pond 7 (262 mg/kg) was detected in sample Pond7-02 from 0 to 1.5 ft bss.

Former Georgia-Pacific Wood Products Facility

- Mercury was detected above the ecological PSL (TEC; 0.18 mg/kg) in nine of the 40 samples analyzed (Table 4-30). No samples from Pond 6, Pond 7, and the North Pond exceeded the human health PSL (CHHSLr; 18 mg/kg). Mercury was detected above the site-specific background concentration (0.12 mg/kg for fill and MSB) in all nine of the ecological PSL exceedances.
 - No samples from the North Pond exceeded the ecological PSL.
 - In Pond 6, one of the 22 samples analyzed exceeded the ecological PSL. The maximum mercury concentration (0.737 mg/kg) was detected in sample Pond6-02 from 0 to 0.5 ft bss.
 - In Pond 7, eight of the 13 samples analyzed exceeded the ecological PSL. The maximum mercury concentration (0.742 mg/kg) was detected in sample Pond7-01 from 0 to 0.5 ft bss.
- Molybdenum concentrations were above the ecological PSL for sediment (TEC; 3.0 mg/kg) in 11 of the 40 samples analyzed (Table 4-30). No samples from Pond 6, Pond 7, and the North Pond exceeded the human health PSL (CHHSLr; 380 mg/kg). Molybdenum was above site-specific background concentrations (4.6 mg/kg in fill and 0.7 mg/kg in MSB) in seven of 11 ecological PSL exceedances.
 - In the North Pond, two of the five samples analyzed exceeded the ecological PSL. The maximum molybdenum concentration (14.7 mg/kg) was detected at sample location North Pond-01 from 0 to 0.5 ft bss.
 - In Pond 6, four of the 22 samples analyzed exceeded the ecological PSL. The maximum molybdenum concentration (13.7 mg/kg) was detected in sample Pond6-02 from 0 to 0.5 ft bss.
 - In Pond 7, five of the 13 samples analyzed exceeded the ecological PSL. The maximum molybdenum concentration (9.66 mg/kg) was detected in sample Pond7-02 from 0 to 0.5 ft bss.
- Zinc was detected above the ecological PSL (TEC; 121 mg/kg) in 17 of the 40 samples analyzed. No samples in any pond exceeded the human health PSL (CHHSLr; 23,000 mg/kg). Zinc was above site-specific background concentrations (160 mg/kg in fill and 84 mg/kg in MSB) in 16 of 17 ecological PSL exceedances.
 - In the North Pond, one of the five samples exceeded the ecological PSL. The maximum zinc concentration (185 mg/kg) was detected in sample North Pond-01 from 0 to 0.5 ft bss.
 - In Pond 6, six of the 22 samples analyzed exceeded the ecological PSL. The maximum zinc concentration (677 mg/kg) was detected in sample Pond6-02 from 0 to 0.5 ft bss.
 - In Pond 7, 10 of the 13 samples analyzed exceeded the ecological PSL. The maximum zinc concentration (1,180 mg/kg) was detected in sample Pond7-02 from 0.5 to 1.5 ft bss.

The remaining metals (antimony, barium, beryllium, cobalt, selenium, silver, thallium, and vanadium) were not detected at concentrations above human health or ecological PSLs.

Former Georgia-Pacific Wood Products Facility

Additionally, 24 samples were analyzed for hexavalent chromium. Hexavalent chromium was detected above the laboratory reporting limit in one sample (DP-4.7 from 8.0 to 8.5 ft bss in the North Pond), at a concentration of 0.23 mg/kg. This concentration is below both the human health (17 mg/kg) and ecological (130 mg/kg) PSLs for hexavalent chromium.

4.4.2.2.2 Total Petroleum Hydrocarbons

During historical and RI sampling activities, 38 sediment samples from 12 locations in the North Pond, Pond 6, and Pond 7 were analyzed for TPH (Figure 4-22). TPHg was analyzed in 27 of the 38 samples and was not detected above laboratory reporting limits. TPHmo was analyzed in 37 samples; TPHmo concentrations were either not detected or were below the aliphatic RBSC for direct contact (281,346 mg/kg). Total TPHd was analyzed in 37 samples; TPHd was not detected in six samples, was below screening levels in 28 samples, and was detected at concentrations above the TPH-LGW SL (1,045 mg/kg) in three samples (Table 4-31).

The greatest concentrations of TPHd were detected in Pond 7; all of the samples collected in the North Pond and Pond 6 that were analyzed for TPHg, TPHmo, and TPHd were either not detected or were below screening levels. In Pond 7, three samples from two locations (Pond7-01 and Pond7-02) exceeded the TPH-LGW SL. The maximum TPHd concentration (1,620 mg/kg) was detected in Pond7-02 from 0.5 to 1.5 ft bgs. Figure 4-22 depicts TPHd concentrations.

4.4.2.2.3 Polychlorinated Biphenyls

During historical and RI sampling activities, 16 sediment samples from 11 locations in the North Pond, Pond 6, and Pond 7 were analyzed for PCB congeners (Figure 4-4). PCBs were not detected in eight of the 16 samples and were below both the human health PSL (USEPA RSL; 0.22 mg/kg) and the ecological PSL (TEC; 0.0598 mg/kg) in the remaining eight samples (Table 4-32).

4.4.2.2.4 Polycyclic Aromatic Hydrocarbons

During historical and RI sampling activities, 38 sediment samples collected from Pond 6, Pond 7, and the North Pond were analyzed for PAHs. Fifteen of the constituents analyzed (2-Methylnaphthalene, acenaphthene, acenaphthene, anthracene, benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, benzo(g,h,i)perylene, chrysene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene) were detected at concentrations above their respective human health PSLs or ecological PSLs in at least one sample (Table 4-33).

A total PAH concentration was calculated for each sample and compared with the TEC for total PAHs (1.61 mg/kg) for invertebrates (Figure 4-23). Nine samples (one from the North Pond, one from Pond 6, and seven

Former Georgia-Pacific Wood Products Facility

from Pond 7) contained concentrations of total PAHs in excess of this screening value. The maximum total PAH concentrations in the North Pond, Pond 6, and Pond 7 were 2.14 mg/kg, 3.35 mg/kg, and 4.23 mg/kg, respectively.

A B(a)P TEQ was calculated for each sample and compared with the residential CHHSL (0.038 mg/kg) for B(a)P (Table 4-33 and Figure 4-4). Seven samples (three from Pond 6 and four from Pond 7) had a B(a)P TEQ that exceeded the CHHSLr. The maximum B(a)P TEQ concentrations in the North Pond, Pond 6, and Pond 7 were 0.0044 mg/kg, 0.243 mg/kg, and 0.330 mg/kg, respectively.

4.4.2.2.5 Volatile Organic Compounds

During historical and RI sampling activities, 27 sediment samples collected from seven locations in the North Pond, Pond 6, and Pond 7 were analyzed for VOCs (Figure 4-4). Only nine of the 70 VOCs analyzed were detected in one or more samples. Three of these detected VOCs (2-butanone, acetone, and methylene chloride) are common laboratory contaminants. The six remaining VOCs were detected at concentrations below their respective human health and ecological PSLs (Table 4-34).

4.4.2.2.6 Dioxins/Furans

During historical and RI sampling activities, 27 sediment samples collected from 11 locations in the North Pond, Pond 6, and Pond 7 were analyzed for dioxins/furans (Figures 4-24a and 4-24b).

Four samples from the North Pond were analyzed for dioxins/furans. Samples DP-4.7 (0 to 0.5 ft bss) and North Pond-01 (0 to 0.5 ft bss) exceeded the human health PSL (CHHSLr; 4.6 pg/g) with 2,3,7,8-TCDD TEQ concentrations of 6.3 pg/g and 8.5 pg/g, respectively (Figure 4-24a). One sample, DP-4.7 (19 to 19.5 ft bss) with a 2,3,7,8-TCDD TEQ concentration of 90 pg/g exceeded 10 times the human health PSL. This same sample also exceeded the ecological PSL (CCME PEL [includes a safety factor of 10]; 21.5 pg/g) (Table 4-35 and Figure 4-24b).

Eleven samples from Pond 6 were analyzed for dioxins/furans. Sample Pond6-01 (0.5 to 1.5 ft bss) exceeded the human health PSL with a 2,3,7,8-TCDD TEQ concentration of 16 pg/g (Figure 4-24a). The remaining six samples had 2,3,7,8-TCDD TEQ concentrations exceeding both the human health PSL and the ecological PSL, with concentrations of 2,3,7,8-TCDD TEQ for human/mammal ranging from 56 pg/g to 175 pg/g and concentrations of 2,3,7,8-TCDD TEQ for fish ranging from 54 pg/g to 186 pg/g (Table 4-35; Figures 4-24a and 4-24b). Based on congener profiles (Appendix G), the dioxins in Pond 6 sediment indicate a mixture of sources.

Twelve samples from Pond 7 were analyzed for dioxins/furans. Eleven samples had 2,3,7,8-TCDD TEQ concentrations that exceeded both the ecological and human health PSLs. Concentrations of 2,3,7,8-TCDD

Former Georgia-Pacific Wood Products Facility

TEQ for human/mammal ranged from 212 pg/g to 1,688 pg/g, and concentrations of 2,3,7,8-TCDD TEQ for fish ranged from 218 pg/g to 1,848 pg/g (Table 4-35; Figures 4-24a and 4-24b). Based on congener profiles (Appendix G), the dioxins in Pond 7 sediment indicate a wood waste source consistent with the historical discharge of scrubber effluent from the operation of the former Powerhouse.

4.4.2.2.7 Summary of Findings

The North Pond and Ponds 6 and 7 are located within the boundaries of the Powerhouse and Fuel Barn AOI. Historical and RI soil sample results indicate concentrations of TPHg, TPHmo, and PCBs in sediment are below PSLs. Acetone was detected above PSLs in pond sediment samples. Concentrations exceeding PSLs for PAHs were detected in all three ponds, with the highest concentrations observed in Pond 7 sediment. PAH exceedances in Pond 6 and Pond 7 were limited to shallow sediments, whereas the PSL exceedance in the North Pond was collected in deeper soil from 19.0 to 19.5 ft bss.

Pond 7 data indicate elevated concentrations of TPHd relative to the soil LGW screening level. Arsenic, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, and zinc concentrations exceeded ecological PSLs; arsenic and lead concentrations also exceeded human health PSLs. Dioxin/furan concentrations in surface and subsurface sediment in Pond 7 were also greater than the ecological and human health PSLs for 2,3,7,8-TCDD TEQ.

Pond 6 data show concentrations of metals (arsenic, copper, lead, mercury, molybdenum, and zinc) above ecological PSLs; arsenic and lead concentrations also exceeded human health PSLs. Dioxins/furans concentrations greater than ten times the human health PSL were detected in the southern part of the pond.

Concentrations in surface sediment in the North Pond are generally below screening levels, with the exception of some metals detected above screening levels. A single sample at 19 feet bss had a PAH and dioxin TEQ concentration that exceeded the ecological and human health PSL; however, concentrations in shallower samples down to 14.5 feet were lower and generally at or below screening levels.

Former Georgia-Pacific Wood Products Facility

					Human Healt	•h	Ecological				
Constituent	Range	Range of Detections			Number of Exceedances/ Number of Samples	Exceedances Above Background/ Total HH PSL Exceedances	PSL	Number of Exceedances/ Number of Samples	Exceedances Above Background/ Total Eco PSL Exceedances		
vletais - (mg/kg)											
Arsenic	0.33	-	115	0.07	40/40	17/40	9.79	18/40	17/18		
Cadmium	0.274		4.29	39	0/40		0.99	11/40	4/11		
Chromium	4.5	-	86.7	100,000	0/40		43.4	10/40	5/10		
Copper	0.71	-	234	3,000	0/40		31.6	17/40	14/17		
Lead	0.98	-	262	80	7/40	7/7	35.8	1 1/40	11/11		
Mercury	0.022	- 0	1.742	18	0/40		0.18	9/40	9/9		
Molybdenum	0.26	-	14.7	380	0/40		3	11/40	7/11		
Nickel	2.8		44.7	1,600	0/40		22.7	13/40	3/13		
Zinc	9.6	- '	1180	23,000	0/40		121	17/40	16/17		
Polycyclic Aromatic Hydrocarbo	ons-(mg/kg)								•		
2-Methylnaphthalene	0.0088	- 0	.098	310	0/11		0.0202	7/11			
Acenaphthene	0.0033	-	0.13	3,400	0/38		0.00671	9/38			
Acenaphthylene	0.0024	-	1.1		0/38		0.00587	15/38			
Anthracene	0.005	-	0.19	17,000	0/38		0.0572	7/38			
Benzo(a)anthracene	0.01	-	0.16	0.15	1/38		0.108	5/38			
Benzo(a)pyrene	0.0073	-	0.24	0.038	7/38		0.15	5/38			
Benzo(b)fluoranthene	0.0059	-	0.29	0.15	5/38		10.4	0/38			
Benzo(g,h,i)perylene	0.018	-	0.3		0/38		0.17	5/38			
Chrysene	0.01	-	0.17	4	0/38		0.166	1/38			
Fluoranthene	0.0053	-	1.2	2,300	0/38		0.423	9/38			
Fluorene	0.0026	-	0.25	2,300	0/38		0.0774	9/38			
Indeno(1,2,3-cd)Pyrene	0.016	-	0.24	0.15	5/38		0.2	3/38			
Naphthalene	0.0085	-	3	4	0/38		0.176	14/38			
Phenanthrene	0.015	-	1.3		0/38		0.204	13/38			
Pyrene	0.0069	-	1.3	1,700	0/38		0.195	13/38			
Total PAH ³	0.03		4.20		0/38		1.61	9/38			
USEPA B(a)P TEQ ⁴	0.00059	-	0.33	0.038	7/38			5/38			
Volatile Organic Compounds - (I	mg/kg)										
Acetone	0.0023	- 0	1.011	61,000	0/27		0.0099	1/27			
Dioxins/Furans - (pg/g)											
2,3,7,8-TCDD TEQ	0.000		1000								
(Human/Mammal) ⁷	0.023		1088	5	21/27		21.5	18/27			
2,3,7,8-TCDD TEQ (Bird)8	0	- 3	3668		0/27		21.5	19/27			
2,3,7,8-TCDD TEQ (Fish)	0	- '	1848		0/27		21.5	18/27			
2.3.7.8-TCDD	0.253	-	273	5	18/27			0/27			
1.2.3.4.7.8-H×CDD	0.325	-	506	94	9/27			0/27			
1.2.3.6.7.8-H×CDD	0.168	-	760	94	9/27			0/27			
1.2.3.7.8.9-H×CDD	0.119	-	604	94	9/27			0/27			
Total Petroleum Hydrocarbons	(mg/kg)										
Total Diesel (C10-C24) ²	1.1		1620	10,772	0/37		1,045	3/37			
F						I					

Summary Table: North Pond and Ponds 6 and 7 AOIs

Footnotes:

Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C24.

Sum of 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene and pyrene.

Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Nondetects excluded.

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for human/mammal. NDs

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for birds. NDs excluded.

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for fish. NDs excluded.

4.4.2.3 Southern Ponds AOI

2

3

4

7

8

9

The Southern Ponds (Ponds 1 through 4) are located in the southern portion of the site. This section presents the nature and extent of impacts in sediment and discusses data from historical and RI sampling. A total of 59 sediment samples have been collected from pond sediments in the Southern Ponds of OU-E

Former Georgia-Pacific Wood Products Facility

(Pond 1, Pond 2, Pond 3, and Pond 4) during historical and RI activities. This includes 12 samples from Pond 1, 11 samples from Pond 2, 26 samples from Pond 3, and 10 samples from Pond 4 (Figure 4-5). These samples were analyzed for metals (including hexavalent chromium), TPH, PCBs, PAHs, SVOCs, VOCs, dioxins/furans, and cyanide, as presented in Table 4-5. Table 4-53 summarizes statistical data for sediment in the southern ponds.

4.4.2.3.1 Metals

During historical and RI sampling activities, 47 sediment samples from 24 locations in the Southern Ponds were analyzed for CAM-17 metals; 23 of these samples were also analyzed for hexavalent chromium (Table 4-30). Hexavalent chromium was either not detected or was below the human health PSL (17 mg/kg) and ecological PSL (130 mg/kg), with a maximum concentration 0.11 mg/kg detected in sample DP-7.11 (7 to 7.5 ft bss). Six of the CAM-17 metals (antimony, beryllium, selenium, silver, thallium, and vanadium) were either not detected or were detected at concentrations below both the human health and ecological PSLs (Table 4-30). Four additional CAM-17 metals (cadmium, chromium, cobalt, and nickel) were detected at concentrations above the ecological PSLs in at least one sample, but were detected at concentrations below or only slightly above site-specific background concentrations in soil. Results for the remaining seven CAM-17 metals detected in sediment are presented below (Table 4-30):

- Arsenic was detected above the ecological PSL (TEC; 9.79 mg/kg), in 23 of the 47 samples analyzed (Figure 4-25) and above the human health PSL (0.07 mg/kg) in all of the 47 samples analyzed. Note that the site-specific arsenic soil background concentration of 10 mg/kg is well above the human health PSL.
 - Three of the nine samples from Pond 1 exceeded background levels and the ecological PSL. The maximum arsenic concentration (58.8 mg/kg) was detected in sample Pond1-02 from 0 to 0.5 ft bss.
 - Seven of the 10 samples from Pond 2 exceeded background levels and the ecological PSL. The maximum arsenic concentration was 81.6 mg/kg in sample Pond2-02 from 0 to 0.5 ft bss.
 - Thirteen of the 22 samples from Pond 3 exceeded background levels and the ecological PSL. The maximum arsenic concentration was 98.9 mg/kg in sample Pond3-01 from 0 to 0.5 ft bss.
 - Arsenic concentrations in the six samples from Pond 4 were below the background concentration and PSLs.
- Barium was detected above the human health PSL (CHHSLr; 5,200 mg/kg) and the site-specific background concentration (310 mg/kg in fill and 100 mg/kg in MSB) in one sample from Pond 3 (Pond3-07 from 0.0 to 0.5 ft bss) at a concentration of 5,240 mg/kg. None of the 46 other samples from the Southern Ponds (Figure 4-5 and Table 4-30) contained barium at concentrations above the human health PSL. There is no ecological PSL for barium.

Former Georgia-Pacific Wood Products Facility

- Copper was detected above the ecological PSL (TEC; 31.6 mg/kg) in 24 of the 47 samples analyzed. Copper concentrations detected in samples from the Southern Ponds did not exceed the human health PSL (CHHSLr; 3,000 mg/kg) (Figure 4-5 and Table 4-30). Copper was above site-specific background concentrations (53 mg/kg in fill and 36 mg/kg in MSB) in 22 of 24 ecological PSL exceedances.
 - Three of the nine samples from Pond 1 exceeded the ecological PSL. The maximum copper concentration (215 mg/kg) was detected in sample Pond1-02 from 0 to 0.5 ft bss.
 - Seven of the 10 samples from Pond 2 exceeded the ecological PSL. The maximum copper concentration (240 mg/kg) was detected in sample Pond2-02 from 0 to 0.5 ft bss.
 - Fourteen of the 22 samples from Pond 3 exceeded the ecological PSL. The maximum copper concentration (213 mg/kg) was detected in sample Pond3-06 from 0 to 0.5 ft bss.
 - In Pond 4 samples, all copper concentrations were below the ecological PSL.
- Lead was detected above site-specific soil background concentrations and the ecological PSL (TEC; 35.8 mg/kg) in 17 of the 47 samples analyzed (Figure 4-26). Lead concentrations in nine of these samples also exceeded the human health PSL (CHHSLr; 80 mg/kg). Lead was detected above sitespecific background concentrations (25 mg/kg for fill and 22 mg/kg for MSB) in all 17 exceedances.
 - Two of the nine samples from Pond 1 exceeded background levels and the ecological PSL, and one sample also exceeded the human health PSL (CHHSLr; 80 mg/kg). The maximum lead concentration (389 mg/kg) was detected in sample Pond1-02 from 0 to 0.5 ft bss.
 - Six of the 10 samples from Pond 2 exceeded background levels and the ecological PSL, and four samples also exceeded the human health PSL. The maximum lead concentration (217 mg/kg) was detected in sample Pond2-01 from 0 to 0.5 ft bss.
 - Nine of the 22 samples from Pond 3 exceeded background levels and the ecological PSL, and four samples also exceeded the human health PSL. The maximum lead concentration (271 mg/kg) was detected in sample Pond3-01 from 0.5 to 1.5 ft bss.
 - In Pond 4 samples, lead concentrations were below background and the ecological PSL.
- Mercury was detected above the ecological PSL (TEC; 0.18 mg/kg) in four of the 47 samples analyzed. No samples from the Southern Ponds exceeded the human health PSL (CHHSLr; 18 mg/kg) (Figure 4-5 and Table 4-30). Mercury was detected above the site-specific background concentration (0.12 mg/kg for fill and MSB) in all four of the ecological PSL exceedances.
 - In samples from Ponds 1 and 4, all mercury concentrations were below the ecological PSL.
 - Two of the 10 samples from Pond 2 exceeded the ecological PSL. The maximum mercury concentration (0.284 mg/kg) was detected in sample Pond2-02 from 0 to 0.5 ft bss.
 - Two of the 22 samples from Pond 3 exceeded the ecological PSL. The maximum mercury concentration (0.419 mg/kg) was detected in sample Pond3-01 from 0.5 to 1.5 ft bss.

Former Georgia-Pacific Wood Products Facility

- Molybdenum was detected above the ecological PSL (TEC; 3 mg/kg) in 21 of the 47 samples analyzed (Figure 4-5 and Table 4-30). Molybdenum concentrations in samples from the Southern Ponds did not exceed the human health PSL (CHHSLr; 380 mg/kg). Molybdenum was above site-specific background concentrations (4.6 mg/kg in fill and 0.7 mg/kg in MSB) in 17 of 21 ecological PSL exceedances.
 - Two of the nine samples from Pond 1 exceeded the ecological PSL and background levels. The maximum molybdenum concentration (11 mg/kg) was detected in sample Pond1-02 from 0 to 0.5 ft bss.
 - Seven of the 10 samples from Pond 2 exceeded the ecological PSL and background levels. The maximum molybdenum concentration (9.48 mg/kg) was detected in sample Pond2-02 from 0 to 0.5 ft bss.
 - Twelve of the 22 samples from Pond 3 exceeded the ecological PSL and background levels. The maximum molybdenum concentration (67.1 mg/kg) was detected in sample Pond3-09 from 0 to 0.5 ft bss.
 - In Pond 4, all molybdenum concentrations were below the ecological PSL.
- Zinc was detected above the ecological PSL (TEC; 121 mg/kg) in 22 of the 47 samples analyzed (Figure 4-27). No samples from any pond exceeded the human health PSL (CHHSLr; 23,000 mg/kg). Zinc was above site-specific background concentrations (160 mg/kg in fill and 84 mg/kg in MSB) in 21 of 22 ecological PSL exceedances.
 - Three of the nine samples from Pond 1 exceeded the ecological PSL and background levels. The maximum zinc concentration (1,100 mg/kg) was detected in sample Pond1-02 from 0 to 0.5 ft bss.
 - Seven of the 10 samples from Pond 2 exceeded the ecological PSL and background levels. The maximum zinc concentration (1,270 mg/kg) was detected in sample Pond2-01 from 0 to 0.5 ft bss.
 - Eleven of the 22 samples from Pond 3 exceeded the ecological PSL and background levels. The maximum zinc concentration (1,510 mg/kg) was detected in sample Pond3-01 from 0.5 to 1.5 ft bss.
 - One of the 6 samples from Pond 4 exceeded the ecological PSL. The maximum zinc concentration (126 mg/kg) was detected in sample Pond4-01 from 0 to 0.5 ft bss.

Additionally, 23 samples were analyzed for hexavalent chromium. Hexavalent chromium was detected above the laboratory reporting limit in two samples. The maximum concentration (0.11 mg/kg) was detected at DP-7.11 from 7.0 to 7.5 ft bss, which is below both the human health (17 mg/kg) and ecological (130 mg/kg) PSLs for hexavalent chromium.

Former Georgia-Pacific Wood Products Facility

4.4.2.3.2 Total Petroleum Hydrocarbons

During historical and RI sampling activities, 40 sediment samples collected from 24 locations in the Southern Ponds were analyzed for TPHmo and TPHd. No samples collected from Pond 1, Pond 2, or Pond 4 contained concentrations of TPHmo or TPHd above screening levels.

Eighteen samples from 13 locations in Pond 3 were analyzed for TPHmo and TPHd. TPHmo concentrations were either not detected or were below screening levels. Total TPHd concentrations were either not detected or were below screening levels in 16 of the 18 samples analyzed. The remaining two samples had total TPHd concentrations exceeding the TPH-LGW SL (1,045 mg/kg) with concentrations of 1,660 mg/kg from sample Pond3-02 at 0.5 to 1.5 ft bss and 1,371 mg/kg from sample Pond3-05 at 0.5 to 1.5 ft bss (Table 4-31). Four samples (including Pond3-02 and Pond3-05) exceeded the aliphatic RBSC for direct contact (10,772 mg/kg) for Diesel C10-C12. The maximum C10-C12 concentration (160 mg/kg) was detected in sample Pond3-02.

4.4.2.3.3 Polychlorinated Biphenyls

During historical and RI sampling activities, 27 sediment samples collected from 24 locations in Pond 1, Pond 2, Pond 3, and Pond 4 were analyzed for PCB congeners. No samples collected from Pond 1 or Pond 4 contained concentrations of PCB congeners above laboratory reporting limits.

Six samples from four locations in Pond 2 were analyzed for PCB congeners. PCBs were not detected in five of the six samples, and were detected below the ecological PSL (TEC; 0.0598 mg/kg) for total PCB congeners in sample Pond2-01 (0.5 to 1.5 ft bss) (Table 4-32).

Thirteen samples from 13 locations in Pond 3 were analyzed for PCB congeners. PCBs were not detected in seven of the 13 samples, and were detected below the ecological PSL for total PCB congeners in the remaining six samples (Table 4-32).

4.4.2.3.4 Polycyclic Aromatic Hydrocarbons

During historical and RI sampling activities, 40 sediment samples from the Southern Ponds were analyzed for PAHs. Seventeen of the constituents analyzed (2-Methylnapthalene, acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene) were detected at concentrations above their respective human health PSLs or ecological PSLs in at least one sample (Table 4-33).

Former Georgia-Pacific Wood Products Facility

A total PAH concentration was calculated for each sample and compared with the TEC for total PAHs (1.61 mg/kg) (Figure 4-28). Fourteen samples (one from Pond 1, five from Pond 2, and eight from Pond 3) contained concentrations of total PAHs exceeding the TEC. The maximum total PAH concentrations in Pond 1, Pond 2, and Pond 3 were 2.4 mg/kg, 33 mg/kg, and 17 mg/kg, respectively. No samples from Pond 4 exceeded the TEC.

A B(a)P TEQ was calculated for each sample and compared with the residential CHHSL (0.038 mg/kg) for B(a)P. Sixteen samples (two from Pond 1, four from Pond 2, and 10 from Pond 3) had a B(a)P TEQ that exceeded the CHHSLr. The maximum B(a)P TEQ concentrations in Pond 1, Pond 2, and Pond 3 were 0.24 mg/kg, 2.3 mg/kg, and 0.80 mg/kg, respectively. No samples from Pond 4 exceeded the residential CHHSL (Figure 4-5 and Table 4-33).

4.4.2.3.5 Volatile Organic Compounds

During historical and RI sampling activities, 21 sediment samples collected from 11 locations were analyzed for VOCs. Five samples were collected from Pond 1, four from Pond 2, seven from Pond 3, and five from Pond 4. Of the 70 VOCs analyzed, 10 were detected in one or more sample. Acetone was detected above the ecological PSL, but this common laboratory contaminant is unlikely to be the result of site activities. The nine remaining VOCs were detected at concentrations below the human health PSL and ecological PSL screening criteria (Table 4-34).

4.4.2.3.6 Dioxins/Furans

During historical and RI sampling activities, 39 sediment samples collected from 24 locations in the Southern Ponds were analyzed for dioxins/furans (Figure 4-5 and Table 4-35).

Seven samples from four locations in Pond 1 were analyzed for dioxins/furans, two of which were below PSLs. Sample DP-7.9 from 0 to 0.5 ft bgs slightly exceeded the human health PSL (CHHSLr; 4.6 pg/g) with a 2,3,7,8-TCDD TEQ concentration of 7.6 pg/g (Figure 4-29a). The four remaining samples had 2,3,7,8-TCDD TEQ concentrations (human/mammal) ranging from 85 pg/g at Pond1-0 from 1.5 to 2.5 ft bss to 272 pg/g at Pond1-01 from 0.5 to 1.5 ft bss. Five of the samples exceeded the ecological PSL (CCME PEL [includes a safety factor of 10]; 21.5 pg/g) with concentrations of 2,3,7,8-TCDD TEQ (fish) ranging from 28 pg/g at DP7.9 from 0 to 0.5 ft bss to 869 pg/g at Pond1-01 from 0.5 to 1.5 ft bss (Table 4-34; Figure 4-29b). Based on congener profiles (Appendix G), the dioxins in Pond 1 sediment indicate a wood waste source.

Nine samples from four locations in Pond 2 were analyzed for dioxins/furans. Eight samples had 2,3,7,8-TCDD TEQ concentrations exceeding both the human health PSL and the ecological PSL. Concentrations of 2,3,7,8-TCDD TEQ (human/mammal) ranged from 59 pg/g at Pond2-02 from 4.5 to 5.5 ft bss to 996 pg/g

Former Georgia-Pacific Wood Products Facility

at Pond2-02 from 0 to 0.5 ft bss (Table 4-34 and Figure 4-29a). Concentrations of 2,3,7,8-TCDD TEQ (fish) ranged from 59 pg/g at Pond2-02 from 4.5 to 5.5 ft bss to 1,089 pg/g at Pond2-02 from 0 to 0.5 ft bss (Table 4-34 and Figure 4-29b). Based on congener profiles (Appendix G), the dioxins in Pond 2 sediment indicate a wood waste source.

In Pond 3, 20 samples from 13 locations were analyzed for dioxins/furans. Three samples did not have detected concentrations of 2,3,7,8-TCDD TEQ. Two samples exceeded the human health PSL, and the remaining 15 samples had 2,3,7,8-TCDD TEQ concentrations exceeding both the human health PSL and the ecological PSL. Concentrations of 2,3,7,8-TCDD TEQ (human/mammal) ranged from 34 pg/g at Pond3-05 from 1.5 to 2.5 ft bss to 1,285 pg/g at Pond3-01 from 0.5 to 1.5 ft bss (Table 4-34 and Figure 4-29a). Concentrations of 2,3,7,8-TCDD TEQ (fish) ranged from 31 pg/g at Pond3-05 from 1.5 to 2.5 ft bss to 1,392 pg/g at Pond3-01 from 0.5 to 1.5 ft bss (Table 4-34 and Figure 4-29a). (Appendix G), the dioxins in Pond 3 sediment indicate a mixture of sources.

Three samples collected from three locations in Pond 4 were analyzed for dioxins/furans. Two of the three samples had 2,3,7,8-TCDD TEQ concentrations below PSLs, and the third sample (Pond4-01 from 0 to 0.5 ft bss) exceeded both the human health PSL and the ecological PSL, with concentrations of 51 pg/g (2,3,7,8-TCDD TEQ for human/mammal) and 120 pg/g (2,3,7,8-TCDD TEQ for fish). The TEQs for the sample from Pond4-01 were less than ten times the PSLs and minimal sediment is present in this pond (ARCADIS, 2009b).

4.4.2.3.7 Summary of Findings

The Southern Ponds (Ponds 1 through 4) are located in the southern portion of the site.

Historical and RI sediment sample results for Ponds 1, 2, and 3 indicate concentrations of TPHg, TPHmo, and PCBs in sediment are below PSLs.

Acetone was detected above PSLs in pond sediment samples. Acetone concentrations above PSLs were detected in subsurface samples between 5 and 7 ft bss in all ponds, and in surface samples in Pond 3. Dioxin concentrations exceeding human health and ecological PSLs were detected in the three ponds. Arsenic, molybdenum and zinc concentrations exceeded ecological PSLs by an order of magnitude in some samples; other metals were also detected above ecological screening levels. Arsenic and lead were detected above human health screening levels. PAHs were also detected above screening levels in the three ponds, with the highest concentrations in Pond 2 and the eastern portion of Pond 3. TPHd was detected above RBSCs in four samples in Pond 3 (Diesel C10-C12), and TPH-LGW criteria in two of the four samples. In general, sediment impacts in Ponds 1, 2, and 3 were greatest in surface sediment and decreased with depth.

Former Georgia-Pacific Wood Products Facility

Pond 4 contains minimal sediment. Concentrations were approximately within an order of magnitude of the PSLs in the single sample where exceedances of sediment screening levels were observed.

Former Georgia-Pacific Wood Products Facility

Summary Table: Southern Ponds AOI

Southern Ponds AOI										
					Human Healt	h	Ecological			
Constituent	Range of Detections		PSL	Number of Exceedances/ Number of Samples	Exceedances Above Background/ Total HH PSL Exceedances	PSL	Number of Exceedances/ Number of Samples	Exceedances Above Background/Total Eco PSL Exceedances		
Metals - (mg/kg)										
Arsenic	1.66	-	98.9	0.07	47/47	23/47	9.79	23/47	23/23	
Barium	23	-	5240	5,200	1/47	1/1		0/47		
Cadmium	0.22	-	5	39	0/47		0.99	18/47	9/18	
Chromium	8	•	94.5	100,000	0/47		43.4	19/47	9/19	
Cobalt	2.1	-	30.4	660	0/47		20	8/47	8/8	
Copper	1.6	-	240	3,000	0/47		31.6	24/47	22/24	
Lead	1.3	-	389	80	9/47	9,9	35.8	17/47	17/17	
Mercury	0.021	-	0.419	18	0/47		0.18	4/47	4/4	
Molybdenum	0.29	-	67.1	380	0/47		3	21/47	17/21	
Nickel	8.21	-	61.5	1,600	0/47		22.7	29/47	8/29	
Zinc	12	•	1510	23,000	0/47		121	22/47	21/22	
Polycyclic Aromatic Hydrocarbons	s - (mg/kg)				-	•		-	•	
2-Methylnaphthalene	0.0033	-	0.5	310	0/17		0.0202	12/17		
Acenaphthene	0.00073	-	0.29	3,400	0/40		0.00671	12/40		
Acenaphthylene	0.0071	-	3.4		0/40		0.00587	21/40		
Anthracene	0.0034		1.3	17,000	0/40		0.0572	9/40		
Benzo(a) anthra cen e	0.0058	•	1.1	0.15	5/40		0.108	10/40		
Benzo(a)pyrene	0.0077	-	1.6	0.038	16/40		0.15	10/40		
Benzo(b)fluoranthene	0.01	-	1.9	0.15	10/40		10.4	0/40		
Benzo(g,h,i)perylene	0.014	•	2.6		0/40		0.17	9/40		
Benzo(k)fluoranthene	0.0032	-	0.82	0.38	2/40		0.24	2/40		
Chrysene	0.0068	•	1.4	4	0/40		0.166	8/40		
Dibenz(a,h)anthracene	0.00097	-	0.15	0.015	5/40		0.033	2/40		
Fluoranthene	0.0067		7.8	2,300	0/40		0.423	14/40		
Fluorene	0.0017		0.99	2,300	0/40		0.0//4	7/40		
Indeno(1,2,3-cd)Pyrene	0.015	-	10	0.15	9/40		0.2	5/40		
Naphthalene Dhananth rang	0.015	•	12	4	1/40		0.176	19/40		
Prienanimene	0.012		0.3		0/40		0.204	18/40		
Fyrene	0.000	·	7.5	1,700	0/40		0.195	17/40		
	0.022		2200		0/40		1.61	14/40		
USEPA B(a)P TEU Malatila Osmania Commoundo (mm	0.001		2.300	0.030	16/40			10/40		
Acetone	/kg) I ninnaa		0.2	61.000	0.01		0.0000	7/01	1	
Disvine/Europe (na/a)	0.000000		0.2	01,000	0/21		0.0055	1121		
2.3.7.8-TCDD TEQ				1		I		1		
(Human/Mammal) ⁷	0.02		1285	5	31/39		21.5	28/39		
2.3.7.8-TCDD TEQ (Bird)8	0.016	-	2793		0/39		21.5	30/39		
2,3,7,8-TCDD TEQ (Fish)9	0.016	-	1392		0/39		21.5	28/39		
2,3,7,8-TCDD	0.22	-	186	5	28/39			0/39		
1.2.3.4.7 8-HxCDD	0.338	-	397	94	4/39			0/39		
1,2,3,6,7,8-HxCDD	0.231	-	670	94	5/39			0/39		
1,2,3,7,8,9-HxCDD	0.419	-	508	94	4/39			0/39		
Total Petroleum Hydrocarbons - (n	ng/kg)				•			•		
Gasoline C6-C8	NA	-	NA	2.6						
Gasoline C8-C10	NA	-	NA	9.8						
Total Gasoline (C6-C10) ¹	NA	-	NA	9.8						
Diesel C10-C12	1.6	-	160	51	4/40					
Total Diesel (C10-C24) ²	1	-	1660	10,772	0/40		1,045	2/40		
-										

Footnotes:

1

2

3

Sum of concentrations reported for gasoline carbon ranges C6-C8 and C8-C10.

Sum of concentrations reported for diesel carbon ranges C1D-C12, C12-C16, and C16-C24.

Sum of 2-methylnaphthalene, accenaphthene, acenaphthylene, anthracene, benzo(a) phrane, benzo(a) pyrene, benzo(b)fluoranthene, benzo(g,h,i) perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h) anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d) pyrene,

Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Non-detects 4 7

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for human/mammal. NDs

8 Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for birds. NDs excluded.

9 Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for fish. NDs excluded.

Former Georgia-Pacific Wood Products Facility

4.4.2.4 Ponds 5 and 9 AOIs

During the course of historic and RI activities, six sediment samples were collected from four locations in Pond 5 and seven sediment samples were collected from two locations in Pond 9. These samples were analyzed for metals (including hexavalent chromium), TPH, PCBs, PAHs, VOCs, dioxins/furans, and chlorophenols, as presented in Table 4-7. Table 4-54 summarizes the statistical data for sediment in Ponds 5 and 9.

4.4.2.4.1 Metals

During historical and RI sampling activities, 13 sediment samples were analyzed for CAM-17 metals; six of these samples were collected from Pond 5 and seven samples were collected from Pond 9 (Figure 4-5). Each of the 17 metals analyzed was detected in both Ponds 5 and 9 (Table D-60). Arsenic concentrations exceeded human health PSLs in samples collected from the ponds. In Pond 5, the concentrations of copper, lead, nickel, and zinc exceeded their respective ecological PSLs; in Pond 9, the concentrations of copper and molybdenum exceeded the ecological PSLs. Analytical results for these six metals are further summarized below:

- Arsenic was detected above the human health PSL (0.07 mg/kg) in the 13 samples analyzed. Note that the site-specific arsenic soil background concentration of 10 mg/kg is above the human health PSL.
- Copper was detected above the ecological PSL (TEC; 31.6 mg/kg) in five of the six samples collected in Pond 5 and in one of the seven samples collected in Pond 9. The concentrations of the five samples that exceeded the ecological PSL in Pond 5 ranged from 42 mg/kg in DP-5.63 from 10 to 10.5 ft bss to 785 mg/kg in Pond5-03 from 0 to 0.5 ft bss. The copper concentration detected in the sample collected in Pond 9 (Pond9-01 0 to 0.5 ft bss) was 286 mg/kg (Table 4-30).
- Lead was detected above the ecological PSL (TEC; 35.8 mg/kg) in three of the six samples collected in Pond 5, at concentrations ranging from 50.5 mg/kg in Pond5-03 from 0 to 1 ft bss to 70.8 mg/kg in Pond5-02 from 0 to 1 ft bss (Table 4-30).
- Molybdenum in sample Pond09-01 (0 to 0.5 ft bss) slightly exceeded the ecological PSL (TEC; 3 mg/kg) with a concentration of 4.83 mg/kg (Table 4-30).
- Nickel was detected above the ecological PSL (TEC; 22.7 mg/kg) in three of the six Pond 5 samples. Concentrations in these samples ranged from 28.4 mg/kg in Pond5-02 (0 to 1 ft bss) to 36 mg/kg in DP-5.6 (10 to 10.5 ft bss) (Table 4-30).

Former Georgia-Pacific Wood Products Facility

 Zinc was detected above the ecological PSL (TEC; 121 mg/kg) in two of the six Pond 5 samples. Concentrations in these samples were 189 mg/kg in Pond5-02 (0 to 1 ft bss) and 170 mg/kg in Pond5-03 (0 to 0.5 ft bss) (Table 4-30).

Additionally, nine samples collected from one location in each Pond 5 and Pond 9 were analyzed for hexavalent chromium. Hexavalent chromium was not detected above the laboratory reporting limit (0.05 mg/kg).

4.4.2.4.2 Total Petroleum Hydrocarbons

During historical and RI sampling activities, 13 sediment samples were analyzed for TPHd and TPHmo; six samples were collected from Pond 9. Total TPHd was detected below screening levels in five of the six samples collected in Pond 5. The one exceedance occurred in sample Pond5-01 (0 to 1 ft bss), which had a TPHd concentration of 2,421 mg/kg (Table 4-31). This concentration exceeded the TPH-LGW screening level of 1,045 mg/kg, but did not exceed the aliphatic RBSC for direct contact of 14,066 mg/kg. In Pond 9, total TPHd was detected below screening criteria in four of the seven samples and was not detected in the remaining three samples. In both Pond 5 and Pond 9, TPHmo was either not detected or was detected below screening criteria.

4.4.2.4.3 Polychlorinated Biphenyls

During historical and RI sampling activities, five sediment samples were analyzed for PCB congeners; four samples were collected from Pond 5 and one sample was collected from Pond 9. PCB concentrations detected in Pond 5 and Pond 9 samples did not exceed PSLs. Of the 28 PCB congeners analyzed, 19 were detected in one or more of the Pond 5 samples and none were detected in the Pond 9 sample. Each of the four Pond 5 samples had total PCB congener concentrations below the human health PSL (USEPA RSL; 0.22 mg/kg) and the ecological PSL (TEC; 0.0598 mg/kg) with concentrations ranging from 0.00396 mg/kg in Pond5-02 (0 to 1 ft bss) to 0.0262 mg/kg in Pond5-01 (0 to 1 ft bss) (Table 4-32).

4.4.2.4.4 Polycyclic Aromatic Hydrocarbons

During historical and RI sampling activities, six sediment samples from Pond 5 and six sediment samples from Pond 9 were analyzed for PAHs. No PAHs were detected above laboratory reporting limits in Pond 9. Of all constituents analyzed, six (2-Methylnaphthalene, acenaphthene, acenaphthylene, naphthalene, phenanthrene, and pyrene) were detected above their respective ecological PSLs in one sample from Pond 5 (Pond5-01 from 0.0 to 0.5 ft bss). No other samples contained concentrations of individual PAHs above screening values, and no samples contained individual PAH concentrations above human health screening levels.

Former Georgia-Pacific Wood Products Facility

A total PAH concentration was calculated for each sample and compared with the TEC for total PAHs (1.61 mg/kg) for invertebrates. No samples exceeded this screening value.

A B(a)P TEQ was calculated for each sample and compared with the residential CHHSL (0.038 mg/kg) for B(a)P. One sample from Pond 5 (Pond5-03 from 0.0 to 0.5 ft bss) exceeded this screening value, with a B(a)P TEQ concentration of 0.045 mg/kg.

4.4.2.4.5 Volatile Organic Compounds

During historical and RI sampling activities, nine sediment samples were analyzed for VOCs; three samples were collected from Pond 5 and six samples were collected from Pond 9. Only eight of the 70 VOCs analyzed were detected in one or more samples. Four of these detected VOCs (2-butanone, 4-methyl-2-pentanone, acetone, and methylene chloride) are common laboratory contaminants. The four remaining VOCs (chlorobenzene, cis-1,2-dichloroethene, toluene and vinyl chloride) were detected at concentrations below their respective human health and ecological PSLs (Table 4-34).

4.4.2.4.6 Dioxins/Furans

During historical and RI sampling activities, six sediment samples were analyzed for dioxins/furans; four samples were collected from Pond 9 (Figure 4-5). The 2,3,7,8-TCDD TEQ concentrations exceeded the human health PSL (CHHSLr; 4.6 pg/g) and the ecological PSL (PEC; 21.5 pg/g) in the four sediment samples from Pond 5 (DP-5.63 from 0 to 0.5 ft bss, Pond5-01 from 0 to 1ft bss, Pond5-02 from 0 to 1ft bss, and Pond5-03 from 0 to 0.5 ft bss), with 2,3,7,8-TCDD TEQ concentrations of 23.4 pg/g, 69.6 pg/g, 30.1 pg/g, and 20.2 pg/g, respectively (Table 4-35). Of the two samples collected from Pond 9, one sample (DP-1.5 from 2 to 2.5 ft) had a 2,3,7,8-TCDD TEQ concentration below both screening levels and the other sample (Pond9-01 from 0 to 0.5 ft) only exceeded the human health PSL with a concentration of 7.88 pg/g (Table 4-35). Source classification evaluation (Appendix G) indicates that dioxin/furan concentrations in Pond 5 and Pond 9 are consistent with ambient/mixture sources.

4.4.2.4.7 Summary of Findings

Ponds 5 and 9 have no known industrial use, and historical and RI sediment results indicate concentrations of TPHg, TPHmo, and PCBs in sediment are below PSLs. Acetone was detected above PSLs in pond sediment samples. PAHs and dioxins/furans were detected above PSLs in one sample, collected from the surface in Pond 5. Six metals were detected above PSLs, with the majority of exceedances collected from Pond 5. None of the metal concentrations exceeds the human health PSL and most of the metal concentrations (with the exception of copper) were within the same order of magnitude as the ecological

Former Georgia-Pacific Wood Products Facility

PSL or background concentration. Source classification evaluation indicates that dioxin/furan concentrations in Pond 5 and Pond 9 are consistent with ambient/mixture sources.

Summary Table: Ponds 5 and 9 AOI

Ponds 5 and 9 AOI					Human Haa	lth		Ecologica		
		Range of Detections			Human Healun			Ecological		
Constituent	Range o				Number of Exceedances/ Number of Samples	Above Background/ Total HH PSL Exceedances	PSL	Number of Exceedances/ Number of Samples	Above Background/ Total Eco PSL Exceedances	
Metals - (mg/kg)										
Arsenic	0.76	-	9.6	0.07	13/13	0/13	9.79	0/13		
Copper	2	-	785	3,000	0/13		31.6	6/13	5/6	
Lead	1	-	70.8	80	0/13		35.8	3/13	3/3	
Molybdenum	0.25	-	4.83	380	0/13		3	1/13	1/1	
Nickel	6.6	-	36	1,600	0/13		22.7	3/13	0/3	
Zinc	14	-	189	23,000	0/13		121	2/13	2/2	
Polycyclic Aromatic Hydrocarb	ons - (mg/kg)									
2-Methylnaphthalene	0.0028	-	0.11	310	0/4		0.0202	2/4		
Acenaphthene	0.0066	-	0.021	3,400	0/12		0.00671	2/12		
Acenaphthylene	0.0016	-	0.074		0/12		0.00587	2/12		
Naphthalene	0.0051	-	0.44	4	0/12		0.176	1/12		
Phenanthrene	0.0098	-	0.34		0/12		0.204	1/12		
Pyrene	0.014	-	0.27	1,700	0/12		0.195	1/12		
USEPA B(a)P TEQ ⁴	0.00029	-	0.045	0.038	1/12			0/12		
Volatile Organic Compounds -	(mg/kg)									
Acetone	0.00093	-	0.017	61,000	0/9		0.0099	2/9		
Dioxins/Furans - (pg/g)										
2,3,7,8-TCDD TEQ	0.010	-	70							
(Human/Mammal) ⁷	0.013		70	5	5/6		21.5	3/6		
2,3,7,8-TCDD TEQ (Bird)8	0.0	-	75.0		0/6		21.5	4/6		
2,3,7,8-TCDD TEQ (Fish) ⁹	0.0	-	68.0		0/6		21.5	3/6		
2,3,7,8-TCDD	2.87	-	49.4	5	4/6			0/6		
Total Petroleum Hydrocarbons	- (mg/kg)									
Gasoline C6-C8	NA	-	NA	2.6						
Gasoline C8-C10	NA	-	NA	9.8						
Total Gasoline (C6-C10) ¹	NA	-	NA	9.8						
Diesel C10-C12	1.1	-	270	51	1/13					
Total Diesel (C10-C24) ²	1.4	-	2421	10,772	0/13		1,045	1/13		
Footnotes:										

Sum of concentrations reported for gasoline carbon ranges C6-C8 and C8-C10.

Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-

Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Non-detects excluded.

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for human/mammal.

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for birds. NDs excluded.

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for fish. NDs excluded.

4.4.3 Groundwater

2

4

7

8

There are 12 groundwater monitoring wells located within the boundaries of OU-E that were installed between 2004 and 2009 and have been regularly sampled during quarterly monitoring activities. Additionally, a total of 71 grab groundwater samples were collected from within OU-E during historical and RI activities. Samples were analyzed for metals, TPHg, TPHd, TPHmo, PCBs, PAHs, SVOCs, VOCs, and dioxins/furans, as presented in Table 4-1. Tables 4-44 and 4-45 present statistical data summaries. Select groundwater samples were also analyzed for forensic TPH and PAHs.

Former Georgia-Pacific Wood Products Facility

4.4.3.1 Overview of RI Activities

This section presents an overview of the RI activities conducted to identify groundwater impacts, followed by a discussion of the nature and extent of impacts identified in groundwater. Data from both grab samples and from monitoring wells are included (Figure 4-2).

As discussed in Section 4.2.1, groundwater sampling was conducted in June 2010 to address data gaps identified along sewer/drain lines and beneath former tanks and transformers throughout OU-E, as well as beneath the Engine House Area, the former lath building, dewatering slabs, the former paint shed, and areas west and south of the former fuel barn (Figure 2-1). Results from the June 2010 groundwater sampling identified TPHd, TPHmo, and PAH concentrations in a groundwater grab sample (OUE-DP-004) collected near a drain line near the former sewage pumping station in the northwestern part of OU-E. Also, soil sampling conducted in June 2010 (discussed in Section 4.2.1) indicated the potential for PAH impacts to groundwater east of the fuel oil pipeline excavation boundary and TPH impacts beneath the eastern portion of the former Sawmill #1 near sampling location OUE-DP-025 (Figure 4-3).

Step-out sampling was conducted in October and November 2010 (discussed in Section 4.2.2) to further delineate the extent of these constituents in groundwater. Groundwater grab samples from step-out locations (OUE-DP-064 through OUE-DP-066) along the drain line in the Water Treatment and Truck Dump AOI (Figure 4-2) did not contain elevated concentrations of TPHd, TPHmo, or PAHs. PAHs were detected in groundwater grab samples from OUE-DP-084 and OUE-DP-085, located east of the fuel oil pipeline excavation boundary, at concentrations less than screening levels. Elevated TPHd and TPHmo concentrations were detected in the groundwater grab sample from OUE-DP-025, located beneath the eastern portion of the former Sawmill #1, but data from monitoring wells MW-5.9 and MW-5.16 provided adequate characterization of these constituents in that area, so additional sampling was not required.

Additional groundwater grab samples were collected in December 2010 from soil borings that were advanced to further delineate soil impacts. These groundwater samples contained no analytes above screening levels.

4.4.3.2 Metals

4.4.3.2.1 Monitoring Well Samples

During quarterly groundwater sampling activities, 154 samples were collected from 12 wells and analyzed for metals. Eleven of the CAM-17 metals (antimony, beryllium, chromium, cobalt, copper, mercury, molybdenum, nickel, silver, vanadium, and zinc) were either not detected or were below WQOs and PSLs. Selenium and thallium were detected at concentrations above their respective WQOs, but were not detected above PSLs. Concentrations of cadmium and lead exceeded their respective WQOs, but were below site-

Former Georgia-Pacific Wood Products Facility

specific background concentrations and are not thought to be site related. Table 4-16 shows results for all metals detected in monitoring wells.

Two metals (arsenic and barium) were detected above background concentrations and PSLs:

- Arsenic concentrations were above the WQO (OEHHA PHG; 0.004 micrograms per liter [µg/L]) and the background concentration for arsenic (2.5 µg/L) in 53 of the 147 samples analyzed; arsenic concentrations in 30 of these samples also exceeded the PSL (USEPA MCL; 10 µg/L). The maximum concentration of arsenic was 37 µg/L at MW-5.16 in a sample from June 16, 2010.
- Barium concentrations were above the PSL and WQO (California Primary MCL; 1,000 µg/L) in 20 of the 143 samples analyzed; all 20 samples were from MW-4.1. The maximum concentration of barium was 9,600 µg/L in a sample from December 8, 2004.

A groundwater geochemistry evaluation was conducted as part of the *Fourth Quarter 2009 Groundwater Monitoring Report* (ARCADIS, 2010h) (Appendix I) to address the presence of localized arsenic and barium in groundwater. The evaluation found that arsenic and barium concentrations relate to natural reducing conditions in the presence of relatively high dissolved organic carbon in some portions of the aquifer. Sulfate concentrations were typically lower in groundwater samples with higher organic carbon concentrations, indicating that higher organic carbon concentrations cause sulfate-reducing conditions. In turn, these conditions cause arsenic and barium to be released during reductive dissolution of iron and manganese oxides and dissolution of barite to remain in solution, increasing concentrations of these constituents.

4.4.3.2.2 Groundwater Grab Samples

During historical and RI sampling activities, 46 groundwater grab samples were analyzed for metals. It should be noted that although some metals concentrations in groundwater grab samples exceeded PSLs, these results may be biased high. Metals results for groundwater grab samples can be elevated relative to those for samples from monitoring wells, which are typically collected after purging and monitoring of stabilization parameters, including turbidity. Table 4-11 shows results for all metals detected in groundwater grab samples. Figure 4-2 depicts all of the sampling locations.

In summary:

- Four of the CAM-17 metals (beryllium, cadmium, mercury, and silver) were not detected
- Five metals (antimony, chromium, copper, selenium, and zinc) were either not detected or were below respective WQOs and PSLs.

Former Georgia-Pacific Wood Products Facility

 Molybdenum, nickel, and thallium were detected at concentrations above respective WQOs, but less than PSLs.

Concentrations of the five metals detected above background and PSLs are discussed below:

- Arsenic concentrations were above the WQO (OEHHA PHG; 0.004 μg/L) and the background concentration for arsenic (2.5 μg/L) in 22 of the 45 samples analyzed; arsenic concentrations in five of these samples also exceeded the PSL (USEPA MCL; 10 μg/L). The maximum arsenic concentration was 16 μg/L in HSA-4.6, which was collected on January 23, 2006.
- Barium concentrations were above the WQO and PSL (California Primary MCL; 1,000 µg/L) in seven of the 45 samples analyzed. The maximum barium concentration was 2,400 µg/L in HSA-4.4, which was collected on January 23, 2006.
- Cobalt slightly exceeded the PSL (USEPA RSL; 11 μg/L) in one of the 45 samples analyzed. The sample collected from HSA-6.29 on January 18, 2006 contained cobalt at a concentration of 18 μg/L.
- Lead concentrations were above the WQO (OEHHA PHG; 0.2 µg/L) and the background concentration (1 µg/L) in two of the 46 samples analyzed; the lead concentration in one of these samples also exceeded the PSL (USEPA MCL; 15 µg/L). The maximum lead concentration was 51 µg/L in HSA-4.4, which was collected on January 23, 2006.
- Vanadium was detected above the PSL (Human and Ecological Risk Division [HERD]; 36 µg/L) in one sample (HSA-4.4) with a concentration of 38 µg/L.

4.4.3.3 Total Petroleum Hydrocarbons

4.4.3.3.1 Monitoring Well Samples

As part of quarterly groundwater sampling, 153 samples were collected from 12 wells and analyzed for TPH. Total TPHg was analyzed in 139 of the 153 samples; all concentrations were either below screening levels or were not detected. All samples were analyzed for total TPHd; all concentrations were either below screening levels or were not detected. TPHmo was analyzed in 146 of the153 samples; 144 of the samples had TPHmo concentrations that were either below screening levels or were not detected. TPHmo exceeded the CVRWQCB taste and odor threshold (0.175 milligram per liter [mg/L]) in two samples (MW-4.3 [collected on May 12, 2005] and MW-4.4 [collected on December 8, 2004] with concentrations of 0.29 mg/L and 0.32 mg/L, respectively). However, the subsequent (after May 12, 2005 for MW-4.3 and after December 8, 2004 for MW-4.4) four samples collected from MW-4.3 and MW-4.4 did not contain TPHmo concentrations above the taste and odor threshold. Table 4-17 summarizes analytical results for all TPH detected in

Former Georgia-Pacific Wood Products Facility

monitoring wells. Figure 4-7 includes concentrations of TPHd and TPHmo in groundwater. Cross-sections for TPH were generated to evaluate concentrations in soil versus groundwater and are presented in Figures 4-8 through 4-14.

4.4.3.3.2 Groundwater Grab Samples

During historical and RI sampling activities, 69 groundwater grab samples were analyzed for TPH. Total TPHg was analyzed in 12 of the 69 samples. Ten of the 12 samples had TPHg concentrations that were either below screening levels or were not detected. The remaining two samples (P3-46 and P3-47) had TPHg concentrations that exceeded the CVRWQCB taste and odor threshold of 0.05 mg/L (0.11 mg/L and 0.17 mg/L, respectively) but were below RBSCs.

Total TPHd was analyzed in all 69 samples. Concentrations of total TPHd in 55 of the 69 samples were either below screening levels or were not detected. The remaining 14 samples had TPHd concentrations exceeding the RWQCB taste and odor threshold (0.1 mg/L), and seven of these samples also exceeded the aliphatic RBSC (1.22 mg/L), with concentrations ranging from 0.11 mg/L at OUE-DP-033, located under the former Lath Building, to 200 mg/L at P3-46, located under the former Compressor House (Figure 4-7).

TPHmo was analyzed in 61 of the 69 samples; 46 of the samples had TPHmo concentrations that were either below screening levels or were not detected. TPHmo concentrations exceeded the RWQCB taste and odor threshold (0.175 mg/L) in 15 samples, and two of these samples also exceeded the aliphatic RBSC (31.3 mg/L), with concentrations ranging from 34 mg/L in OUE-HA-025, located under the former Sawmill, to 130 mg/L in HSA-4.5, located east of Pond 6. Table 4-12 summarizes analytical results for all TPH detected in groundwater grab samples. Figure 4-7 includes TPHmo concentrations in groundwater.

4.4.3.4 Hydrocarbon Source Evaluation

Six groundwater grab samples collected in November and December 2010 were analyzed for forensic TPH and alkylated PAHs to evaluate potential site-related and non-site-related sources of TPH concentrations in groundwater, as described in Section 4.2.1. Three of these groundwater samples (MW 5.16, OUE-DP-094and OUE-DP-100) contained trace concentrations of PAHs that were not sufficient for forensics analysis. Two samples (OUE-DP-099 and OUE-DP-102) contained NOM with low contributions of petroleum or pyrogenic material; the PAH concentrations in these samples are not considered site-related. The sixth groundwater sample (OUE-DP-025) contained PAHs characteristic of No. 6 type fuel oil, indicating that petroleum contributed at least partly to TPH concentrations at this location. Sample OUE-DP-025 was collected under the east end of the Sawmill. The complete procedures and results of the forensics analysis are presented in Appendix F.

Former Georgia-Pacific Wood Products Facility

4.4.3.5 Polychlorinated Biphenyls

During quarterly groundwater sampling, 76 samples were collected from nine wells and analyzed for PCB congeners. No groundwater grab samples have been analyzed for PCBs. PCB congeners were not detected in 74 of the 76 samples collected; the two samples with detectable PCB concentrations were both collected from MW-5.9. On March 7, 2006 the total PCB concentration ($0.02 \mu g/L$) was below the WQO for groundwater (OEHHA PHG; $0.09 \mu g/L$) and the PSL (California Primary MCL; $0.5 \mu g/L$), and on May 22, 2006 the total PCB concentration ($1.3 \mu g/L$) exceeded both the WQO and the PSL (Tables 4-18 and E-8). No PCBs were detected at concentrations above laboratory reporting limits after 2006.

4.4.3.6 Semi-volatile Organic Compounds

4.4.3.6.1 Monitoring Well Samples

During quarterly groundwater sampling, 96 samples were collected from nine wells and analyzed for SVOCs. Of all of the constituents analyzed, only two [benzoic acid and bis(2-ethylhexyl)phthalate] were detected; all concentrations were below their respective WQO and PSL (Table 4-19).

4.4.3.6.2 Groundwater Grab Samples

During historical and RI sampling activities, 34 grab groundwater samples were analyzed for SVOCs. Of all constituents analyzed, six [4-methylphenol, benzoic acid, benzyl alcohol, bis(2-Ethylhexyl)Phthalate, phenol, and resorcinol] were detected. All SVOCs had concentrations below their respective WQO and PSL, with one exception: bis(2-Ethylhexyl)Phthalate was detected in sample OUE-DP-028, which was collected on June 23, 2010, at a concentration of 14 μ g/L. This concentration is above the PSL and WQO for bis(2-Ethylhexyl)Phthalate (California Primary MCL; 4 μ g/L) (Table 4-13).

4.4.3.7 Polycyclic Aromatic Hydrocarbons

4.4.3.7.1 Monitoring Well Samples

During quarterly groundwater sampling, 124 samples were collected from 12 wells and analyzed for PAHs. Two PAHs, benzo(a)pyrene [B(a)P] and dibenzo(a,h)anthracene, were detected at concentrations above their respective WQO and/or PSL in at least one sample.

To evaluate the potential cumulative effects of detected PAHs, a B(a)P TEQ was calculated for each sample and compared with the WQO (OEHHA PHG; 0.004 μ g/L) and the PSL (USEPA MCL; 0.2 μ g/L). Of the 124 samples collected and analyzed for PAHs, 122 did not have detected concentrations; the remaining two samples had B(a)P TEQ concentrations that exceeded the WQO but were below the PSL. The maximum

Former Georgia-Pacific Wood Products Facility

concentration of 0.014 μ g/L was collected from MW-4.2 on September 5, 2007. However, the next sample collected on December 11, 2007 from MW-4.2 did not contain detectable concentration of B(a)P TEQ(Table 4-20).

4.4.3.7.2 Groundwater Grab Samples

During historical and RI sampling activities, 55 groundwater grab samples were analyzed for PAHs. Seven PAHs (benzo(a)anthracene, B(a)P, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and naphthalene) were detected at concentrations above their respective WQO and/or PSL in at least one sample.

To evaluate the potential cumulative effects of detected PAHs, a B(a)P TEQ was calculated for each sample and compared with the WQO (0.004 μ g/L) and the PSL (0.2 μ g/L). Of the 55 groundwater grab samples collected and analyzed for PAHs, 42 did not have detected concentrations or concentrations were detected below the WQO and PSL. Thirteen samples had B(a)P TEQ concentrations that exceeded the WQO, two of which also exceeded the PSL. The maximum B(a)P TEQ concentration of 2.9 μ g/L was detected in the sample collected from location OUE-DP-040 on June 25, 2010 (Tables 4-14 and E-4).

4.4.3.8 Volatile Organic Compounds

4.4.3.8.1 Monitoring Well Samples

During quarterly groundwater sampling, 123 samples were collected from 11 wells and analyzed for VOCs. Of the 70 VOCs analyzed, only 29 were detected in one or more samples. Naphthalene was the only compound detected at a concentration that slightly exceeded the PSL (USEPA RSL; 0.14 μ g/L). Naphthalene was detected in the sample collected from MW-4.2 on May 22, 2006 at a concentration of 0.2 μ g/L (Table 4-21).

4.4.3.8.2 Groundwater Grab Samples

During historical and RI sampling activities, 40 groundwater grab samples were analyzed for VOCs. Eighteen of the 70 VOCs analyzed were detected in one or more samples. Three VOCs (benzene, carbon disulfide, and tetrachloroethene) were detected at concentrations exceeding their respective WQO in at least one sample (Table 4-15). Three samples had benzene concentrations exceeding the WQO of 0.15 μ g/L and concentrations ranged from 0.2 μ g/L (OUE-DP-039 [Shallow] and OUE-HA-020) to 0.6 μ g/L (HSA-4.5). Ten samples have carbon disulfide concentrations exceeding the WQO of 0.39 μ g/L and concentrations ranged from 0.4 μ g/L (OUE-DP-038, OUE-DP-039 [Shallow] and OUE-DP-057 [Shallow]) to 1.8 μ g/L (HSA-4.6). One sample had tetrachloroethene concentration exceeding the WQO of 0.06 μ g/L (2.6 μ g/L at

Former Georgia-Pacific Wood Products Facility

OUE-DP-001). One sample had naphthalene concentration exceeding the PSL of 0.14 μ g/L (3 μ g/L at HAS-4.6).

4.4.3.9 Dioxins/Furans

In 2007, 16 samples were collected from eight monitoring wells and analyzed for dioxins/furans. No groundwater grab samples were analyzed for dioxins/furans. Twelve of these samples did not have detected concentrations of dioxins/furans, and three samples had dioxin/furan concentrations less than the PSL (USEPA MCL; 30 picograms per liter [pg/L]) and the WQO (CalEPA cancer potency factor [CPF]; 0.27pg/L). One sample collected from MW-4.3R on October 10, 2007 had a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) TEQ concentration of 1.7 pg/L, which is slightly above the WQO but below the PSL (Table 4-22).

4.4.3.10 Summary of Findings

A total of 71 groundwater grab samples have been collected from throughout OU-E during historical investigation activities and also as part of a three-phase step-out investigation in 2010 intended to address soil and groundwater data gaps. Also, 154 groundwater samples have been collected from 12 monitoring wells within OU-E through December 2010, primarily during quarterly monitoring events. Groundwater samples have been analyzed for metals, TPHg, TPHd, TPHmo, PCBs, PAHs, SVOCs, VOCs, and dioxins/furans, as summarized in Table 4-1, and statistical summaries of these data are presented in Tables 4-44 and 4-45. Additionally, ARCADIS prepared cross-sections to show the locations of groundwater samples containing TPH relative to soil samples containing TPH (Figure 4-8 through Figure 4-14).

Metal concentrations exceeding primary screening levels were detected in grab samples collected just east of Pond 6 at HSA-4.4 (arsenic, barium, lead, and vanadium) and southwest of the fuel line excavation at OUE-HA-018 (barium),OUE-HA-022 (barium), and in samples from monitoring wells MW-5.7, located east of the former sawmill (arsenic), MW-5.16, located beneath the former sawmill (arsenic), and MW-4.1, located east of Pond 6 (barium). Cobalt exceeded the PSL in a sample collected from HSA-6.29, located west of Pond 8.

TPHd was detected above the RBSC for aliphatic fractions in seven groundwater grab samples. TPHd concentrations in an additional eight grab samples exceeded the taste and odor criteria. TPHg was generally not detected in grab samples; detectable concentrations in just two samples exceeded RWQCB taste and odor threshold but were well below the PSL. Several grab samples contained TPHmo in excess of taste and odor thresholds, but just two samples (OUE-HA-025, located under the former sawmill, and HSA-4.5, located east of Pond 6) exceeded the aliphatic RBSC. TPHg and TPHd were not detected or were below screening levels in all quarterly samples from the 12 monitoring wells in OU-E. TPHmo concentrations exceeded taste and odor thresholds in just two samples from MW-4.3 and MW-4.4 in 2004, but have not exceeded screening levels in subsequent samples.

Former Georgia-Pacific Wood Products Facility

Six groundwater grab samples collected in November and December 2010 were analyzed for TPH and alkylated PAHs as a part of a forensics evaluation. Three samples contained trace concentrations of PAHs that were not sufficient for forensics analysis, and two samples contained NOM with low contributions of petroleum or pyrogenic material. The sixth groundwater sample (OUE-DP-025) contained PAHs characteristic of No. 6 type fuel oil, indicating that petroleum contributed at least partly to TPH concentrations at this location.

Two groundwater samples from MW-5.9 (located south of the former sawmill) were the only samples containing PCB congeners in excess of screening levels. Samples collected from this well after 2006, as well as all other groundwater samples analyzed for PCBs, had concentrations below detection limits.

One groundwater grab sample (OUE-DP-028, located in the former engine house area) contained bis(2-Ethylhexyl)Phthalate above screening levels. Concentrations in all other groundwater grab samples and all monitoring well samples analyzed for SVOCs were either non-detect or below screening levels.

Thirteen of the 55 groundwater grab samples analyzed for PAHs contained B(a)P TEQ concentrations exceeding screening levels. However, just two of the 124 groundwater samples from monitoring wells contained PAH or B(a)P TEQ concentrations exceeding screening levels. A sample collected from MW-4.2 in September 2007 contained dibenzo(a,h)anthracene at concentrations exceeding the PSL and WQO, the resulting B(a)P TEQ also exceeded these screening levels; a sample collected from MW-4.5 in October 2007 contained benzo(a)pyrene at concentrations exceeding the WQO, the resulting B(a)P TEQ also exceeded this screening level. Concentrations in subsequent samples from these wells were below detection limits.

Of the 16 monitoring well samples analyzed for dioxins/furans, 1 sample from MW-4.3R contained 2,3,7,8-TCDD TEQ at a concentration slightly above the WQO but below the PSL. Concentrations in remaining samples were generally below detection limits.

At least 123 samples were collected from 11 monitoring wells and analyzed for VOCs. Twenty-nine VOCs were detected in one or more samples. Naphthalene was detected at a concentration of 0.2 μ g/L that exceeded the PSL (USEPA RSL; 0.14 μ g/L). During historical and RI sampling activities, 40 groundwater grab samples were analyzed for VOCs. Three VOCs (benzene, carbon disulfide, and tetrachloroethene) were detected at concentrations exceeding their respective WQO in at least one sample. Naphthalene was detected above the PSL in one sample (3 μ g/L at HAS-4.6).

Former Georgia-Pacific Wood Products Facility

Summary Tables: Groundwater

Grab Groundwater Data Summary										
					PSL	WQO				
Constituent	Range o	f Del	tections	Value	Number of Exceedances/ Number of Samples	Value	Number of Exceedances/ Number of Samples			
Metals - (µg/L)										
Arsenic	1.1	-	16	10	5/45	0.004	30/45			
Barium	8.3	-	2400	1,000	7/45	1,000	7/45			
Cobalt	1	-	15.5	11	1/45	50	0/45			
Lead	1.4	-	51	15	1/46	0.2	2/46			
Molybdenum	1.4	-	55	180	0/45	10	10/45			
Nickel	1.4	-	30	100	0/45	12	2/45			
Thallium	1.8	-	1.8	2	0/45	0.1	1/45			
Vanadium	1.1	-	38	36	1/45	50	0/45			
Semi-Volatile Organic Compounds - (µg/L)										
bis(2-Ethylhexyl)Phthalate	2.3	-	14	4	1/34	4	1/34			
Polycyclic Aromatic Hyd	rocarbons	- (µg	/L)		•		-			
Benzo(a)anthracene	0.005	-	1.5	0.029	11/55	0.04	7/55			
Benzo(a)pyrene	0.01	-	1.9	0.2	1/55	0.007	12/55			
Benzo(b)fluoranthene	0.02	-	2.2	0.029	9/55	0.04	6/55			
Benzo(k)fluoranthene	0.01	-	0.9	0.056	1/55	0.04	1/55			
Chrysene	0.02	-	1.7	0.56	2/55	0.4	2/55			
Dibenz(a,h)anthracene	0.16	-	0.4	0.0029	3/55	0.0085	3/55			
Indeno(1,2,3-cd)Pyrene	0.04	-	1.5	0.029	5/55	0.04	3/55			
Naphthalene	0.02	-	26	0.14	6/55	17	1/55			
USEPA B(a)P TEQ ⁴	0.0002	-	2.9	0.2	2/55	0.007	14/55			
Volatile Organic Compou	unds - (µg/l	L)		_		_				
Benzene	0.1	-	0.6	1	0/40	0.15	3/40			
Carbon Disulfide	0.1	-	1.8	1,000	0/38	0.39	10/38			
Naphthalene	3	-	3	0.14	1/38	17	0/38			
Tetrachloroethene	2.6	-	2.6	5	0/38	0.06	1/38			
Total Petroleum Hydroca			RBSC	RWQCB						
Total Gasoline (C6-C10) ¹	0.11	-	0.17	1.22	0/12	0.05	2/12			
Diesel C12-C16	0.01	-	1.6	1.22	1/60		NA			
Diesel C16-C24	0.0097	-	16	1.22	3/60		NA			
Total Diesel (C10-C24) ²	0.0097	-	200	1.22	7/69	0.1	14/69			
Motor Oil C24-C36	0.11	-	130	31.3	2/61	0.175	15/61			

Footnotes:

1

2

4

Sum of concentrations reported for gasoline carbon ranges C6-C8 and C8-C10.

Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C2₂ Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for

dibenzo(ah)anthracene (USEPA, 2000). Non-detects excluded.

Former Georgia-Pacific Wood Products Facility

Monitoring Well Ground	water Data	Sur	nmary			_		
					PSL	WQO		
Constituent	Range o	of De	tections	Value	Number of Exceedances/ Number of Samples	Value	Number of Exceedances/ Number of Samples	
Metals - (µg/L)								
Arsenic	0.32	-	37	10	30/147	0.004	106/147	
Barium	11	-	9600	1,000	20/143	1,000	20/143	
Cadmium	0.046	-	0.245	5	0/135	0.04	6/135	
Lead	0.055	-	0.58	15	0/135	0.2	9/135	
Selenium	0.14	-	23	50	0/134	10	1/134	
Thallium	0.032	-	1.3	2	0/135	0.1	4/135	
Polychlorinated Bipheny	yls - (µg/L)			_	_		_	
PCB #138	0.12	-	0.12		0/76	0.09	1/76	
PCB #153	0.11	-	0.11		0/76	0.09	1/76	
PCB #170	0.12	-	0.12		0/76	0.09	1/76	
PCB #180	0.2	-	0.2		0/76	0.09	1/76	
Total PCB Congeners ⁶	0.02	-	1.3	0.5	1/76	0.09	1/76	
Semi-Volatile Organic C	ompounds	- (µ	g/L)		_	_	-	
bis(2-Ethylhexyl)Phthalate	0.72	-	7.7	4	3/96	4	3/96	
Polycyclic Aromatic Hyd	drocarbons	; - (µ	g/L)					
Benzo(a)pyrene	0.01	-	0.01	0.2	0/124	0.007	1/124	
Dibenz(a,h)anthracene	0.01	-	0.01	0.0029	1/124	0.0085	1/124	
USEPA B(a)P TEQ ⁴	0.012	-	0.014	0.2	0/124	0.007	2/124	
Volatile Organic Compo	unds - (µg/	L)						
Naphthalene	0.1	-	0.2	0.14	1/123	17	0/123	
Dioxins/Furans - (pg/L)								
2,3,7,8 TCDD TEQ								
(Human/Mammal) ⁷	0.001	-	0.935	30	0/16	0.05	1/16	
(Bird) ⁸	0.0004	-	0.3225		0/16	0.05	1/16	
(Fish) ⁹	0.001	-	0.3225		0/16	0.05	1/16	
123678-HxCDD	4 65	-	4 65	11	0/16	27	1/16	
1.2.3.4.6.7.8-HpCDD	36	-	36		1/16	27	1/16	
1,2,3,7,8,9-HxCDF	3.84	-	3.84		0/16	2.7	1/16	
Total Petroleum Hydroc	arbons - (m	ig/L)			RBSC		RWQCB	
Motor Oil C24-C36	0.039	-	0.32	31.3	0/146	0.175	2/146	

Footnotes:

4

6

Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Non-detects excluded.

Total PCB congener concentration is twice the sum of detected PCB congeners.

7 Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for human/mammal. NDs excluded.

8 Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for birds. NDs excluded.

9 Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for fish. NDs excluded.

Former Georgia-Pacific Wood Products Facility

4.4.4 Surface Water

For data evaluation purposes, surface water sample results from Pond 8 were compared with the NRAWQC for freshwater and WQOs for Inland Surface Water, as described in Section 4.3.4. Samples collected from the North Pond, Pond 6, Pond 7, standing water, and Pond 8 were analyzed for metals (including hexavalent chromium), TPHg, TPHd, TPHmo, PCBs, PAHs, SVOCs, VOCs, dioxins/furans, and chlorophenols, as presented in Table 4-4. Samples collected from southern ponds (Ponds 1, 2, 3, and 4) and Ponds 5 and 9 were analyzed for metals as presented in Table 4-6 and Table 4-8, respectively. Statistical summaries of data are presented in Tables 4-55 through 4-58.

4.4.4.1 Pond 8

4.4.4.1.1 Metals

During historical activities and quarterly groundwater monitoring, 14 surface water samples were collected from Pond 8; nine of these samples were collected from the Pond 8 Outfall (Drainage-B) as part of monitoring activities. Of the 17 metals analyzed, cadmium, lead, and mercury were detected at concentrations exceeding their respective PSLs and WQOs in samples collected from the Pond 8 outfall. The December 2007 sample contained mercury at a concentration of 0.099 μ g/L, which is above the WQO (0.05 μ g/L). The March 2008 sample contained cadmium at a concentration of 0.25 μ g/L, which is above the WQO (0.04 μ g/L). The March 2008 sample contained lead at a concentration of 1.5 μ g/L, which is above the WQO (0.2 μ g/L). Mercury and lead were not detected in subsequent samples collected at that location.

4.4.4.1.2 Total Petroleum Hydrocarbons

During quarterly monitoring (April 2006 through September 2009), 11 samples were collected from Drainage-B for TPHmo and TPHd analysis. TPHd concentrations were either below the screening criteria or were not detected. TPHmo was detected slightly above the CVRWQCB (0.175 mg/L) in the sample collected on March 9, 2007 with a concentration of 0.24 mg/L, but was not detected in the nine samples collected thereafter (Table 4-38).

4.4.4.1.3 Polycyclic Aromatic Hydrocarbons

Surface water at the Pond 8 outfall was regularly sampled for PAHs from 2006 until 2009 (Table 4-40). Four of the constituents (benzo(a)anthracene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) exceeded the WQOs in at least one sample. A B(a)P TEQ was calculated for each sample and compared with the freshwater ambient water quality criteria for B(a)P (0.014 μ g/L). One sample (collected on April 3, 2006) contained a B(a)P TEQ concentration above this screening value (0.086 μ g/L), but the 11 subsequent samples have been non-detect for B(a)P TEQ.

Former Georgia-Pacific Wood Products Facility

4.4.4.1.4 Volatile Organic Compounds

During quarterly monitoring (April 2006 through September 2009), nine samples were collected from Drainage-B for VOC analysis. Five of the 70 VOCs analyzed were detected in at least one sample. Concentrations of detected VOCs were below the PSLs and WQOs (Table 4-41).

4.4.4.1.5 Dioxins/Furans

During quarterly monitoring (May 2006 through September 2010), 13 samples were collected from Drainage-B for dioxin/furan analysis. In two of the samples, no dioxin/furans were detected. Dioxins/furans exceeded the 2,3,7,8-TCDD TEQ WQO of 0.013 pg/L for mammals/humans in nine samples, and the maximum concentration was 2.9 pg/L in the sample from April 6, 2007. More recent 2,3,7,8-TCDD TEQ concentrations (after April 6, 2007) were lower than the historical concentrations. In some cases, concentrations of individual dioxin/furans in field duplicate samples differed significantly from concentrations in primary samples (Table 4-42); these results are qualified with a "J", indicating an estimated value. Note that these results led to some calculated 2,37,8-TCDD TEQs for duplicate samples that also differed by more than an order of magnitude from the 2,3,7,8-TCDD TEQs for their respective primary samples.

4.4.4.1.6 Summary of Findings

Historical and RI soil sample results indicate concentrations of TPH, PCBs, and VOCs in surface water are below PSLs. WQO exceedances were observed for three metals (lead, cadmium, and mercury) and the 2,3,7,8-TCDD TEQ. Four PAHS (benzo(a)anthracene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) exceeded PSLs in samples collected from the Pond 8 outfall.

4.4.4.2 North Pond and Ponds 6 and 7

The North Pond, Pond 6 and Pond 7 are situated within the Powerhouse AOI. During historical sampling activities, seven surface water samples were collected from these ponds (one from the North Pond, three from Pond 6, and three from Pond 7) and analyzed for metals (Figure 4-4). Additionally, two surface water samples (SW-4.1 and SW-4.2) were collected from standing water in the footprint of the former Powerhouse building (Figure 4-4 inset). Surface water was collected from the Pond 6 outfall regularly as part of ongoing groundwater monitoring activities. These samples were analyzed for metals, TPH, PCBs, PAHs, SVOCs, VOCs, and dioxins/furans, as presented in Table 4-4.

4.4.4.2.1 Metals

During historical activities and quarterly groundwater monitoring, 15 surface water samples were collected from the North Pond and Ponds 6 and 7 and analyzed for CAM-17 metals. Eight of the samples were

ARCADIS

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

collected from the Pond 6 Outfall (Drainage-B1) and the remaining nine samples were collected from either the North Pond, Pond 6, Pond 7, or the west end of the Powerhouse (Figure 4-4). Of the 17 metals analyzed, three were not detected and the other 14 were detected in one or more samples. Cadmium and lead were detected at concentrations exceeding WQOs. Cadmium exceeded the WQO ($0.04 \mu g/L$) twice, with a maximum concentration of $0.25 \mu g/L$, and lead exceeded the WQO twice, with a maximum concentration of $1.4 \mu g/L$. The maximum exceedances for both samples were collected from the Pond 6 outfall in March 2008 (Table 4-37).

4.4.4.2.2 Total Petroleum Hydrocarbons

During historical activities and quarterly groundwater monitoring, seven surface water samples were collected from the North Pond and Ponds 6 and 7 and analyzed for TPH. Five of the seven samples were collected from the Pond 6 Outfall (Drainage-B1) and were analyzed for TPHg, TPHd, and TPHmo. All concentrations were either not detected or were detected well below the screening levels. The remaining two samples (SW-4.1 and SW-4.2) were analyzed for TPHd and TPHmo; concentrations were either not detected or were detected or Were detected or Were detected or Were below screening levels (Table 4-38).

4.4.4.2.3 Polycyclic Aromatic Hydrocarbons

From July 2006 to September 2009, eight samples were collected from Drainage-B1 for PAH analysis. One or more PAHs were detected at concentrations above WQO screening values during sampling events conducted in March, June, and September 2007. However, since December 2007, no PAHs have been detected at this sampling location.

PAH constituents were detected above WQOs in two samples collected from standing surface water in 2006. Table 4-40 summarizes PAH concentrations in surface water.

4.4.4.2.4 Volatile Organic Compounds

During historical activities and quarterly groundwater monitoring, five samples were collected from the Pond 6 Outfall (Drainage-B1) and two samples (SW-4.1 and SW-4.2) were collected along the western perimeter of the former Powerhouse building. VOCs were either not detected or were detected at concentrations below screening levels (Table 4-41).

4.4.4.2.5 Dioxins/Furans

During quarterly monitoring (July 2006 through September 2010), a total of 10 surface water samples were collected from Drainage-B1 (Pond 6 Outfall) and analyzed for dioxins/furans. In three samples, the 2,3,7,8-TCDD TEQ exceeded the WQO of 0.013 pg/L for humans/mammals. However, the three samples collected

Former Georgia-Pacific Wood Products Facility

since 2009 have been non-detect for 2,3,7,8-TCDD TEQ /L (Table 4-42). In some cases, concentrations of individual dioxin/furans in field duplicate samples differed significantly from concentrations in primary samples (Table 4-42); these results are qualified with a "J", indicating an estimated value. Note that these results led to some calculated 2,37,8-TCDD TEQs for duplicate samples that also differed by more than an order of magnitude from the 2,3,7,8-TCDD TEQs for their respective primary samples.

4.4.4.2.6 Summary of Findings

Historical and RI soil sample results indicate concentrations of TPH, PCBs, and VOCs in surface water are below WQOs and PSLs. Infrequent exceedances of WQOs have been observed for lead and mercury. PAHs have been below WQOs and PSLs with the exception of pyrene, which was detected above PSLs in March 2007. Dioxin concentrations exceed the WQO for surface water at the Pond 6 outfall until September 2009; no detectable dioxin concentration was found in samples collected after the March 4, 2009 sampling event.

4.4.4.3 Southern Ponds

During historical sampling activities, 11 surface water samples were collected from the Southern Ponds (including two samples each from Pond 1, Pond 2, and Pond 4, and five samples from Pond 3) and analyzed for metals. Analytical results for metals are discussed below.

4.4.4.3.1 Metals

During historical sampling activities, 11 surface water samples from Pond 1, Pond 2, Pond 3 and Pond 4 were analyzed for CAM-17 metals. Of the 17 metals analyzed, nine were not detected in any samples and eight were detected in one or more sample. Chromium and molybdenum were detected at concentrations exceeding WQOs (50 μ g/L for chromium and 10 μ g/L for lead). Both exceedances were detected in sample DP-7.9 collected in April 2006 (Table 4-37).

4.4.4.4 Ponds 5 and 9

During historical sampling activities, two surface water samples from Pond 5 and one surface water sample from Pond 9 were collected and analyzed for metals. For data evaluation purposes, surface water sample results from the Pond 5 and Pond 9 were compared with the NRAWQC for freshwater, as described in Section 4.3.4.

Former Georgia-Pacific Wood Products Facility

4.4.4.1 Metals

During historical and RI sampling activities, two surface water samples from Pond 5 and one surface water sample from Pond 9 were analyzed for metals. Of the 17 metals analyzed, nine were not detected and eight were detected in one or more sample. None of the detected metals were present at concentrations exceeding screening criteria. The detected metals were arsenic, barium, chromium, cobalt, copper, molybdenum, vanadium, and zinc (Table 4-27).

Summary Tables: Surface Water

Pond 8 Surface Water Data Summary												
					PSL	WQO						
Constituent	Range o	of Del	tections	Value	Number of Exceedances/ Number of Samples	Value	Number of Exceedances/ Number of Samples					
Metals - (µg/L)												
Cadmium	0.25	-	0.25	2	0/14	0.04	1/14					
Lead	0.14	-	1.5	3	0/14	0.2	1/14					
Mercury	0.099	-	0.099		0/14	0.05	1/14					
Polycyclic Aromatic Hydrocarbons - (µg/L)												
Benzo(a)anthracene	0.01	-	0.01	0.03	0/12	0.0044	1/12					
Benzo(b)fluoranthene	0.02	-	0.02	0.01	1/12	0.0044	1/12					
Benzo(g,h,i)perylene	0.04	-	0.04	0.01	1/12	NA	0/12					
Dibenz(a,h)anthracene	0.08	-	0.08	0.01	1/12	0.0044	1/12					
Indeno(1,2,3-cd)Pyrene	0.03	-	0.03	0.01	1/12	0.0044	1/12					
Pyrene	0.03	-	0.17	0.01	2/12	960	0/12					
USEPA B(a)P TEQ ⁴	0.086	-	0.086	0.01	0/12	0.0044	1/12					
Dioxins/Furans - (pg/L)												
2,3,7,8 TCDD TEQ	0.005		20		0/13	0.013	10/13					
(Human/Mammal) ⁷	0.005	-	2.9									
2,3,7,8 TCDD TEQ	0.000		2.5		0/42	0.012	0/12					
(Bird) ⁸	0.002	-	3.5		0/15	0.013	9/15					
(Fish) ⁹	0.002	-	2.2		0/13	0.013	9/13					
Total Petroleum Hydroca			RBSC	RWQCB								
Motor Oil C24-C36	0.24	-	0.24	31.3	0/11	0.175	1/11					

Footnotes:

4

8

Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Non-detects excluded.

⁷ Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for human/mammal. NDs excluded.

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for birds. NDs excluded.

⁹ Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for fish. NDs excluded.

Former Georgia-Pacific Wood Products Facility

North Pond and Ponds 6 and 7 Surface Water Data Summary										
					PSL	WQO				
Constituent	Range o	of De	tections	Value	Number of Exceedances/ Number of Samples	Value	Number of Exceedances/ Number of Samples			
Metals - (µg/L)										
Cadmium	0.071	-	0.25	2	0/15	0.04	2/15			
Lead	0.081	-	1.4	3	0/15	0.2	2/15			
Polycyclic Aromatic Hyd	rocarbons	- (µg	ı/L)							
Pyrene	0.008	-	0.03	0.01	1/8	960	0/8			
Dioxins/Furans - (pg/L)										
2,3,7,8 TCDD TEQ (Human/Mammal) ⁷	0.002	-	1.605		0/10	0.013	3/10			
2,3,7,8 TCDD TEQ (Bird) ⁸	0.001	-	6.5015		0/10	0.013	2/10			
(Fish) ⁹	0.001	-	1.8015		0/10	0.013	2/10			

Footnotes:

7

8

9

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for human/mammal. NDs excluded.

Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for birds. NDs excluded. Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for fish. NDs excluded.

4.5 Adequacy of Site Characterization

The site characterization was accomplished through an iterative and interactive process with DTSC beginning with the pond sediment investigation, and the evaluation of historical soil and groundwater data compared with conservative human health screening values. After concurrent Georgia-Pacific and DTSC review of the initial results of the soil and groundwater RI sampling conducted in October/November 2010, a step-out investigation was implemented to address specific data gaps. Two soil and groundwater step-out investigations were conducted in the fall and winter of 2010 that completed the investigations with specific exceptions that prompted a final phase of investigation in December 2010. The results of the December 2010 sampling were also compared with conservative human health screening values.

The sampling results were also compared with additional conservative ecological screening values (i.e., Eco-SSLs). The addition of the Eco-SSLs as screening levels affected the screening levels for antimony, lead, and zinc.

The historical and remedial investigation data, taken together, provide a comprehensive characterization of the nature and extent of impacts in OU-E. The soil, sediment, surface water, and groundwater data are judged to be complete for the purposes of evaluating potential risk under the current scenario. More extensive risk assessment will be performed in the BHHERA.

ARCADIS

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

5. Conclusions

Extensive soil, groundwater, sediment and surface water sampling efforts have been conducted in OU-E since 2004. Taken together, the historical and RI data provide a comprehensive characterization of the nature and extent of impacts in OU-E and are sufficient to evaluate risk in the forthcoming BHHERA. Conclusions regarding the nature and extent of impacts at the site are presented in the sections below, followed by a recommendation. Areas of concern based on exceedances of one or more conservative human health and ecological screening levels are summarized in Figure 5-1, and include all ponds and the low-lying terrestrial area north of Pond 8. The identified AOCs are general areas based on data representative of current conditions and compared to conservative screening levels. The areas shown on Figure 5-1 will be evaluated in the forthcoming BHHERA.

Note that additional pre-construction characterization may be appropriate in the future to finalize remediation areas prior to implementation of an approved Remedial Action Plan (RAP). A future soil management plan will address confirmation sampling.

5.1 Water Treatment and Truck Dump AOI

Historical and RI soil data indicate no detections of TPHg, TPHd, TPHmo, PCBs, VOCs, or dioxins/furans impacts to soil above screening levels. Localized concentrations of metals (antimony, arsenic, barium, chromium, copper, lead, mercury, molybdenum, and zinc) exceeding ecological PSLs were identified, with concentrations in two samples also exceeding human health PSLs (one arsenic, one lead) . PAHs were detected at concentrations greater than human health and ecological PSLs, primarily south and west of the former water treatment plant near sewer/drain lines, and east of the former fuel line excavation boundary. One sample collected west of the former truck dump and fuel oil pipeline excavation (OUE-DP-012) and one sample collected along the drain line south of the former Water Treatment Plant had TPHd concentrations that exceeded LGW screening levels. Areas with exceedances of one or more PSLs are included within the AOC boundary shown on Figure 5-1, and will be evaluated in the forthcoming BHHERA.

5.2 Sawmill #1 AOI

Historical and RI soil sample results indicate no detections of TPHg, TPHmo, PCBs, or VOCs above screening levels. There is a localized area under the east end of the former Sawmill #1 building where TPHd (leaching to groundwater only) and PAH concentrations were greater than screening levels. PAH exceedances the screening level were also detected along the drain line south of the Former Sawmill #1. Data also indicate exceedances of human health and ecological PSLs for lead, a single detection of arsenic above the human health PSL, and detections of antimony, arsenic, barium, copper, chromium, mercury, molybdenum, nickel, vanadium, and zinc above ecological PSLs. Areas with exceedances of one or more

Former Georgia-Pacific Wood Products Facility

PSLs are included within the AOC boundary shown on Figure 5-1, and will be evaluated in the forthcoming BHHERA.

5.3 Compressor House and Lath Building AOI

Historical and RI soil data indicate no detections of metals, TPHg, TPHmo, PCBs, and VOCs above screening levels. There are exceedances of the TPHd screening levels, largely the leaching to groundwater number. However, TPHd concentrations in downgradient monitoring wells are consistently below screening levels. PAH concentrations exceeding the respective screening levels are found primarily within the extent of the former Compressor House excavation. Areas with exceedances of one or more PSLs are included within the AOC boundary shown on Figure 5-1, and will be evaluated in the forthcoming BHHERA.

5.4 Powerhouse and Fuel Barn AOI

Historical and RI soil sample results indicate no detections of TPHg, TPHmo, TPHd, PCBs, and VOCs above screening levels. Lead concentrations in surface and subsurface soil in the proximity of the former Powerhouse building exceed ecological and human health PSLs, with the highest concentrations detected in subsurface soil east of the former Powerhouse building. Data also indicate detections of arsenic and barium above human health PSLs, and antimony, barium, cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, selenium, silver, vanadium, and zinc above ecological PSLs. Concentrations of dioxins/furans were also greater than human health and ecological PSLs were also detected in the AOI. PAH concentrations above screening levels are primarily located northwest of the former Fuel Barn, and in the proximity of the former dewatering slabs. Areas with exceedances of one or more PSLs are included within the AOC boundary shown on Figure 5-1, and will be evaluated in the forthcoming BHHERA.

5.5 Pond 8 Fill Area AOI

Historical and RI soil sample results indicate no detections of metals, TPHd, TPHmo, SVOCs, and VOCs are above screening levels. One soil sample exceeded the ecological PSL for zinc; however, metals concentrations in all remaining samples collected were below PSLs. This AOI is recommended for no further action.

5.6 Pond 8 AOI

Historical and RI sediment sample results for Pond 8 indicate concentrations of TPHg and TPHmo below PSLs. Metals, PCBs, PAHs, VOCs, dioxins/furans, pesticides, and TPHd were detected at concentrations greater than PSLs. Arsenic and lead were detected above human health screening levels. Additional data were collected from Pond 8 in 2012 and further sampling is anticipated as part of the BHHERA. Additional discussion of the magnitude, distribution, and risk associated with COIs in Pond 8 will be provided in the

Former Georgia-Pacific Wood Products Facility

BHHERA Report. Areas with exceedances of one or more PSLs are included within the AOC boundary shown on Figure 5-1, and will be evaluated in the forthcoming BHHERA.

5.7 Ponds 6, 7 and North Pond AOIs

Historical and RI sediment sample results for Ponds 6, 7 and the North Pond indicate no detections of TPHg, TPHmo, PCB, and VOCs above screening levels. Sediment samples from Pond 6 and Pond 7 contained concentrations of metals, PAHs and dioxins/furans above ecological and human health PSLs. Pond 6, Pond 7, and the North Pond are each identified as separate AOCs. Areas with exceedances of one or more PSLs are included within the AOC boundaries shown on Figure 5-1, and will be evaluated in the forthcoming BHHERA.

5.8 Southern Ponds AOI

Historical and RI sediment sample results for Ponds 1, 2 and 3 indicate no detections of TPHg, TPHd, TPHmo, PCB, and VOCs above screening levels. Dioxin and metals concentrations exceeding human health and ecological PSLs were detected in each pond. In general, sediment impacts in Ponds 1, 2, and 3 were greatest in surface sediment and decreased with depth.

Pond 4 contains minimal sediment; concentrations were comparable to the PSLs in the single sample where exceedances of sediment screening levels were observed.

Areas with exceedances of one or more PSLs are included within the AOC boundary shown on Figure 5-1, and will be evaluated in the forthcoming BHHERA.

5.9 Ponds 5 and 9 AOI

Ponds 5 and 9 did not receive wastewater from site operations. Some samples from Pond 5 contained copper, lead, and zinc elevated above background and ecological PSLs. Stormwater runoff is a potential source of metals for this pond. Pond 5 samples analyzed for PAHs and 2,3,7,8-TCDD contained concentrations above the human health PSL. Pond 9 samples contained concentrations of copper and molybdenum above background and thee ecological PSL; however, none of these concentrations exceeded human health PSLs. One sample from Pond 9 also had an acetone concentration greater than the ecological PSL; however, acetone is a common laboratory contaminant and not associated with the site operations. Areas with exceedances of one or more PSLs are included within the AOC boundary shown on Figure 5-1, and will be evaluated in the forthcoming BHHERA.

Former Georgia-Pacific Wood Products Facility

5.10 Groundwater and Surface Water

Groundwater and surface water from the ponds located in OU-E have also been sampled and analyzed for site COIs. No COIs have been detected in surface water samples above screening levels in recent sampling events (since 2007). COIs detected in groundwater samples collected from monitoring wells within OU-E are near or below screening levels. While some COIs were detected in grab groundwater samples at concentrations above screening levels, monitoring well samples are considered more representative of groundwater conditions. PAH concentrations are not currently above PSLs in groundwater samples collected from monitoring wells. Although arsenic and barium were detected above screening levels in monitoring wells samples, concentrations are below background levels and the presence of metals is likely the result of naturally reducing conditions that stem from the presence of organic material present at the site. Additional discussion of groundwater conditions at the site is discussed in the Monitored Natural Attenuation (MNA) technical memorandum and recent quarterly groundwater monitoring reports.

Former Georgia-Pacific Wood Products Facility

6. References

- Acton•Mickelson•Environmental, Inc. (AME). 2005a. Work Plan for Additional Site Assessment, Georgia-Pacific California Wood Products Manufacturing Facility, 90 West Redwood Avenue, Fort Bragg, California. Prepared for Georgia-Pacific Corporation. Project No. 16017.07. Acton•Mickelson•Environmental, Inc. June.
- AME. 2005b. Addendum #1 to Work Plan for Foundation Removal, Additional Investigation, and Interim Remedial Measures, Former Georgia-Pacific California Wood Products Manufacturing Facility, 90 West Redwood Avenue, Fort Bragg, California. Prepared for Georgia-Pacific Corporation. Acton•Mickelson•Environmental, Inc. May 6.
- AME. 2005c. Work Plan for Additional Site Assessment, Georgia-Pacific California Wood Products Manufacturing Facility, 90 West Redwood Avenue, Fort Bragg, California. Prepared for Georgia-Pacific Corporation. Project No. 16017.07. Acton•Mickelson•Environmental, Inc. June.
- AME. 2005d. Addendum #2 to Work Plan for Foundation Removal, Additional Investigation, and Interim Remedial Measures, Georgia-Pacific California Wood Products Manufacturing Facility, 90 West Redwood Avenue, Fort Bragg, California. Prepared for Georgia-Pacific Corporation. Project No. 16017.05. Acton•Mickelson•Environmental, Inc. August 19.
- AME. 2006a. Dioxin Sampling and Analysis Report, Georgia-Pacific California Wood Products Manufacturing Facility, 90 West Redwood Avenue, Fort Bragg, California. Project No. 16017.08. Acton•Mickelson•Environmental, Inc. July.
- AME. 2006b. Data Transmittal Report, Georgia-Pacific California Wood Products Manufacturing Facility, 90 West Redwood Avenue, Fort Bragg, California. Prepared for Georgia-Pacific Corporation. Prepared for Georgia-Pacific Corporation. Project No. 16017.08. Acton•Mickelson•Environmental, Inc. August 14.
- ARCADIS. 2008. Fuel Oil Line Removal Report, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. March.
- ARCADIS. 2009a. *Health and Safety Plan.* Former Georgia-Pacific Wood Products Facility. 90 West Redwood Avenue, Fort Bragg, California. Prepared for Georgia-Pacific LLC. March.
- ARCADIS. 2009b. Data Summary Report Operable Unit E Pond Sediment, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. May.

Former Georgia-Pacific Wood Products Facility

ARCADIS. 2010b. Interim Action Completion Report, Operable Units C and E, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. April. Revised October.

- ARCADIS. 2010c. Letter from Mr. Guy Chammas, MS, PG, CPSS, REA I, Senior Geologist, and Ms. Judy Nedoff, Principal Scientist, to Mr. Thomas P. Lanphar, Senior Hazardous Substances Scientist, California Environmental Protection Agency, Department of Toxic Substances Control, re: *Comprehensive Monitoring Plan (CMP) Update No. 3, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California.* Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. January 25.
- ARCADIS. 2010d. Site Investigation Work Plan Operable Unit E Upland, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS, U.S., Inc. May.
- ARCADIS. 2010e. Site Investigation Summary and Step-out Evaluation, Operable Unit E. Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. October.
- ARCADIS, 2010f. Personal Communication. Electronic mail from Ms. Liesbeth Magna, ARCADIS, U.S., Inc., to Mr. Thomas P. Lanphar, Senior Hazardous Substances Scientist, California Environmental Protection Agency, Department of Toxic Substances Control, re: OU-E Step-outs. Former Georgia-Pacific Wood Products Facility, 90 West Redwood Avenue, Fort Bragg, California. ARCADIS U.S., Inc., December 3.
- ARCADIS. 2010g. Site-Specific TPH Leaching Evaluation, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. February.
- ARCADIS. 2010h. Fourth Quarter 2009 Groundwater Monitoring Report, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. April.
- ARCADIS. 2010i. Background Screening Levels for Metals in Groundwater, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. January.
- ARCADIS. 2011b. *Mill Pond Complex Restoration Draft Conceptual Design, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California.* Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. May. Revised July.

Former Georgia-Pacific Wood Products Facility

- ARCADIS. 2011c. Environmentally Sensitive Habitat Areas Delineation Report, Former Georgia-Pacific Wood Products Facility, Fort Bragg California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. April.
- ARCADIS. 2011d. Fourth Quarter 2010 Groundwater Monitoring Report, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. May.
- ARCADIS. 2011e, Mill Pond Complex Restoration DRAFT Conceptual Design. *Former Georgia-Pacific Wood Products Facility, Fort Bragg, California*. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. June.
- ARCADIS. 2011g. Remedial Investigation Report, Operable Units C and D, Former Georgia-Pacific Wood Products Facility, Fort Bragg California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. April 2010. Revised March.
- ARCADIS. 2011h. Final Comprehensive Monitoring Plan Update No. 5 for the Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. October 20.
- ARCADIS, 2011i. Data Summary Report Additional Investigation Pond 8 Sediment, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. February.
- ARCADIS, 2012. *Mill Pond Storm Water Sampling Report, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California.* Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. April.
- ARCADIS BBL. 2007a. Construction Completion Report for Foundation and Ash Pile Removal Projects, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. April.
- ARCADIS BBL. 2007b. Preliminary Site Investigation Work Plan Operable Unit E Onsite Ponds. Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific, LLC. December. Revised May 2008.
- ARCADIS BBL. 2007c. Quality Assurance Project Plan. Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific, LLC. September. Revised March 2007 and September 2007.

Former Georgia-Pacific Wood Products Facility

- ARCADIS BBL. 2007d. Background Metals Report, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. August. Revised August 2007.
- ARCADIS BBL. 2008a. Site-Wide Risk Assessment Work Plan, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. October 2007. Revised May 2008.
- ARCADIS BBL. 2008b. Remedial Investigation Report, Operable Unit A, Coastal Trail and Parkland Zone, Former Georgia-Pacific Wood Products Facility, Fort Bragg California. Prepared for Georgia-Pacific LLC. ARCADIS U.S., Inc. October. Revised February 2008.
- BACE Geotechnical. 2004. Engineering Geologic Reconnaissance Report, Planned Blufftop Access Trail, Georgia-Pacific Property, Fort Bragg, California. Prepared for the City of Fort Bragg. Project No. 11886.1. BACE Geotechnical (a division of Brunsing Associates, Inc.). September.
- Blasland, Bouck & Lee, Inc. (BBL). 2006. *Current Conditions Report, Georgia-Pacific Wood Products Manufacturing Facility, Fort Bragg, California.* Prepared for Georgia-Pacific Corporation. Blasland, Bouck & Lee, Inc., an ARCADIS company. December.
- BBL Environmental Services (BBLES). 2007. *Health and Safety Plan. Former Georgia-Pacific Wood Products Manufacturing Facility, Fort Bragg, California.* BBL Environmental Services, an ARCADIS company. Revised July.
- Blackburn Consulting, Inc. 2006. Letter from Mr. Rick Sowers, PE, CEG, Senior Project Manager, and Mr. Tom Blackburn, GE, Principal, to Mr. John Mattey, Acton•Mickelson•Environmental, Inc., re: Geotechnical Evaluation, Bearing Support for Heavy Equipment Loads, Georgia-Pacific Mill Site, Fort Bragg, California. BCI File 924.1. Blackburn Consulting, Inc. February.
- Buchman, M.F. 2008. NOAA Screening Quick References Tables. NOAA HAZMAT Report 08-1, Seattle, WA, Coastal Protection and Restoration Division, National Oceanic Atmospheric Administration. Update 2008. Available at: http://response.restoration.noaa.gov/book_shelf/122_NEW-SQuiRTs.pdf. 1999. Revised 2008.
- California Environmental Protection Agency (CalEPA). 2005. Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties. California Environmental Protection Agency. January.

Former Georgia-Pacific Wood Products Facility

CalEPA. 2007. Chronic Reference Exposure Levels. Office of Environmental Health Hazard Assessment. Available at: http://www.oehha.ca.gov/air/chronic_rels/pdf/allchrels.pdf.

CalEPA. 2011. A Compilation of Water Quality Goals, 16th Edition. Available online at http://www.waterboards.ca.gov/water_issues/programs/ water_quality_goals/ind ex.shtml. California Environmental Protection Agency, State Water Resources Control Board. April.

California Coastal Commission (CCC). 2000. Statewide Interpretive Guidelines. Revised June 13, 2000. California Department of Water Resources. 1982. *Mendocino County Coastal Ground Water Study.* June.

California Department of Water Resources. 1982. Mendocino County Coastal Groundwater Study. June.

- Canadian Council of Ministers of the Environment (CCME). 2006. *Canadian Environmental Quality Guidelines for Residential Soil.* In: Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. Canadian Council of Ministers of the Environment, Winnipeg.
- City of Fort Bragg. 2012. Mill Site Specific Plan Preliminary Draft. Prepared by the Mill Site Coordinating Committee for the Fort Bragg City Council. January.
- City of Fort Bragg. 2004. *Environmental Assessment*. City of Fort Bragg Municipal Improvement District Number 1 Inflow and Infiltration Repair. Prepared by the City of Fort Bragg.
- Collins, J.N., E.D. Stein, M. Sutula, R. Clark, A.E. Fetscher, L. Grenier, C. Grosso, and A. Wiskind. 2008. California Rapid Assessment Method (CRAM) for Wetlands, v. 5.0.2. 157 pp. September.
- Central Valley Region Water Quality Control Board (CVRWQCB). 2004. Memo from Jon B. Marshack, D. Env., Staff Environmental Scientist, Program Support Unit, to Technical Staff and Other Interested Persons, re: *Beneficial Use–Protective Water Quality Limits for Components of Petroleum-Based Fuels*. California Regional Water Quality Control Board, Central Valley Region. April 1.
- CVRWQCB. 2007. A Compilation of Water Quality Goals. Available online at http://www.waterboards.ca.gov/centralvalley/water_issues/water_quality_standards_limits/ water_quality_goals/index.shtml. California Regional Water Quality Control Board, Central Valley Region. August.
- Department of Toxic Substances Control (DTSC). 2009a. *Remedial Goals for Dioxins and Dioxin-like Compounds for Consideration at California Hazardous Waste Sites.* HHRA Note 2. Available online at:

Former Georgia-Pacific Wood Products Facility

http://www.dtsc.ca.gov/

AssessingRisk/upload/HHRA_Note2_dioxin.pdf. California Environmental Protection Agency, Department of Toxic Substances Control. January.

- DTSC. 2009b. DTSC Recommended Methodology for Use of U.S. EPA Regional Screening Levels (RSLs) in Human Health Risk Assessment Process at Department of Defense Sites and Facilities. HHRA Note 3. Available online at: http://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-3.pdf. California Environmental Protection Agency, Department of Toxic Substances Control. May.
- DTSC. 2010c. Personal Communication. Electronic mail from Mr Thomas P. Lanphar, Senior Hazardous Substances Scientist, California Environmental Protection Agency, Department of Toxic Substances Control, to Ms. Liesbeth Magna, Project Scientist/Certified Project Manager, ARCADIS U.S., Inc., re: Comments on the OU-E Step-out Sampling, Former Georgia-Pacific Wood Products Facility, 90 West Redwood Avenue, Fort Bragg, California. California Environmental Protection Agency, Department of Toxic Substances Control. December 10.
- DTSC. 2010d. Personal Communication. Electronic mail from Mr Michael Wade, California Environmental Protection Agency, Department of Toxic Substances Control, to Ms. Liesbeth Magna, Project Scientist/Certified Project Manager, ARCADIS U.S., Inc., re: *November 2010 RSLs vs HERD Note 3 recommendations, Former Georgia-Pacific Wood Products Facility, 90 West Redwood Avenue, Fort Bragg, California*. California Environmental Protection Agency, Department of Toxic Substances Control. December 29.
- DTSC. 2010e. Letter from Mr. Thomas P. Lanphar, Senior Hazardous Substances Scientist, California Environmental Protection Agency, Department of Toxic Substances Control, to Ms.Bridgette DeShields, Vice President/Program Manager, ARCADIS. *Re:Georgia-Pacific's Response to DTSC Comments on the Revised Report on the Determination of Site-Specific PCDD/PCDF Ambient Soil Concentrations at a Former Sawmill, Fort Bragg, California.* June 9.
- DTSC. 2011b.Review of Operable Unit E Draft Remedial Investigation Report, May 2011, Former Georgia-Pacific Wood Products Facility, Fort Bragg, California. Mr. Thomas P. Lanphar, Senior Hazardous Substances Scientist, California Environmental Protection Agency, Department of Toxic Substances Control, to Ms. Julie Raming, Field Services Manager, Georgia-Pacific. July 27.
- Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten. 1997a. *Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision.* Prepared for the Oak Ridge Laboratory. November.

Former Georgia-Pacific Wood Products Facility

- Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten. 1997b. *Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision.* Prepared for the Oak Ridge Laboratory. November.
- Holland, R.F. 1986. Preliminary Descriptions of the Terrestrial Natural Communities of California. Prepared for the California Department of Fish and Game, Sacramento, California.
- MacDonald D.D., C.G. Ingersoll, and T.A. Berger, 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. *Arch. Environ. Contam. Toxicol.* Volume 39: 20-31.
- Natural Resources Conservation Service. 2002. Soil Survey for Mendocino County, California, Western Part.
- North Coast Region Water Quality Control Board (NCRWQCB). 2010. Letter from Mr. Craig Hunt, Water Resource Control Engineer, to Mr. Tom Lanphar, Senior Hazardous Substances Scientist, Brownfields and Environmental Restoration Program, Department of Toxic Substances Control, re: Water Quality Objectives Site: Georgia-Pacific Fort Bragg Sawmill, 90 West Redwood Ave, Fort Bragg, California. RWQCB Case No. 1NMC462. California Regional Water Quality Control Board, North Coast Region. March 2.
- Office of Environmental Health and Hazard Assessment (OEHHA). 2010. *Public Health Goals*. Available online at: http://www.oehha.ca.gov/water/phg/allphgs.html. California Office of Environmental Health and Hazard Assessment. December.
- Sholars, T. 2005a. *Botanical Field Survey of Some of the Bluff Areas at the GP Mills Site.* Prepared for Georgia-Pacific Corporation. June.
- Sholars, T. 2005b. *Late Season Botanical Survey for the GP Mill Site Bluffs*. Prepared for Georgia-Pacific Corporation. August.
- Suter, G.W. II and Tsao, C.L.. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. Prepared for the U.S. Department of Energy, Office of Environmental Management, Risk Assessment Program Health Sciences Research Division. June.
- TRC. 2004a. Phase I Environmental Site Assessment, Georgia-Pacific California Wood Products Manufacturing Division, 90 West Redwood Avenue, Fort Bragg, California. Prepared for Georgia-

Former Georgia-Pacific Wood Products Facility

Pacific Corporation, 133 Peachtree Street, NE, Atlanta, Georgia. Project No. 41-041901. TRC Companies, Inc. March.

- TRC. 2004b. Phase II Environmental Site Assessment, Georgia-Pacific, 90 West Redwood Avenue, Fort Bragg, California 95437. Prepared for Georgia-Pacific, 133 Peachtree Street, NE, Atlanta, Georgia. Project No. 41-041908. TRC Companies, Inc. May 14.
- TRC. 2004c. Letter from Mr. Mohammad Bazargani, P.E., Senior Associate, and Mr. Steve Kemnitz, Project Scientist, to Mr. Craig Hunt, California Regional Water Quality Control Board, North Coast Region, re: Work Plan for Additional Site Assessment, Georgia Pacific Former Sawmill, 90 West Redwood Avenue, Fort Bragg, California. TRC Companies, Inc. June 23.
- TRC. 2004d. Additional Site Assessment Report, Georgia Pacific Former Sawmill Site, 90 West Redwood Avenue, Fort Bragg, California. Prepared for Georgia-Pacific, 133 Peachtree Street, NE, Atlanta, Georgia. TRC Companies, Inc. October.
- TRC. 2004e. Letter from Mr. Mohammad Bazargani, P.E., Senior Associate, and Mr. Steve Kemnitz, Project Scientist, to Mr. Craig Hunt, California Regional Water Quality Control Board, North Coast Region, re: Groundwater Monitoring Report, Third Quarter 2004, Georgia Pacific Former Sawmill Site, 90 West Redwood Avenue, Fort Bragg, California. Project No. 41-0419-13. TRC Companies, Inc. November 3.
- USEPA. 2006. 2006 Edition of the Drinking Water Standards and Health Advisories. EPA 822-R-06-013. Available online at http://www.epa.gov/waterscience/criteria/drinking/dwstandards.pdf. U.S. Environmental Protection Agency, Office of Water. August.
- USEPA. 2007. Ecological Screening Levels (Eco-SSLs). Updated. U.S. Environmental Protection Agency, Available at: http://www.epa.gov/ecotox/ecossl/.
- USEPA. 2010. Regional Screening Levels for Chemical Contaminants at Superfund Sites. U.S. Environmental Protection Agency. November. Available online at http://www.epa.gov/region09/superfund/prg/.
- WRA Environmental Consultants (WRA). 2005a. Biological Assessment, Georgia Pacific Fort Bragg Sawmill Factory, Fort Bragg, Mendocino County, California. Prepared for Georgia Pacific, Atlanta, Georgia.
 WRA Environmental Consultants, Inc. November. Species lists updated 2007.
- WRA. 2005b. Assessment of Environmentally Sensitive Habitat Areas (ESHAs), Former Georgia-Pacific Fort Bragg Sawmill, Fort Bragg, Mendocino County, California. Prepared for Georgia-Pacific, Atlanta, Georgia. WRA Environmental Consultants. December.

Final Remedial Investigation Report Operable Unit E

Former Georgia-Pacific Wood Products Facility

WRA, Inc. 2009. Delineation of Potential Section 404 Jurisdictional Wetlands and Waters. Former Georgia-Pacific Fort Bragg Wood Products Facility, Fort Bragg, Mendocino County, California. Prepared for Georgia-Pacific, LLC. September.

Tables

Notes for Tables 4-1 through 4-43

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility Fort Bragg, California

Bold indicates detected concentrations.

Footnotes:	
1	Sum of concentrations reported for gasoline carbon ranges C6-C8 and C8-C10.
2	Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C24.
3	Sum of 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene and pyrene.
4	Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Non- detects excluded.
5	Sum of m,p-Xylene and o-Xylene
6	Total PCB congener concentration is twice the sum of detected PCB congeners.
7	Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for human/mammal. NDs excluded.
8	Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for birds. NDs excluded.
9	Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for fish. NDs excluded.
10	Sum of 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene and phenanthrene.
11	Sum of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene,

dibenz(a,h)anthracene, fluoranthene, indeno(1.2,3-cd)pyrene and pyrene.

Acronyms and Abbreviations:

[] , < / X/X after result #	Field duplicate value OR exceeds the criteria shown; metals data are flagged as exceeding preferred screening level(s) only if they also exceed background. Brackets are also used to enclose the type(s) of screening value(s) exceeded for a particular result. not available, not measured, not analyzed, not applicable, or not established Sample result is less than the indicated method detection limit. denotes the distinction between lab qualifier and data validation qualifier Data qualifiers. The first was added by the laboratory and the second by ARCADIS during data validation. If there is only a laboratory qualifier, it is shown without a slash after (e.g., J). If there is only a validation qualifier, it is shown after the slash (e.g., /UB). Continuing Calibration Verification (CCV) drift outside QC limits; average CCV drift within QC limits per method requirements
ali	aliphatic
AOI	area of interest
aro	aromatic
B(a)P	Benzo(a)pyrene
bgs	below ground surface
Bkgd	background
bss	below sediment surface
DDD	dichlorodiphenyldichloroethane
DDE	dichlorodiphenyldichloroethylene
DDT	dichlorodiphenyltrichloroethane
есо	ecological
ft	foot or feet
GW	groundwater
HH	human health
HMW	high molecular weight
HpCDD	heptachlorodibenzo- <i>p</i> -dioxin
HpCDF	heptachlorodibenzofuran
HxCDD	hexachlorodibenzo- <i>p</i> -dioxin
HxCDF	hexachlorodibenzofuran
LGW	leaching to groundwater
LMW	Iow molecular weight
mg/kg	milligram(s) per kilogram
mg/L	milligram(s) per liter
MSB	Marine sediment / Bedrock
MTBE	Methyl tertiary butyl ether
NA	not available; not applicable
ND	not detected
OCDD	octachlorodibenzo- <i>p</i> -dioxin

Notes for Tables 4-1 through 4-43

OCDF	octachlorodibenzofuran
PAH	polycyclic aromatic hydrocarbons
PCB	polychlorinated biphenyl
PCDD	polychlorinated dibenzo- <i>p</i> -dioxin
PCDF	polychlorinated dibenzofuran
PeCDD	pentachlorodibenzofuran
PeCDF	pentachlorodibenzofuran
Pg/g	picogram(s) per gram
pg/L	picogram(s) per liter
PSL	Preferred Screening Level
RBSC RBSC-aro RBSC-ali RWQCB	Risk based screening criteria for TPH fractions. Risk-based screening concentration for the aromatic fraction of TPH Risk-based screening concentration for the aliphatic fraction of TPH North Coast Regional Water Quality Control Board taste and odor thresholds; TPHd value is based on taste and odor threshold (CVRWQCB, 2004; TPHg and TPHmo values are based on MRL because actual thresholds are less than this; all this is in accordance with an NCRWQCB (2008) request.
SVOC	semivolatile organic compound
TCDD	tetrachlorodibenzo- <i>p</i> -dioxin
TCDF	tetrachlorodibenzofuran
TEQ	Toxic equivalent
Total Diesel	Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C24
Total Gasoline	Sum of concentrations reported for gasoline carbon ranges C6-C8 and C8-C10
TPH	Total Petroleum Hydrocarbons
TPHd	Total Petroleum Hydrocarbons as diesel
TPHg	Total Petroleum Hydrocarbons as gasoline
TPHmo	Total Petroleum Hydrocarbons as motor oil
μg/L	microgram(s) per liter
USEPA	United States Environmental Protection Agency
VOC	volatile organic compound
WHO	World Health Organization
WQO	Regional Water Quality Control Board Water Quality Objective
Data Qualifiers (Labo	ratory and Validation):
B b	Analyte is present in method blank Prepped/analyzed past hold time Presence confirmed, but relative percent difference (RPD) between columns exceeds 40% (Lab: Curtis & Tempking)
C	Result from analysis of a diluted sample
D	Analyte confirmation on secondary column
F	Resembles the quantitated fuel, but also contains a significant portion of heavier hydrocarbons
J	The MRL/MDL has been elevated due to a chromatographic interference
J	Indicates that the associated numerical value is an estimated concentration
L	Resembles the quantitated fuel, but also contains a significant portion of lighter hydrocarbons.
M	The duplicate injection precision was not met
MDL	Method Detection Limit
MRL	Method Reporting Limit
ND	Not detected
P	The relative percent difference is greater than 40% between two analytical results (Lab:Columbia Analytical)
R	The result is unusable. The analyte may or may not be present in the sample.
RPD	Relative Percent Difference
U	Not detected at or above the indicated MDL
UB	Not detected at or above the indicated MDL due to laboratory blank contamination
UJ	Not detected at or above the indicated MRL, which may be elevated due to associated quality control deficiencies
Y	Does not resemble the requested standard
YZ	Quantitation based only on a single peak or peaks

Location ID	Sample Date	Metals	PCBs	Dioxins/Furans	SVOCs	vocs	трнց	TPHd/mo	PAHs	Pesticides	Chlorophenols	Alkylated PAHs	Forensic TPH
MW-3.14	11-Oct-07	٠				•	•	٠					
	13-Dec-07	•				•	•	٠					
	26-Mar-08	٠				•	•	٠					
	4-Jun-08	٠				•	•	٠					
	23-Sep-08	٠				•	•	٠					
	11-Dec-08	٠				•	•	٠					
	5-Mar-09	٠				•	•	٠					
	10-Jun-09	•				•	•	٠					
	17-Sep-09	•				•	•	•					
	17-Mar-10	٠				•	•	٠					
	22-Sep-10	٠				•	•	٠					
MW-4.1	28-Jan-04					•		٠					
	23-Jun-04					•		٠					
	23-Sep-04	٠			•	٠	•	٠	•	٠			
	8-Dec-04	•			•	•	•	٠	•	•			
	30-Mar-05	٠			•	•	•	٠	•	•			
	12-May-05	٠	•		•	•	•	٠	•				
	18-Aug-05	٠	•		•	•	•	٠	•				
	10-Nov-05	٠	•		•	•	•	٠	•				
	7-Mar-06	٠	•		•	•	•	٠	•				
	22-May-06	٠	•		•	•	•	٠	•				
	6-Sep-06	٠	•		٠	٠	•	٠	•				
	5-Dec-06	٠	•		•	•	•	٠	•				
	6-Mar-07	٠	٠	٠	٠	٠	•	٠	•		٠		
	13-Jun-07	٠	•	•	•	•	•	٠	•		٠		
	5-Sep-07	٠		•			•	٠	•				
	11-Dec-07	٠		•			•	٠	•				
	26-Mar-08	٠											
	23-Sep-08	•											
	5-Mar-09	٠											
	17-Sep-09	•											
	9-Dec-09	•											
	17-Mar-10	•											
	22-Sep-10	•											
MW-4.2	28-Jan-04					•		٠					
	23-Jun-04					•		•					

Location ID	Sample Date	Metals	PCBs	Dioxins/Furans	SVOCS	vocs	трнд	TPHd/mo	PAHs	Pesticides	Chlorophenols	Alkylated PAHs	Forensic TPH
MW-4.2	23-Sep-04	•			•	•	•	•	•	•			
	8-Dec-04	•			•	•	•	٠	•	•			
	30-Mar-05	•				•	•	٠	•	٠			
	12-May-05	•	•		•	•	•	٠	•				
	18-Aug-05	•	•		•	•	•	٠	•				
	10-Nov-05	•	•		•	•	•	٠	•				
	7-Mar-06	•	•		•	•	•	٠	•				
	22-May-06	•	•		•	•	•	•	•				
	6-Sep-06	•	•		•	•	•	•	•				
	5-Dec-06	•	•		•	•	•	•	•				
	6-Mar-07	•	•		•	•	•	•	•		•		
	13-Jun-07	•	•		•	•	•	•	•		•		
	5-Sep-07	•		•			•	٠	•				
	11-Dec-07	•		•			•	•	•				
MW-4.3	28-Jan-04					•		•					
	24-Jun-04					•		٠					
	30-Mar-05	•			•	•	•	٠	•	•			
	12-May-05	•	•		•	•	•	•	•				
	17-Aug-05	•	•		•	•	•	٠	•				
	10-Nov-05	•	•		•	•	•	٠	•				
	7-Mar-06	•	•		•	•	•	•	•				
	22-May-06	•	•		•	•	•	٠	•				
	6-Sep-06	•	•		•	•	•	٠	•				
	5-Dec-06	•	•		•	•	•	•	•				
	6-Mar-07	•	•	•	•	•	•	٠	•		•		
MW-4.3R	10-Oct-07	•		•			•	•	•				
	11-Dec-07	•		•			•	•	•				
	26-Mar-08	•					•	•	•				
	4-Jun-08	•					•	•	•				
	23-Sep-08	•					•	٠	•				
	11-Dec-08	•					•	•	•				
MW-4.4	28-Jan-04					•		•					
	24-Jun-04					•		•					
	23-Sep-04	•			•	•	•	•	•	•			
	8-Dec-04	•			•	•	•	•	•	•			
	30-Mar-05	•			•	•	•	٠	•	٠			

Location ID	Sample Date	Metals	PCBs	Dioxins/Furans	svocs	vocs	трнд	TPHd/mo	PAHs	Pesticides	Chlorophenols	Alkylated PAHs	Forensic TPH
MW-4.4 cont.	12-May-05	•	•		•	•	•	•	•				
	17-Aug-05	•	•		•	•	•	٠	•				
	10-Nov-05	•	•		•	•	•	•	•				
	7-Mar-06	•	•		•	•	•	•	•				
	22-May-06	•	•		•	•	•	٠	•				
	6-Sep-06	•	•		•	•	•	•					
	7-Sep-06								•				
	5-Dec-06	•	•		•	•	•	•	•				
	6-Mar-07	•	•		•	•	•	•	•		•		
	13-Jun-07	•	•		•	•	٠	٠	•		•		
	5-Sep-07	•		•			٠	٠	•				
	11-Dec-07	•		•			•	•	•				
	5-Mar-08												
	10-Dec-09												
	17-Mar-10						•	٠					
	15-Jun-10						٠	٠					
	22-Sep-10						٠	٠					
	14-Dec-10						٠	٠					
MW-4.5	10-Oct-07	•	•	•	٠	•	٠	٠	•				
	11-Dec-07	•	•	•	•	•	٠	٠	•				
	25-Mar-08	٠	•		•	•	٠	٠	•				
	4-Jun-08	٠	•		٠	•	٠	٠	•				
	24-Sep-08	٠	•		•	•	٠	٠	•				
	11-Dec-08	•	•		•	•	٠	٠	•				
	5-Mar-09	•					٠	٠	•				
	17-Sep-09	•					٠	٠	•				
	18-Mar-10	•					•	•	•				
	22-Sep-10	•					٠	•	•				
MW-4.6	10-Oct-07	•	•	•	•	•	٠	•	•				
	11-Dec-07	•	•	٠	•	•	٠	•	•				
	25-Mar-08	•	•		•	•	•	•	•				
	4-Jun-08	•	•		•	•	•	•	•				
	24-Sep-08	•	•		•	•	•	•	•				

Location ID	Sample Date	Metals	PCBs	Dioxins/Furans	SVOCS	vocs	трнд	TPHd/mo	PAHs	Pesticides	Chlorophenols	Alkylated PAHs	Forensic TPH
MW-4.6 cont.	11-Dec-08	•	•		٠	٠	•	٠	٠				
	5-Mar-09	•					•	•	•				
	17-Sep-09	•					•	٠	٠				
	18-Mar-10	•					•	٠	٠				
	22-Sep-10	•					•	•	•				
MW-5.16	11-Dec-09	•				•	•	٠	٠				
	18-Mar-10	•				•	•	•	٠				
	16-Jun-10	•				•	•	٠	٠				
	22-Sep-10	٠				•	•	٠	٠				
	14-Dec-10	•				•	•	٠	٠			•	•
MW-5.7	29-Jan-04							٠					
	24-Jun-04							٠					
	23-Sep-04	•			•	•	•	٠	٠	٠			
	9-Dec-04	•			•	•	•	٠	٠	٠			
	30-Mar-05	٠			٠	٠	•	٠	٠	٠			
	11-May-05	٠	•		•	٠	•	٠	٠				
	17-Aug-05	•	٠		•	٠	•	٠	٠				
	9-Nov-05	٠	•		•	٠	•	٠	٠				
	7-Mar-06	•	•		•	•	•	٠	٠				
	22-May-06	•	•		•	•	•	٠	٠				
	6-Sep-06	٠	•		•	٠	•	٠	٠				
	5-Dec-06	٠	•		٠	٠	•	٠	٠				
	6-Mar-07	•	•		•	•	•	٠	٠		٠		
	13-Jun-07	•	•		•	٠	•	٠	٠		٠		
	5-Sep-07	•				•	•	٠	٠				
	12-Dec-07	•			•	٠	•	٠	٠				
	25-Mar-08	٠											
	4-Jun-08	٠											
	24-Sep-08	٠											
	12-Dec-08	٠											
	5-Mar-09	•											
	10-Jun-09	•											
	16-Sep-09	•											
	8-Dec-09	•											
	19-Mar-10	•											
	16-Jun-10	•											

Location ID	Sample Date	Metals	PCBs	Dioxins/Furans	svocs	vocs	трнд	TPHd/mo	PAHs	Pesticides	Chlorophenols	Alkylated PAHs	Forensic TPH
MW-5.7 cont.	23-Sep-10	٠											
	14-Dec-10	•											
MW-5.8	30-Jan-04							٠					
	24-Jun-04							٠					
	23-Sep-04	•			•	•	•	•	•	•			
	9-Dec-04	٠			•	•	•	٠	•	•			
	30-Mar-05	٠			•	•	•	٠	•	•			
	11-May-05	٠	٠		•	•	•	٠	•				
	17-Aug-05	•	•		•	•	•	•	•				
	9-Nov-05	٠	٠		•	•	•	٠	•				
	7-Mar-06	٠	٠		•	•	•	٠	•				
	22-May-06	٠	٠		٠	•	•	٠	•				
	6-Sep-06	٠	٠		•	•	•	٠					
	7-Sep-06								•				
	5-Dec-06	٠	٠		•	•	•	٠	•				
	7-Mar-07	٠	٠		•	•	•	٠	•		•		
	13-Jun-07	٠	٠		•	•	•	٠	•		•		
	5-Sep-07	٠				•	•	٠	•				
	12-Dec-07	•			•	•	•	٠	•				
MW-5.9	28-Jan-04							•					
	24-Jun-04							٠					
	23-Sep-04	•			•	•	•	٠	•	•			
	8-Dec-04	•			•	•	•	•	•	•			
	30-Mar-05	٠			•	•	•	٠	•	٠			
	12-May-05	٠	٠		•	•	•	٠	•				
	18-Aug-05	•	•		•	•	•	•	•				
	10-Nov-05	•	•		•	•	•	•	•				
	7-Mar-06	•	•		•	•	•	•	•				
	22-May-06	•	•		•	•	•	•	•				
	6-Sep-06	•	•		•	•	•	•	•				
	5-Dec-06	•	•		•	•	•	•	•				
	6-Mar-07	•	•	•	•	•	•	•	•		•		
	13-Jun-07	•	•		•	•	•	•	•		•		
	6-Sep-07	•	•		•	•	•	•	•				
	12-Dec-07	•	•		•	•	•	•	•				

Location ID	Sample Date	Metals	PCBs	Dioxins/Furans	SVOCS	vocs	трнց	TPHd/mo	PAHs	Pesticides	Chlorophenols	Alkylated PAHs	Forensic TPH
GRAB Groundwater													
DP-5.54	5-Oct-05					•		•	•				
DP-5.55	5-Oct-05					•		•	•				
DP-5.56	5-Oct-05					•		•	•				
DP-5.59	20-Oct-05	٠				٠		٠	•				
HSA-4.1	23-Jan-06	•						•	•				
HSA-4.2	25-Jan-06					•		•	•				
HSA-4.3	25-Jan-06					•		•	•				
HSA-4.4	23-Jan-06	•				•	•	•	•				
HSA-4.5	23-Jan-06	•				•	•	•	•				
HSA-4.6	23-Jan-06	•				•	•	•	•				
HSA-6.29	18-Jan-06	•				•		•	•				
HSA-6.30	19-Jan-06	•				•		•	•				
OUE-DP-001	28-Jun-10	•			•	•		•	•				
OUE-DP-002	28-Jun-10	•			•	•		•	•				
OUE-DP-003	30-Jun-10	•			•	•		•	•				
OUE-DP-004	30-Jun-10	•			•	•		•	•				
OUE-DP-018	23-Jun-10	•			•	•		•	•				
OUE-DP-024	23-Jun-10	•						•	•				
OUE-DP-025	6-Nov-10							•	•			٠	•
OUE-DP-026	29-Jun-10	•			•	•		•	•				
OUE-DP-027	25-Jun-10	•			٠	•		•	•				
OUE-DP-028	23-Jun-10	•			•	•		•	•				
OUE-DP-032	29-Jun-10	•			٠	•		•	•				
OUE-DP-033	30-Jun-10	•			•	•		•	•				
OUE-DP-034	26-Jun-10	•			٠	•		•	•				
OUE-DP-035	26-Jun-10	•			•	•		•	•				
OUE-DP-036 (shallow)	25-Jun-10	•			•	•		•	•				
OUE-DP-037 (Deep)	23-Jun-10	•			•	•		•	•				
OUE-DP-037 (Shallow)	23-Jun-10	•			٠	•		•	•				
OUE-DP-038 (Deep)	23-Jun-10	•			•	•		•	•				
OUE-DP-038 (Shallow)	24-Jun-10	•			٠	•		•	•				
OUE-DP-039 (Deep)	24-Jun-10	•			•	•		•	•				
OUE-DP-039 (Shallow)	23-Jun-10	•			•	•		•	•				
OUE-DP-040 (Deep)	25-Jun-10	•						•	•				
OUE-DP-040 (Shallow)	23-Jun-10	•						•	•				

Location ID	Sample Date	Metals	PCBs	Dioxins/Furans	SVOCS	vocs	трнд	TPHd/mo	PAHs	Pesticides	Chlorophenols	Alkylated PAHs	Forensic TPH
OUE-DP-046	23-Jun-10	٠			•	•		٠	•				
OUE-DP-054	28-Jun-10							٠					
OUE-DP-055	28-Jun-10							٠					
OUE-DP-056	28-Jun-10							٠					
OUE-DP-057 (Deep)	24-Jun-10	٠			•	•		٠	•				
OUE-DP-057 (Shallow)	25-Jun-10	٠			•	•		٠	•				
OUE-DP-064	6-Nov-10							٠	•				
OUE-DP-065	6-Nov-10							٠	٠				
OUE-DP-066	6-Nov-10							•	•				
OUE-DP-084	6-Nov-10								•				
OUE-DP-085	6-Nov-10								•				
OUE-DP-094	16-Dec-10							•				•	•
OUE-DP-099	16-Dec-10							•				•	•
OUE-DP-100	16-Dec-10							٠				•	•
OUE-DP-102	16-Dec-10							٠				•	•
OUE-HA-012	25-Jun-10	•						٠	•				
OUE-HA-013 (Deep)	24-Jun-10	•				•		٠	•				
OUE-HA-013 (Shallow)	24-Jun-10	•				•		٠	•				
OUE-HA-015	25-Jun-10	•						•	•				
OUE-HA-016	25-Jun-10	•						٠	•				
OUE-HA-017	25-Jun-10	•						٠	•				
OUE-HA-018	25-Jun-10	•						•	•				
OUE-HA-020	24-Jun-10	•			•	•		٠	•				
OUE-HA-022	23-Jun-10	•			•	•		٠	•				
OUE-HA-023A	29-Jun-10	•			•	•		•	•				
OUE-HA-023B	29-Jun-10	•			•	•		•	•				
OUE-HA-024	30-Jun-10	•			•	•		•	•				
P3-46	18-Mar-03						•	•					
P3-47	17-Mar-03						٠	•					
P4-15	19-Mar-03	•			•		•	•					
P4-16	20-Mar-03	•			•		•	•					
P4-18	28-Mar-03				•		•	•					
P4-20	28-Mar-03				•		•	•					
P5-1	24-Mar-03				•		•	•					
P5-2	24-Mar-03				•		•	•					
P5-4	24-Mar-03				•		٠	٠					

Location ID	Sample	Start Depth	End Depth	Excavation Status ^a	Exposure	Aetais	lexavalent Chromium	CBs)ioxins/Furans	svocs	OCS	6Hd.	om/bHd.	AHs	PH (Wet DI)	Vikylated PAHs	orensic TPH
Water Treatment an	d Truck Dun		(11.590)	otatuo	0	2	<u> </u>	<u> </u>		0)	>			<u> </u>	-	٩	<u> </u>
FL-CS-027	7/11/07	5.0	5.5	Not Excavated	EU-1								•	•			
HA-4.122	8/23/06	6.0	6.5	Not Excavated	EU-1								•				
HA-4.124	8/23/06	5.0	5.5	Not Excavated	EU-1								•				
HA-4.126	8/23/06	5.0	5.5	Not Excavated	EU-1								٠				
HA-4.127	8/23/06	5.5	6.0	Not Excavated	EU-1								٠				
HA-4.128	8/23/06	6.0	6.5	Not Excavated	EU-1								•				
HA-4.129	8/23/06	7.5	8.0	Not Excavated	EU-1								•				
HA-4.131	8/23/06	7.0	7.5	Not Excavated	EU-1								٠				<u> </u>
HA-4.132	8/23/06	5.5	6.0	Not Excavated	EU-1								•			<u> </u>	
HA-4.136	8/23/06	6.0	6.5	Not Excavated	EU-1								•				
HA-4.137	8/8/06	2.3	2.8	Not Excavated	EU-1	•				•	•		•				-
HA-4.138	8/8/06	7.3	7.8	Not Excavated	EU-1	•				•	•		•				-
HA-4.139	8/8/06	0.2	0.7	Not Excavated	EU-1	•				•	•		•				
ΗΑ-4.140 ΗΔ-4.141	8/8/06	1.0	1.5	Not Excavated	EU-1						•		•				-
HA-4 142	8/8/06	1.1	22	Not Excavated	EU-1	•				•	•		•				-
HA-4 143	6/29/06	0.5	1.0	Not Excavated	EU-1						•		•				-
HA-4.149	8/7/06	0.0	0.5	Not Excavated	EU-1	•											
HA-4.150	8/7/06	0.0	0.5	Not Excavated	EU-1	•											
HA-4.160	8/8/06	2.7	3.2	Not Excavated	EU-1	٠				•	•		•				
HSA-4.1	1/23/06	2.0	2.5	Not Excavated	EU-1	٠				•			٠				
	1/23/06	4.0	4.5	Not Excavated	EU-1	•				•			٠				
OUA-TP-028	4/18/07	0.0	0.4	Not Excavated	EU-1	•		•					•	•			
OUE-DP-003	6/24/10	0.0	1.0	Not Excavated	EU-1	٠				•			•	•			
	6/24/10	1.0	2.0	Not Excavated	EU-1	•				•	•		•	•			
	6/24/10	4.0	5.0	Not Excavated	FU-1	•				•	•		•	•			
	6/29/10	4.0	7.0	Not Excavated						-	-		-	-			
OUE-DF-005	6/29/10	5.0	5.5	Not Excavated	EU-1	•											-
OUE-DP-007	6/29/10	0.5	1.0	Not Excavated	EU-1	•											-
OUE-DP-009	6/29/10	6.0	6.5	Not Excavated	FU-1	•		•		•							
	6/29/10	6.5	7.5	Not Excavated	FU-1	•				•	•						
OUE-DP-010	6/29/10	6.0	6.5	Not Excavated	FU-1	•		•		•							-
OOL DI OIO	6/29/10	6.5	7.5	Not Excavated	EU 1												-
	6/20/10	0.3 5.0	7.5 5.5	Not Excavated	EU-1	•				-	-						-
OOL-DF-011	6/20/10	5.0	5.5	Not Excavated	EU-1												-
	6/29/10	5.6	6.5	Not Excavated	EU-1	•				•	•						
00E-DP-058	11/6/10	1.0	2.0	Not Excavated	EU-1	•					•			•			
	11/6/10	5.0	6.0	Not Excavated	EU-1	•					•			•			
	11/6/10	6.0	7.0	Not Excavated	EU-1	•					•			•			
OUE-DP-061	10/27/10	0.0	0.5	Not Excavated	EU-1	•											
	10/27/10	0.5	1.5	Not Excavated	EU-1	•											
OUE-DP-062	10/27/10	0.0	0.5	Not Excavated	EU-1	٠											
	10/27/10	0.5	1.5	Not Excavated	EU-1	•											
OUE-DP-063	10/27/10	0.0	0.5	Not Excavated	EU-1	٠											
	10/27/10	0.5	1.0	Not Excavated	EU-1	•											
OUE-HA-001abcd	6/25/10	0.0	0.5	Not Excavated	 FU-1	•							•	•			
OUE-HA-002abcd	6/25/10	0.0	0.5	Not Excavated	EU-1	•							•	•			
P4-11	3/28/03	0.0	0.5	Not Excavated	EU-1	•					•	•	•				
P4-12	3/28/03	0.0	0.5	Not Excavated	EU-1	•					•	•	•				
P4-13	3/20/03	0.0	0.5	Not Excavated	EU-1	•				•		•	•				
P4-14	3/20/03	0.0	0.5	Not Excavated	EU-1	•		•		•		•	•				

Location ID	Sample Date	Start Depth (ft bgs)	End Depth (ft bgs)	Excavation Status ^a	Exposure Unit	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	SVOCS	vocs	ТРНд	TPHd/mo	PAHs	TPH (Wet DI)	Alkylated PAHs	Forensic TPH
P4-15	3/19/03	1.2	1.7	Not Excavated	EU-1	٠				•		•	•				
P4-16	3/20/03	2.3	2.8	Not Excavated	EU-1	•		•		•		•	•				
P4-17	3/28/03	0.0	0.5	Not Excavated	EU-1					•		•	٠				
P4-18	3/28/03	0.0	0.5	Not Excavated	EU-1					•		•	٠			<u> </u>	
P4-19	3/28/03	0.0	0.5	Not Excavated	EU-1					•		•	•			<u> </u>	
P4-33	3/11/03	0.0	0.5	Not Excavated	EU-1			•								<u> </u>	
P4-PH3	7/21/04	0.0	0.5	Not Excavated	EU-1								•			<u> </u>	
	7/21/04	7.5	8.0	Not Excavated	EU-1								•				
P4-PH4	7/21/04	2.0	2.5	Not Excavated	EU-1								•				
	7/21/04	9.0	9.5	Not Excavated	EU-1								•				
FL-CS-001	6/19/07	2.0	2.5	Not Excavated	EU-2								•	•			
FL-CS-002	6/19/07	2.5	3.0	Not Excavated	EU-2								•	•			
FL-CS-003	6/19/07	2.5	3.0	Not Excavated	EU-2								•	•			
FL-CS-004	6/19/07	2.5	3.0	Not Excavated	EU-2								•	•			
FL-CS-005	6/19/07	2.5	3.0	Not Excavated	EU-2								•	•			
FL-CS-006	6/19/07	2.5	3.0	Not Excavated	EU-2								•	•			
FL-CS-007	6/19/07	6.0	6.5	Not Excavated	EU-2								•	•			
FL-CS-008	6/20/07	2.5	3.0	Not Excavated	EU-2								٠	٠			
FL-CS-009	6/20/07	2.5	3.0	Not Excavated	EU-2								٠	•			
FL-CS-010	6/20/07	2.5	3.0	Not Excavated	EU-2								٠	•			
FL-CS-013	6/22/07	6.5	7.0	Not Excavated	EU-2								•	٠			
FL-CS-014	6/22/07	6.5	7.0	Not Excavated	EU-2								•	٠			
FL-CS-015	6/22/07	6.5	7.0	Not Excavated	EU-2								٠	٠			
FL-CS-016	6/22/07	5.5	6.0	Not Excavated	EU-2								٠	٠			
FL-CS-017	7/11/07	4.0	4.5	Not Excavated	EU-2								٠	٠			
FL-CS-018	7/11/07	4.0	4.5	Not Excavated	EU-2								٠	•			
FL-CS-019	7/11/07	3.5	4.0	Not Excavated	EU-2								٠	•			
FL-CS-020	7/11/07	3.5	4.0	Not Excavated	EU-2								٠	•			
FL-CS-021	7/11/07	3.5	4.0	Not Excavated	EU-2								٠	٠			
FL-CS-022	7/11/07	3.0	3.5	Not Excavated	EU-2								٠	•			
FL-CS-023	7/11/07	4.5	5.5	Not Excavated	EU-2								٠	٠			
FL-CS-024	7/11/07	4.5	5.5	Not Excavated	EU-2								٠	٠			
FL-CS-025	7/11/07	4.5	5.5	Not Excavated	EU-2								٠	•			
FL-CS-026	7/11/07	5.0	5.5	Not Excavated	EU-2								٠	•			
FL-CS-028	8/10/07	3.5	4.0	Not Excavated	EU-2								٠	•			
FL-CS-029	8/10/07	5.0	5.5	Not Excavated	EU-2								•	•			
FL-CS-030	8/10/07	4.5	5.0	Not Excavated	EU-2								•	•			
FL-CS-031	8/10/07	4.5	5.0	Not Excavated	EU-2								٠	•			
HA-4.42	7/11/06	0.5	1.0	Not Excavated	EU-2						•		٠				
HA-4.43	7/11/06	0.1	0.6	Not Excavated	EU-2						•		٠			<u> </u>	
HA-4.46	7/11/06	0.5	1.0	EXCAVATED	EU-2						•		•			<u> </u>	
HA-4.114	7/11/06	0.5	1.0	EXCAVATED	EU-2								•			<u> </u>	
HA-4.119	6/28/06	0.5	1.0	Not Excavated	EU-2						•		•			<u> </u>	
HA-4.120	6/29/06	0.5	1.0	EXCAVATED	EU-2						•		•			<u> </u>	
HA-4.130	8/23/06	7.0	1.4	Not Excavated	EU-2		-		-				•				
HA-4.135	8/23/06	6.5	1.0	Not Excavated	EU-2								•				
	12/16/03	2.5	3.0	Not Excavated	EU-2						•		•				
00E-DP-001	6/24/10	0.0	1.0	Not Excavated	EU-2	•			-	•			•	•			
	6/24/10	1.0	2.0	NOT EXCAVATED	EU-2	•			-	•	•		•	•			
	6/24/10	4.0	5.0	Not Excavated	EU-2	•				•	•		•	•			
OUE-DP-002	6/24/10	0.0	1.0	Not Excavated	EU-2	•				•			•	٠			
	6/24/10	1.0	2.0	Not Excavated	EU-2	•				•	•		•	•			
1	6/24/10	4.0	5.0	Not Excavated	ELL-2	•				•	•		•	•			

OUE-DP-004 6(23)10 1 Not Excavated EU-2 Image: State of the state	Location ID	Sample Date	Start Depth (ft bgs)	End Depth (ft bgs)	Excavation Status ^a	Exposure Unit	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	SVOCs	VOCs	трнց	TPHd/mo	PAHs	TPH (Wet DI)	Alkylated PAHs	Forensic TPH
Bergaria Image: Application of the second of t	OUE-DP-004	6/23/10	0	1	Not Excavated	EU-2	•				•			•	٠			
00E-DP-08 6/23/10 3 4 Not Excavated EU-2 • • •		6/23/10	1	2	Not Excavated	EU-2	٠				•	٠		•	•	•		
OUE-DP-008 6/29/10 5.5 6 Not Excavated EU-2 • <		6/23/10	3	4	Not Excavated	EU-2	•				•	•		•	٠		•	•
OUE-DP-012 OUE-DP-013 OUE-DP-014 OUE-DP-015 OUE-DP-016 OU27/10 O.0 S.N ot Excavated EU-2 OUE-DP-016 OU27/10 O.0 S.N ot Excavated EU-2 OUE-DP-016 OUE-DP-016 OU27/10 O.0 S.N ot Excavated EU-	OUE-DP-008	6/29/10	5.5	6	Not Excavated	EU-2	•										<u> </u>	
OUE-DP-013 6/22/10 16.3 14.3 Not Excavated EU-2 Image: Constraint of the constraint o	00E-DP-012	6/22/10	9	9.5		EU-2	•		•								<u> </u>	
OUC-DP-013 OUC-DP-013 OUC-DP-011 OUC-DP-		6/22/10	13.5	14.5	Not Excavated	EU-2								•	•	•	Ŀ	•
OUE-DP-069 11.8'10 2.0 3.0 Not Excavaled EU-2 •	00E-DP-013	6/22/10	5 10.5	0 11	Not Excavated	EU-2	•		•	•				•	•		<u> </u>	
111/6/10 5.0 6.0 Not Excavated EU-2 •<	OUE-DP-059	11/6/10	2.0	3.0	Not Excavated	EU-2 FU-2	•					•			•			
11/6/10 6.5 7.5 Not Excavated EU-2 Image: Constraint of the second of the se	002 21 000	11/6/10	5.0	6.0	Not Excavated	EU-2	•					•			•			
OUE-DP-060 11/6/10 2.03 3.0 Not Excavated EU-2 •		11/6/10	6.5	7.5	Not Excavated	EU-2	•					•			•			
ODE-DP-080 110010 E.0 Not Excavated EU-2 Image: Content of the second of the		11/6/10	2.0	3.0	Not Excavated	EU 2 FU-2	•					•			•			
11/0/10 2.00 Not No	002 01 000	11/6/10	5.0	6.0	Not Excavated	FU-2	•					•			•			
OUE-DP-064 10/2710 0.0 0.5 Not Excavated EU-2 0		11/6/10	7.0	8.0	Not Excavated	EU-2	•								•			
OCE DF OCH 10/27/10 0.5 1.5 Not Excavated EU-2 Image: Content of the second of the seco		10/27/10	0.0	0.0	Not Excavated	EU-2	-					-		•	•			
Holz / 10 3.0 4.0 Not Excavated EU-2 Image: Constraint of the constrated is constraint of the constraint of the constrai	002 01 001	10/27/10	0.5	1.5	Not Excavated	EU 2								•	•			
OUE-DP-065 10/27/10 0.0 0.5 Not Excavated EU-2 Image: Constraint of the constratent of the constraint o		10/27/10	3.0	4.0	Not Excavated	FU-2								•	•			
10/27/10 0.5 1.5 Not Excavated EU-2 Image: Constraint of the second consecond conseconsecond constraint of the second constraint of the se	OUE-DP-065	10/27/10	0.0	0.5	Not Excavated	EU-2								•	•			
10/27/10 3.0 4.0 Not Excavated EU-2 Image: Constraint of the second of the s		10/27/10	0.5	1.5	Not Excavated	EU-2								•	•			
OUE-DP-066 10/27/10 0.0 0.5 Not Excavated EU-2 Image: Constraint of the second of the s		10/27/10	3.0	4.0	Not Excavated	EU-2								•	•			
10/27/10 0.5 1.5 Not Excavated EU-2 Image: Constraint of the second of the s	OUE-DP-066	10/27/10	0.0	0.5	Not Excavated	EU-2								٠	٠			
10/27/10 3.0 4.0 Not Excavated EU-2 Image: Constraint of the second of the s		10/27/10	0.5	1.5	Not Excavated	EU-2								٠	٠			
ODE-DP-083 11/3/10 0.0 0.7 Not Excavated EU-2 Image: Constraint of the constrated constraint of the con		10/27/10	3.0	4.0	Not Excavated	EU-2								•	٠			
11/3/10 5.0 5.5 Not Excavated EU-2 Image: Constraint of the constr	OUE-DP-083	11/3/10	0.0	0.7	Not Excavated	EU-2								•			<u> </u>	
11/3/10 8.5 9.0 Not Excavated EU-2 Image: Constraint of the second of the se		11/3/10	5.0	5.5	Not Excavated	EU-2								•				<u> </u>
OUE-DP-084 11/3/10 0.0 1.0 Not Excavated EU-2 Image: Constraint of the state of the stat		11/3/10	8.5	9.0	Not Excavated	EU-2								•				
11/3/10 2.5 3.5 Not Excavated EU-2 Image: Constraint of the second constreas and consecond constraint of the second constraint of the seco	OUE-DP-084	11/3/10	0.0	1.0	Not Excavated	EU-2									•			<u> </u>
11/3/10 6.5 7.5 Not Excavated EU-2 Image: Constraint of the second of the se		11/3/10	2.5	3.5	Not Excavated	EU-2									•		<u> </u>	
11/3/10 8.5 9.5 Not Excavated EU-2 Image: Constraint of the second constresecond consecond constraint of the second constraint of the seco		11/3/10	6.5	7.5	Not Excavated	EU-2									•			<u> </u>
OUE-DP-005 11/3/10 0.0 1.0 Not Excavated EU-2 0		11/3/10	8.5	9.5	Not Excavated	EU-2									•		<u> </u>	
Initial Initial <t< td=""><td>002-01-000</td><td>11/3/10</td><td>2.5</td><td>3.5</td><td>Not Excavated</td><td>EU-2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td></t<>	002-01-000	11/3/10	2.5	3.5	Not Excavated	EU-2									•			
11/3/10 8.5 9.0 Not Excavated EU-2 Image: Constraint of the second constresecond consecond constraint of the second constraint of the seco		11/3/10	6.5	7.5	Not Excavated	EU-2									•			
OUE-DP-091 11/5/10 6.0 7.0 Not Excavated EU-2 Image: Constraint of the state of the stat		11/3/10	85	9.0	Not Excavated	FU-2									•			
OUE-DP-092 11/5/10 5.5 6.0 Not Excavated EU-2 Image: Constraint of the constraint of	OUF-DP-091	11/5/10	6.0	7.0	Not Excavated	EU 2 FU-2								•	•			
OUE-DP-099 12/14/10 0.0 0.5 Not Excavated EU-2 Image: Constraint of the state of the sta	OUE-DP-092	11/5/10	5.5	6.0	Not Excavated	EU-2								•	٠			
12/14/10 0.5 1.5 Not Excavated EU-2 Image: Constraint of the state	OUE-DP-099	12/14/10	0.0	0.5	Not Excavated	EU-2									•			
12/14/10 2.5 3.5 Not Excavated EU-2 Image: Constraint of the state o		12/14/10	0.5	1.5	Not Excavated	EU-2									٠			
OUE-DP-100 12/14/10 0.0 0.5 Not Excavated EU-2 Image: Constraint of the state of the sta		12/14/10	2.5	3.5	Not Excavated	EU-2									•			
12/14/10 0.5 1.5 Not Excavated EU-2 Image: Constraint of the second sec	OUE-DP-100	12/14/10	0.0	0.5	Not Excavated	EU-2									•			<u> </u>
P4-20 3/28/03 0.0 0.5 Not Excavated EU-2 • <		12/14/10	0.5	1.5	Not Excavated	EU-2									•		<u> </u>	
DP-ROAD-4.3 10/24/05 1.0 1.5 EXCAVATED EU-2 •	P4-20	3/28/03	0.0	0.5	Not Excavated	EU-2					•		•	•				
FL-CS-011 6/22/07 6.5 7.0 EXCAVATED EU-2 • <	DP-ROAD-4.3	10/24/05	1.0	1.5	EXCAVATED	EU-2	•		•		•	•		•				
FL-CS-012 6/22/07 6.5 7.0 EXCAVATED EU-2 • <	FL-CS-011	6/22/07	6.5	7.0	EXCAVATED	EU-2								•	•			
HA-4.44 7/11/06 0.5 1.0 EXCAVATED EU-2 • <th< td=""><td>FL-CS-012</td><td>6/22/07</td><td>6.5</td><td>7.0</td><td>EXCAVATED</td><td>EU-2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td></td><td></td><td></td></th<>	FL-CS-012	6/22/07	6.5	7.0	EXCAVATED	EU-2								•	•			
HA-4.45 7/11/06 0.5 1.0 EXCAVATED EU-2 • • HA-4.47 7/11/06 0.5 1.0 EXCAVATED EU-2 • • • HA-4.48 7/11/06 0.5 1.0 EXCAVATED EU-2 • • •	HA-4.44	7/11/06	0.5	1.0	EXCAVATED	EU-2						•		•				
HA-4.4/ 1/11/06 0.5 1.0 EXCAVATED EU-2 •	HA-4.45	7/11/06	0.5	1.0	EXCAVATED	EU-2						•		•				
	ΠΑ-4.47 ΗΔ-4.48	7/11/06	0.5	1.0	EXCAVATED	EU-2 FU-2	-		-		-	ŀ.		•	_		-	

Table 4-2Soil Sampling and Analysis Summary

							alent Chromium		s/Furans				mo		Vet DI)	ted PAHs	sic TPH
	Sample	Start Depth	End Depth	Excavation	Exposure	tals	(av	Bs	xin	ö	S	후	Þ	Чs	S	yla	ens
Location ID	Date	(ft bgs)	(ft bgs)	Status ^a	Unit	Met	Ê	DC L	Dio	Š	Š	Ē	E I	PAI	ΤÞ	AK	For
HA-4.121	6/29/06	0.5	1.0	EXCAVATED	EU-2		_	_	_		•		•				
HA-4.144	6/29/06	0.5	1.0	EXCAVATED	EU-2						•		•				
HA-4.155	7/11/06	0.5	1.0	EXCAVATED	EU-2						•		•				
Sawmill #1 AOI								_				_					
DP-3.48	9/22/05	1.0	1.5	Not Excavated	EU-1					•							
	9/22/05	5.0	5.5	Not Excavated	EU-1					•							
OUE-DP-014	6/29/10	1.5	2.0	Not Excavated	EU-1	•											
P5-1	3/24/03	11.5	12.0	Not Excavated	EU-1					•		•	•				
DP-5.54	10/5/05	1.0	1.5	Not Excavated	EU-2	•					•		•				<u> </u>
	10/5/05	5.0	5.5	Not Excavated	EU-2	•					•		•				
	10/5/05	10.0	10.5	Not Excavated	EU-2	•					•		•				
DP-5.55	10/5/05	1.0	1.5	Not Excavated	EU-2	٠					•		•				
DP-5.56	10/5/05	1.0	1.5	Not Excavated	EU-2	٠					•		•				
	10/5/05	1.5	2.0	Not Excavated	EU-2	•							•				
DP-5.57	10/20/05	0.5	1.0	Not Excavated	EU-2	•				•	•		•				<u> </u>
DP-ROAD-4.1	10/24/05	1.0	1.5	Not Excavated	EU-2	•		•		•	•		•				
DP-ROAD-4.2	10/24/05	1.0	1.5	Not Excavated	EU-2	•		•		•	•		•				
HA-4.33	7/12/06	2.7	3.2	Not Excavated	EU-2					•	•		•				
HA-4.30	7/12/06	2.7	3.2	Not Excavated	EU-2												-
ΗΔ-4.37	7/12/06	2.2	27	Not Excavated	EU-2					•	•		•				
HA-4 39	7/12/06	3.0	3.5	Not Excavated	EU 2					•	•		•				-
HA-4.40	7/12/06	2.3	2.8	Not Excavated	EU 2					•	•		•				-
HA-4.41	7/12/06	3.0	3.5	Not Excavated	EU-2					•	•		•				
HA-4.49	8/1/06	4.5	5.0	Not Excavated	EU-2						•		•				
HA-4.50	8/1/06	4.0	4.5	Not Excavated	EU-2						•		•	-			
HA-4.51	8/1/06	4.0	4.5	Not Excavated	EU-2						•		•				
HA-4.52	8/1/06	2.5	3.0	Not Excavated	EU-2						•		•				
HA-4.53	8/1/06	5.0	5.5	Not Excavated	EU-2						•		•				
HA-4.54	8/1/06	9.0	9.5	Not Excavated	EU-2						•		•				
HA-4.55	8/1/06	4.0	4.5	Not Excavated	EU-2						•		•				
HA-4.56	8/1/06	3.5	4.0	Not Excavated	EU-2						•		•				
HA-5.84	7/20/06	3.0	3.5	Not Excavated	EU-2					•	•		•				
HA-5.85	7/20/06	3.0	3.5	Not Excavated	EU-2					•	•		•				
HA-5.86	7/12/06	2.7	3.2	Not Excavated	EU-2					•	•		•				<u> </u>
HA-5.87	7/20/06	3.0	3.5	Not Excavated	EU-2					•	•		•				
HA-5.88	7/20/06	3.0	3.5	Not Excavated	EU-2					•	•		•				
HA-5.09	7/20/06	2.5	3.0	Not Excavated	EU-2												-
HA-5.90	7/20/06	3.0	3.5	Not Excavated	EU-2					•	•		•				
MW-4.4	12/16/03	5.6	7.1	Not Excavated	EU 2 FU-2						•		•				-
MW-5.7	12/15/03	4.5	6.0	Not Excavated	EU-2						•		•				
OUE-CAP-024	6/21/10	0	0.5	Not Excavated	EU-2						•						
OUE-DP-015	6/29/10	7.5	8	Not Excavated	EU-2	•											
OUE-DP-016	6/29/10	2	2.5	Not Excavated	EU-2	٠											
OUE-DP-017	6/29/10	1	1.5	Not Excavated	EU-2	•											
OUE-DP-018	6/22/10	5	6	Not Excavated	EU-2	•				•			•	٠			
	6/25/10	6	7	Not Excavated	EU-2	•					•		•	•			
	6/22/10	8	9	Not Excavated	FU-2	•					•		•				
	6/21/10	2	25	Not Excavated	FU-2	•								•	•		
50L-DI-013	6/21/10	2 F	£.5	Net Excavated	EU 2								<u> </u>				
	6/21/10	5	6	Not Excavated	EU-2	•							•				

Location ID	Sample	Start Depth	End Depth	Excavation Status ^a	Exposure Unit	Aetals	lexavalent Chromium	CBs	Dioxins/Furans	svocs	/ocs	BHd.	-PHd/mo	AHs	'PH (Wet DI)	Vikylated PAHs	orensic TPH
OUE-DP-020	6/21/10	5	5.5	Not Excavated	EU-2	•	-			0,			•	<u>u</u>		-	-
	6/21/10	5.5	6.5	Not Excavated	EU-2	•							٠				
OUE-DP-021	6/22/10	3	4	Not Excavated	EU-2	•							•		•		
OUE-DP-022	6/29/10	3.5	4	Not Excavated	EU-2	•							•				
	6/29/10	4	5	Not Excavated	EU-2	•							•				
OUE-DP-023	6/29/10	1.5	2	Not Excavated	EU-2	٠							٠			•	•
	6/29/10	2	2.7	Not Excavated	EU-2	٠							٠				
OUE-DP-024	6/22/10	2	2.5	Not Excavated	EU-2	•							•	•	•		
	11/4/10	3.5	4.0	Not Excavated	EU-2			•						•			
	6/22/10	5	6	Not Excavated	EU-2	•		_					•	•	-		
00E-DP-025	0/22/10	1.5	2	Not Excavated	EU-2			•					•		•		
	6/22/10	3.2	3.1 E	Not Excavated	EU-2	•							-	•			
	0/22/10	4	5	Not Excavated	EU-2	•							•	•	•		
	F 1/4/10	0.0	7.0	Not Excavated	EU-2								-	•			
00E-DF-020	6/25/10	05	0.5	Not Excavated	EU-2 FU-2	•				•	•		•	•			
	6/25/10	2	3.5	Not Excavated	EU-2	•				•	•		•	•		•	•
OUE-DP-028	6/21/10	0	0.5	Not Excavated	EU-2	•				•			•	٠			
	6/21/10	0.5	1.5	Not Excavated	EU-2	٠				•	٠		٠	٠			
OUE-DP-030	6/21/10	0	0.5	Not Excavated	EU-2	•							٠	٠			
	6/21/10	0.5	1.5	Not Excavated	EU-2	•					•		•	٠			
OUE-DP-031	6/21/10	0	0.5	Not Excavated	EU-2	•							•	•			
OUE-DP-068	12/12/10	3.0	3.5	Not Excavated	EU-2 FU-2	•							•	•		-	-
002 21 000	12/12/10	3.5	4.5	Not Excavated	EU-2	•											
OUE-DP-069	12/12/10	4.0	4.5	Not Excavated	EU-2	•											
	12/12/10	4.5	5.5	Not Excavated	EU-2	•											
OUE-DP-070	12/21/10	1.2	1.7	Not Excavated	EU-2	•											
	12/12/10	2.5	3.0	Not Excavated	EU-2	•											
	12/12/10	3.0	4.0	Not Excavated	EU-2	•											
OUE-DP-071	11/4/10	2.2	2.7	Not Excavated	EU-2	•								•			
	11/3/10	3.0	3.5	Not Excavated	EU-2	•								٠			
	11/3/10	5.5	6.5	Not Excavated	EU-2	•								•			
OUE-DP-072	11/4/10	2.5	3.0	Not Excavated	EU-2	•								٠			
	11/4/10	3.5	4.0	Not Excavated	EU-2	•								•			
OUE-DP-073	11/4/10	0.5	1.5	Not Excavated	EU-2									•			
	11/4/10	2.0	3.0	Not Excavated	EU-2									•			
	11/4/10	3.0	4.0	Not Excavated	EU-2									•			
OUE-DP-074	11/4/10	0.5	1.5	Not Excavated	EU-2									•			
	11/4/10	2.0	3.0	Not Excavated	EU-2									٠			
	11/4/10	3.0	4.0	Not Excavated	EU-2									•			
OUE-DP-075	11/4/10	0.5	1.5	Not Excavated	EU-2									•			
	11/4/10	2.0	3.0	Not Excavated	EU-2									•			
	11/4/10	3.0	4.0	Not Excavated	EU-2									•			
OUE-HA-003	6/21/10	0.0	0.5	Not Excavated	EU-2	•											
	6/21/10	0.5	1.5	Not Excavated	EU-2	•											
OUE-HA-027	6/22/10	0.0	0.5	Not Excavated	EU-2	•							•				
-	6/22/10	0.5	1.5	Not Excavated	EU-2	•							•				

Location ID	Sample Date	Start Depth (ft bqs)	End Depth (ft bqs)	Excavation Status ^a	Exposure Unit	Metals	Hexavalent Chromium	cBs	Dioxins/Furans	svocs	/ocs	грнд	rPHd/mo	sHAc	rph (wet DI)	Alkylated PAHs	⁻ orensic TPH
OUE-HA-028	6/21/10	0.0	0.5	Not Excavated	EU-2	•	-				-			-			_
	6/21/10	0.5	1.5	Not Excavated	EU-2	•											
OUE-T5-3	11/4/10	3.0	3.5	Not Excavated	EU-2								٠		•		
P4-21	3/20/03	2.0	2.5	Not Excavated	EU-2					•		٠	٠				
	3/20/03	4.5	5.0	Not Excavated	EU-2								•				
P4-22	3/20/03	2.0	2.5	Not Excavated	EU-2			•				٠	٠				
P4-23	3/28/03	0.0	0.5	Not Excavated	EU-2			•		•	•	٠	٠				
P4-24	3/28/03	0.0	0.5	Not Excavated	EU-2			•		•	•	•	•				
P4-32	3/11/03	0.0	0.5	Not Excavated	EU-2			•								<u> </u>	
P5-2	3/24/03	0.5	1.0	Not Excavated	EU-2					•		•	•			<u> </u>	
	3/24/03	4.5	5.0	Not Excavated	EU-2								•				
P5-3	3/24/03	3.3	3.8	Not Excavated	EU-2					•		•	•			<u> </u>	
SAWMILL	12/17/03	0.0	0.5	Not Excavated	EU-2	•		•		•	•		•				
Compressor House	and Lath Bu		1 5	Not Executed	E U 4												
DP-5.65	6/5/06	1.0	1.5	Not Excavated	EU-1								•				
DP-5.66	6/5/06	1.0	1.5	Not Excavated	EU-1								•				-
51 0.00	6/5/06	1.0	1.5	EXCAVATED	EU-1								•				
DB-5.67	6/5/06	1.0	1.5	Not Excavated	EU-1								•				
DP-5.68	6/5/06	1.0	1.5	EXCAVATED	EU-1								•				_
DP-5.69	6/5/06	1.0	1.5	EXCAVATED	EU 1								•				
DP-5.70	6/5/06	1.0	1.5	EXCAVATED	EU-1								•				
HA-5.73	8/7/06	1.0	1.5	Not Excavated	EU-1								•				
HA-5.74	8/2/06	2.0	2.5	Not Excavated	EU-1								٠				
HA-5.75	8/2/06	1.0	1.5	EXCAVATED	EU-1								٠				
HA-5.76	8/2/06	1.0	1.5	EXCAVATED	EU-1								•				
HA-5.77	8/2/06	1.5	2.0	EXCAVATED	EU-1								•				
HA-5.78	8/2/06	1.5	2.0	EXCAVATED	EU-1								•			<u> </u>	
HA-5.79	8/7/06	3.0	3.5	EXCAVATED	EU-1								•			<u> </u>	
HA-5.80	8/2/06	1.5	2.0	EXCAVATED	EU-1								•				
HA-5.82	8/2/06	3.0 1.5	2.0	EXCAVATED	EU-1								•				_
HA-5.83	8/2/06	1.5	2.0	EXCAVATED	EU 1								•				
MW-3.14	9/29/07	0.0	0.5	Not Excavated	EU-1	•				•	•	•	•	•			
	9/29/07	5.5	6.0	Not Excavated	EU-1	•				•	•	•	•	•			
OUC-HA-020	5/5/08	0.0	0.5	Not Excavated	EU-1	•											
OUC-HA-051	11/24/09	0.0	0.5	Not Excavated	EU-1								٠	•			
	11/24/09	4.0	5.0	Not Excavated	EU-1								•	•			
OUC-HA-052	11/24/09	0.0	0.5	Not Excavated	EU-1								•	•			
	11/24/09	4.0	5.0	Not Excavated	EU-1								•	•			
OUC-HA-053	11/24/09	0.0	0.5	Not Excavated	EU-1								•	•			
	11/24/09	4.0	5.0	Not Excavated	EU-1								•	•			
OUC-TP-001	7/10/08	7.0	7.5	Not Excavated	EU-1								•	•			
OUE-DP-032	6/25/10	0.0	0.5	Not Excavated	EU-1	•				•			•	•			
	6/25/10	0.5	1.7	Not Excavated	EU-1	•				•	•		•	•			
	6/25/10	20	35	Not Excavated	FU-1	•				•	•		•	•			
OUE-DP-033	6/29/10	0.0	0.5	Not Excavated	EU-1	•				•			•	•	•	•	•
	6/20/10	0.0	1.5	Not Excavated										-			-
	0/20/10	0.5	1.0							-	Ē		-	-			
	6/29/10	4.0	5.0	NOT Excavated	EU-1	•				•	•		•	•			

Location ID	Sample Date	Start Depth (ft bqs)	End Depth (ft bqs)	Excavation Status ^a	Exposure Unit	Metals	Hexavalent Chromium	cBs	Dioxins/Furans	svocs	/ocs	ГРНд	rPHd/mo	sHAc	rph (Wet DI)	Alkylated PAHs	⁻ orensic TPH
OUE-DP-034	6/25/10	0.0	1.0	Not Excavated	EU-1	•	-			•	-		•	•			-
	6/25/10	1.0	2.0	Not Excavated	EU-1	•				•	•		•	•			
	6/25/10	3.0	4.5	Not Excavated	EU-1								•	•			
	6/25/10	0.0	4.5	Not Excavated	EU-1						-		•	•		-	•
00E-DF-035	6/25/10	0.0	0.5	Not Excavated	EU-1	•							•	•		L.	-
	0/25/10	0.5	1.5		EU-1	•				· ·	•		•	•		<u> </u>	
	6/25/10	3.0	4.5	Not Excavated	EU-1	•				•	•		•	•			
OUE-DP-067	11/4/10	2.0	3.0	Not Excavated	EU-1									•		<u> </u>	
	11/4/10	4.0	5.0	Not Excavated	EU-1									•			
OUE-HA-004	6/22/10	0.0	0.5	Not Excavated	EU-1			•									
OUE-HA-005	6/22/10	0.0	0.5	Not Excavated	EU-1			•								<u> </u>	
OUE-HA-006	6/22/10	0.0	0.5	Not Excavated	EU-1			•								<u> </u>	
OUE-HA-007	6/22/10	0.0	0.5	Not Excavated	EU-1			•								<u> </u>	
OUE-HA-008	6/22/10	0.0	0.5	Not Excavated	EU-1			•								<u> </u>	
OUE-HA-009	6/22/10	0.0	0.5		EU-1			•					•			<u> </u>	
F 3-40	3/16/03	0.5	1.0	EXCAVATED	EU-I												
D0 47	3/18/03	4.0	4.5	EXCAVATED	EU-1			•				•	•			<u> </u>	
P3-47	3/17/03	0.5	1.0	EXCAVATED	EU-1			•				•	•			<u> </u>	
_	3/17/03	4.0	4.5	EXCAVATED	EU-1			•				•	•				
P3-48	3/11/03	0.0	0.5	Not Excavated	EU-1			•								<u> </u>	
P3-PH6	7/21/04	2.5	3.0	EXCAVATED	EU-1								•		•	<u> </u>	
	7/21/04	6.0	6.5	Not Excavated	EU-1								•				
P3-PH16	7/21/04	4.0	4.5	EXCAVATED	EU-1								•		•		
R37-CS-001	6/10/08	9.0	9.5	Not Excavated	EU-1								•	•		<u> </u>	
R37-CS-002	6/10/08	7.0	7.5	Not Excavated	EU-1								•	•		<u> </u>	
R37-CS-008	6/21/08	12.0	12.5	Not Excavated	EU-1								•			<u> </u>	
R37-C3-009	6/23/08	0.0 7.0	0.5	Not Excavated									•	•		<u> </u>	
R37-CS-011	6/23/08	7.0	7.5	Not Excavated	EU-1								•	•			
R37-CS-012	6/24/08	7.5	8.0	Not Excavated	EU-1								•	•			
R37-CS-013	6/24/08	9.5	10.0	Not Excavated	 FU-1								•	•			
R37-CS-014	6/24/08	8.5	9.0	Not Excavated	EU-1								•	•			
R37-CS-015	6/24/08	7.0	7.5	Not Excavated	EU-1								٠				
R37-CS-016	6/24/08	8.5	9.0	Not Excavated	EU-1								٠				
R37-CS-017	7/10/08	9.0	9.5	Not Excavated	EU-1								٠	٠			
R37-CS-018	7/10/08	7.5	8.0	Not Excavated	EU-1								٠	٠			
R37-CS-019	7/11/08	8.0	8.5	Not Excavated	EU-1								•				
R37-CS-020	7/12/08	12.0	12.5	Not Excavated	EU-1								•				
R37-CS-021	7/14/08	12.0	12.5	Not Excavated	EU-1								•			<u> </u>	
R37-CS-022	7/14/08	10.0	10.5	Not Excavated	EU-1								•			<u> </u>	
R37-03-023	7/14/08	10.0	10.5	Not Excavated	EU-1 EII 4								•				
	1/21/08	9.0	9.5		EU-1	•							•				
000-114-001	1/10/00	3.5	4.0														
	4/10/00	0.0	4.0														
000-HA-002	4/10/08	0.0	0.5		EU-1	-											
	5/2/08	0.5	1.5	EXCAVATED	EU-1	•											
	5/2/08	1.5	2.5	EXCAVATED	EU-1	•											
	4/16/08	3.5	4.0	EXCAVATED	EU-1	•											

							omium.										
							alent Chi		s/Furans				om		Vet DI)	ted PAHs	sic TPH
Location ID	Sample Date	Start Depth (ft bgs)	End Depth (ft bas)	Excavation Status ^a	Exposure Unit	Netals	lexav	CBs	Dioxin	SVOC	/ocs	[PHg	[PHd/	AHs	LPH (V	Alkyla	-oren:
OUC-HA-003	4/16/08	0.0	0.5	EXCAVATED	EU-1	•	-			0,	-					~	-
	5/2/08	0.5	1.5	EXCAVATED	EU-1	•											
	5/2/08	1.5	2.5	EXCAVATED	FU-1	•											
	4/16/08	35	4.0		EU-1	•											-
	4/10/08	0.0	4.0		EU-1	•											-
000-11A-004	5/2/08	0.0	1.5		EU-1												-
	3/2/08	0.5	1.5	EXCAVATED	EU-1	-											
	4/18/08	2.5	3.0	EXCAVATED	EU-1	•											-
OUC-HA-005	4/18/08	0.0	0.5	EXCAVATED	EU-1	•											-
	4/18/08	1.0	1.5	EXCAVATED	EU-1	•											
OUC-HA-006	4/18/08	0.0	0.5	EXCAVATED	EU-1	•											-
	4/18/08	2.0	2.5	EXCAVATED	EU-1	•											
OUC-HA-007	4/17/08	0.0	0.5	EXCAVATED	EU-1	•											-
	4/17/08	4.0	4.5	EXCAVATED	EU-1	•											
OUC-HA-008	4/17/08	0.0	0.5	EXCAVATED	EU-1	•											-
	4/17/08	3.5	4.0	EXCAVATED	EU-1	•											
OUC-HA-009	4/18/08	0.0	0.5	EXCAVATED	EU-1	•											
	4/18/08	1.5	2.0	EXCAVATED	EU-1	٠											
OUC-HA-010	4/17/08	0.0	0.5	EXCAVATED	EU-1	•											
	4/18/08	2.5	3.0	EXCAVATED	EU-1	•											
OUC-HA-011	4/17/08	0.0	0.5	EXCAVATED	EU-1	٠											
	4/17/08	3.5	4.0	EXCAVATED	EU-1	•											
OUC-HA-012	4/16/08	0.0	0.5	EXCAVATED	EU-1	•											
	4/17/08	3.5	4.0	EXCAVATED	EU-1	•											
OUC-HA-013	5/2/08	0.0	0.5	EXCAVATED	EU-1	•											
OUC-HA-014	5/2/08	0.0	0.5	EXCAVATED	EU-1	•											<u> </u>
	5/2/08	0.5	1.5	EXCAVATED	EU-1	•											-
OUC-HA-015	5/2/08	0.0	0.5		EU-1 EU-1	•											-
000-114-010	5/2/08	0.0	1.5		EU-1												-
	5/2/08	0.0	1.5	EXCAVATED	EU-1												
OUC-HA-017	5/5/08	0.0	0.5	EXCAVATED	EU-1	•										-	
OUC-HA-019	5/5/08	0.0	0.5	EXCAVATED	EU-1	•											-
OUC-HA-021	5/5/08	0.0	0.5	EXCAVATED	EU-1	•											
R37-CS-003	6/16/08	2.5	3.0	EXCAVATED	EU-1	٠											
R37-CS-004	6/16/08	2.0	2.5	EXCAVATED	EU-1	•											
R37-CS-005	6/16/08	2.0	2.5	EXCAVATED	EU-1	٠											
R37-CS-006	6/16/08	2.0	2.5	EXCAVATED	EU-1	•											-
R37-CS-007	6/16/08	2.0	2.5	EXCAVATED	EU-1	•											
Powernouse and I	Fuel Barn AOI	1.0	1.5	Not Excavated	EU-1			•					•				
DP-4.31	6/6/06	1.0	1.5	Not Excavated	FU-1			•					•				-
DP-4.32	6/6/06	1.0	1.5	Not Excavated	EU-1			•					•				-
DP-4.33	6/6/06	1.0	1.5	Not Excavated	EU-1			•					•				
DP-4.34	6/6/06	1.0	1.5	Not Excavated	EU-1			•					٠				
HA-4.95	8/22/06	2.0	2.5	Not Excavated	EU-1	٠	٠			٠	٠		٠				
HA-4.96	8/22/06	2.0	2.5	Not Excavated	EU-1	•	•			•	•		•				
HA-4.97	8/22/06	2.0	2.5	Not Excavated	EU-1	•	•			•	•		•				
HA-4.98	8/22/06	2.0	2.5	Not Excavated	EU-1	•	•			•	•		•				
HA-4.100	8/22/06	2.0	2.5	Not Excavated		•	•			•	•		•				
HA-4.101	0/22/00	∠.0	∠.⊃	INUL EXCAVATED	EU-1	•	•			•	•		•				

Location ID	Sample Date	Start Depth (ft bgs)	End Depth (ft bgs)	Excavation Status ^a	Exposure Unit	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	SVOCS	vocs	трнց	TPHd/mo	PAHs	TPH (Wet DI)	Alkylated PAHs	Forensic TPH
HA-4.102	8/22/06	2.0	2.5	Not Excavated	EU-1	٠	•			•	•		•				
HA-4.103	8/22/06	2.0	2.5	Not Excavated	EU-1	•	٠			•	•		•				
HA-4.105	8/22/06	2.0	2.5	Not Excavated	EU-1	•	•			•	•		•			L	
HA-4.106	8/22/06	2.0	2.5	Not Excavated	EU-1	•	٠			•	•		•				
HA-4.118A	8/7/06	0.5	1.0	Not Excavated	EU-1						•		•				
HA-4.156	8/22/06	2.0	2.5	Not Excavated	EU-1	٠	•			•	•		•				
HA-4.157	8/22/06	2.0	2.5	Not Excavated	EU-1	•	•			•	٠		٠				
MW-4.6	9/28/07	0.0	0.5	Not Excavated	EU-1	٠			•	٠	•	•	•				
	9/28/07	4.0	4.5	Not Excavated	EU-1	•			•	•	٠	•	•				
OUE-DP-041	9/27/10	0.0	0.5	Not Excavated	EU-1	•				•			•	•			
	9/27/10	0.5	1.0	Not Excavated	EU-1	•				•	•		•	•			
OUE-DP-042	9/24/10	1.0	1.5	Not Excavated	EU-1	•				•	•		•	•			
	9/24/10	1.5	3.0	Not Excavated	EU-1	•				•	•		•	•			
	9/24/10	4.0	4.5	Not Excavated	EU-1	•				•	•		•	•			
OUE-DP-055	6/25/10	0.0	0.5	Not Excavated	EU-1								•				
	6/25/10	0.5	1.5	Not Excavated	EU-1								•				
	6/25/10	2.0	3.0	Not Excavated	EU-1								•			•	٠
OUE-DP-056	6/25/10	0.0	0.5	Not Excavated	EU-1								•				
	6/25/10	2.0	3.0	Not Excavated	EU-1								•				
	6/25/10	5.0	6.0	Not Excavated	EU-1								•				
OUE-HA-013	6/24/10	0.0	0.5	Not Excavated	EU-1	•							•	•			
	6/24/10	0.5	1.5	Not Excavated	EU-1						•		•				
	6/24/10	4.0	5.0	Not Excavated	EU-1						•		•				
OUE-HA-029	6/28/10	0.0	1.0	Not Excavated	EU-1	•		•	•	•			•	•			
OUE-HA-030	6/28/10	0.0	1.0	Not Excavated	EU-1	•		•	٠	•			٠	٠			
OUE-HA-031	6/28/10	0.0	1.0	Not Excavated	EU-1	•		•	•	•			٠	•			
OUE-HA-032	6/28/10	0.0	1.0	Not Excavated	EU-1	•		•	•	•			٠	•			
OUE-SS-001	6/30/10	0.0	0.5	Not Excavated	EU-1				•								
OUE-SS-002	6/30/10	0.0	0.5	Not Excavated	EU-1				•								
OUE-SS-003	6/30/10	0.0	0.5	Not Excavated	EU-1				•								
OUE-SS-004	6/30/10	0.0	0.5	Not Excavated	EU-1				•								
P4-34	3/11/03	0.0	0.5	Not Excavated	EU-1			•									
P4-36	12/18/03	0.5	2.0	Not Excavated	EU-1	•	•										
D / 0 T	12/18/03	4.0	5.5	Not Excavated	EU-1	•	٠										
P4-37	12/18/03	0.9	1.4	Not Excavated	EU-1	•	•										
	12/18/03	5.4	5.9	Not Excavated	EU-1	•	•										
P4-PH1	7/20/04	3.0	3.5	Not Excavated	EU-1						٠		•				
	7/20/04	6.0	6.5	Not Excavated	EU-1								٠				
DP-4.16	6/5/06	1.0	1.5	Not Excavated	EU-2	•				•							
DP-4.17	6/5/06	2.1	2.6	Not Excavated	EU-2	٠			•	•							
	6/5/06	2.6	3.1	Not Excavated	EU-2	•				•							
DP-4.18	6/5/06	1.6	2.1	Not Excavated	EU-2	•				•							
DP-4.19	6/5/06	1.0	1.5	Not Excavated	EU-2	•			•	•							
DP-4.20	6/6/06	1.0	1.5	Not Excavated	EU-2			•					•				
DP-4.21	6/6/06	1.0	1.5	Not Excavated	EU-2			•					•				
	6/6/06	1.5	2.0	Not Excavated	EU-2			•					•				
DP-4.22	6/6/06	1.0	1.5	Not Excavated	EU-2	•				•	•		•				
DP-4.23	6/6/06	1.0	1.5	Not Excavated	EU-2	•				•	•		•				
DP-4.24	6/6/06	1.0	1.5	Not Excavated	EU-2	•				•	•		•				
DP-4.25	6/6/06	1.0	1.5	Not Excavated	EU-2			•					•				
DP-4.26	6/6/06	1.0	1.5	Not Excavated	EU-2			•					•				
DP-4.27	6/6/06	1.1	1.6	Not Excavated	EU-2			•					•				
DP-4.28	6/6/06	1.3	1.8	Not Excavated	EU-2			•					•				

DP-4.29 66.06 1.0 Not Excavaled EU-2 Not	Location ID	Sample Date	Start Depth (ft bgs)	End Depth (ft bgs)	Excavation Status ^a	Exposure Unit	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	SVOCs	vocs	TPHg	TPHd/mo	PAHs	TPH (Wet DI)	Alkylated PAHs	Forensic TPH
DP-5.57 E6060 1.0 Not Excavated EU-2 I I I <thi< <="" th=""><th>DP-4.29</th><th>6/6/06</th><th>1.0</th><th>1.5</th><th>Not Excavated</th><th>EU-2</th><th></th><th></th><th>•</th><th></th><th></th><th></th><th></th><th>٠</th><th></th><th>-</th><th></th><th></th></thi<>	DP-4.29	6/6/06	1.0	1.5	Not Excavated	EU-2			•					٠		-		
DP-5.71 66/06 1.0 1.5 Not Excavated EU-2 • • •	DP-5.59	10/20/05	0.5	1.0	Not Excavated	EU-2	•				•	•		٠				
DP-5.72 66/06 0.0 0.5 Not Excavated EU-2 • • •	DP-5.71	6/6/06	1.0	1.5	Not Excavated	EU-2	•			•	٠							
HA4.57 81/106 1.7 2.2 Not Excavated EU-2 • • •	DP-5.72	6/6/06	0.0	0.5	Not Excavated	EU-2	٠			٠	•							
HA4.88 8/106 1.0 1.5 Not Excavated EU-2 • HA4.60 8/106 3.0 3.5 Not Excavated EU-2 • • • HA4.60 8/106 3.0 3.5 Not Excavated EU-2 • • • HA4.62 8/106 1.0 1.5 Not Excavated EU-2 •	HA-4.57	8/1/06	1.7	2.2	Not Excavated	EU-2	•				•							
HA-4.50 B*1/06 4.0 4.5 Not Excavated EU-2 • • HA-4.61 B*1/06 4.0 4.5 Not Excavated EU-2 • <t< td=""><td>HA-4.58</td><td>8/1/06</td><td>1.0</td><td>1.5</td><td>Not Excavated</td><td>EU-2</td><td>٠</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	HA-4.58	8/1/06	1.0	1.5	Not Excavated	EU-2	٠				•							
HA-4.60 87/106 3.0 3.5 Not Excavated EU-2 •	HA-4.59	8/1/06	4.0	4.5	Not Excavated	EU-2	•				•							
rHA-4.61 87/105 4.0 4.5 Not Excavated EU-2 •	HA-4.60	8/1/06	3.0	3.5	Not Excavated	EU-2	•				•							
nr.4-a.b.2 8/106 1.0 1.5 Not Excavated EU-2 •	HA-4.61	8/1/06	4.0	4.5	Not Excavated	EU-2	•				•							
DrA-8.0 06/2006 1.0 1.3 Not Excavated EU-2 Image: Constraint of the state o	HA-4.62	8/1/06	1.0	1.5	Not Excavated	EU-2	•				•						<u> </u>	
Investion 7/37/06 4.0 1.0 <		8/23/06	1.0	1.5	Not Excavated	EU-2	•		•		•	•		•			<u> </u>	-
Invalid Invalid <thinvalid< th=""> <th< td=""><td></td><td>7/31/06</td><td>1.5</td><td>2.0</td><td>Not Excavated</td><td>EU-2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td><u> </u></td><td>-</td></th<></thinvalid<>		7/31/06	1.5	2.0	Not Excavated	EU-2								•			<u> </u>	-
HA-467 8/906 6.0 6.5 Not Excavaled EU-2 • • • •	HA-4.05	8/0/06	4.0	4.5	Not Excavated	EU-2	•		ľ			•		•				
International basis Botos Description Description Description Int-A.68 8/60/06 5.0 5.5 Not Excavated EU-2 •	HA-4.60	8/9/06	6.0	6.5	Not Excavated	EU-2	•				•	•		•			-	-
HA-4.70 9/13/06 3.5 4.0 Not Excavated EU-2 •	HA-4.68	8/8/06	5.0	5.5	Not Excavated	EU 2 FU-2	•			•	•	•		•				-
HA-4.71 9/1306 6.0 6.5 Not Excavated EU-2 •	HA-4.70	9/13/06	3.5	4.0	Not Excavated	EU-2	•					•		•	•			
HA-4.72 9/1306 8.0 8.5 Not Excavated EU-2 • • • • • HA-4.73 9/1306 8.0 8.5 Not Excavated EU-2 • <t< td=""><td>HA-4.71</td><td>9/13/06</td><td>6.0</td><td>6.5</td><td>Not Excavated</td><td>EU-2</td><td>•</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>•</td><td>•</td><td></td><td></td><td></td></t<>	HA-4.71	9/13/06	6.0	6.5	Not Excavated	EU-2	•					•		•	•			
HA-4.73 9/13/06 8.0 8.5 Not Excavated EU-2 •	HA-4.72	9/13/06	8.0	8.5	Not Excavated	EU-2	•					•		•	•			
HA-4.74 9/13/06 8.0 8.5 Not Excavated EU-2 •	HA-4.73	9/13/06	8.0	8.5	Not Excavated	EU-2	٠					•		•	٠			
HA-4.76 9/13/06 3.5 4.0 Not Excavated EU-2 •	HA-4.74	9/13/06	8.0	8.5	Not Excavated	EU-2	٠					•		•	٠			
HA-4.77 8/7/06 6.0 6.5 Not Excavated EU-2 •	HA-4.76	9/13/06	3.5	4.0	Not Excavated	EU-2	٠					•		٠	•			
HA-4.78 9/14/06 8.0 8.5 Not Excavated EU-2 •	HA-4.77	8/7/06	6.0	6.5	Not Excavated	EU-2	٠				•	•		٠				
HA-4.79 8/8/06 8.0 8.5 Not Excavated EU-2 •	HA-4.78	9/14/06	8.0	8.5	Not Excavated	EU-2	٠				•	٠		•				
HA-4.80 9/13/06 6.0 6.5 Not Excavated EU-2 •	HA-4.79	8/8/06	8.0	8.5	Not Excavated	EU-2	٠				•	٠		٠				
HA-4.81 9/13/06 8.0 8.5 Not Excavated EU-2 •	HA-4.80	9/13/06	6.0	6.5	Not Excavated	EU-2	•					•		٠	٠			
HA-4.82 8/7/06 6.5 7.0 Not Excavated EU-2 •	HA-4.81	9/13/06	8.0	8.5	Not Excavated	EU-2	•					•		٠	•			
HA-4.83 9/13/06 4.0 4.5 Not Excavated EU-2 •	HA-4.82	8/7/06	6.5	7.0	Not Excavated	EU-2	•				•	•		٠				
HA-4.84 9/13/06 6.0 6.5 Not Excavated EU-2 •	HA-4.83	9/13/06	4.0	4.5	Not Excavated	EU-2	•					•		•	•			
HA-4.85 9/13/06 7.0 7.5 Not Excavated EU-2 •	HA-4.84	9/13/06	6.0	6.5	Not Excavated	EU-2	•					•		•	•			
HA-4.86 9/13/06 7.0 7.5 Not Excavated EU-2 •	HA-4.85	9/13/06	7.0	7.5	Not Excavated	EU-2	٠					•		٠	•			
HA-4.87 8/7/06 4.5 5.0 Not Excavated EU-2 •	HA-4.86	9/13/06	7.0	7.5	Not Excavated	EU-2	•					•		•	•			
HA-4.88 8/7/06 4.5 5.0 Not Excavated EU-2 • HA-4.112 <td>HA-4.87</td> <td>8/7/06</td> <td>4.5</td> <td>5.0</td> <td>Not Excavated</td> <td>EU-2</td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>	HA-4.87	8/7/06	4.5	5.0	Not Excavated	EU-2	•				•	•		•				
HA-4.90 88/06 13.5 14.0 Not Excavated EU-2 •	HA-4.88	8/7/06	4.5	5.0	Not Excavated	EU-2	٠				•	•		•				
HA-4.108 6/28/06 1.0 1.5 Not Excavated EU-2 Image: Constraint of the co	HA-4.90	8/8/06	13.5	14.0	Not Excavated	EU-2	•			•	•	•		•				
HA-4.109 6/28/06 1.0 1.5 Not Excavated EU-2 Image: Constraint of the second o	HA-4.108	6/28/06	1.0	1.5	Not Excavated	EU-2						•		•				
HA-4.110 6/28/06 1.0 1.5 Not Excavated EU-2 Image: Constraint of the second s	HA-4.109	6/28/06	1.0	1.5	Not Excavated	EU-2						•		•				
HA-4.111 6/28/06 1.0 1.5 Not Excavated EU-2 Image: Constraint of the second o	HA-4.110	6/28/06	1.0	1.5	Not Excavated	EU-2						•		•			<u> </u>	
HA-4.112 0/20/06 1.0 1.3 Not Excavated EU-2 Image: Constraint of the second o		6/28/06	1.0	1.5	Not Excavated	EU-2						•		•			<u> </u>	-
HA-4.113 6/29/06 1.0 1.5 Not Excavated EU-2 Image: Constraint of the co	HA-4.112	7/11/06	1.0	1.5	Not Excavated	EU-2						•		•			<u> </u>	
HA-4.115 7/11/06 1.0 1.5 Not Excavated EU-2 Image: Constraint of the co	ΗΔ_/ 113	6/29/06	1.0	1.5	Not Excavated	EU-2								•				
HA-4.113 1/11/06 1.0	HA-4.115	7/11/06	1.0	1.5	Not Excavated	EU-2						•		•				
HA-4.140 6/27/06 2.1 2.6 Not Excavated EU-2 •	HA-4.115 HA-4.145	6/27/06	0.9	1.5	Not Excavated	EU-2	•				•	-		•				
HA-4.147 6/27/06 1.2 1.7 Not Excavated EU-2 •	HA-4.146	6/27/06	21	26	Not Excavated	FU-2	•				•							
HA-4.148 6/27/06 0.7 1.2 Not Excavated EU-2 •	HA-4.147	6/27/06	1.2	1.7	Not Excavated	EU-2	•			•	•							
HA-4.158 6/29/06 1.0 1.5 Not Excavated EU-2 •	HA-4.148	6/27/06	0.7	1.2	Not Excavated	EU-2	•				•							
HA-4.159 7/31/06 5.0 5.5 Not Excavated EU-2 •	HA-4.158	6/29/06	1.0	1.5	Not Excavated	EU-2						•		•				
HSA-4.2 1/24/06 2.0 2.5 Not Excavated EU-2 • <	HA-4.159	7/31/06	5.0	5.5	Not Excavated	EU-2			•					•				
1/24/06 3.5 4.0 Not Excavated EU-2 • </td <td>HSA-4.2</td> <td>1/24/06</td> <td>2.0</td> <td>2.5</td> <td>Not Excavated</td> <td>EU-2</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>	HSA-4.2	1/24/06	2.0	2.5	Not Excavated	EU-2					•	•		•				
HSA-4.3 1/24/06 2.0 2.5 Not Excavated EU-2 • <		1/24/06	35	4.0	Not Excavated	FU-2					•	•		•				
1/24/06 35 4.0 Not Evoluted EU-2	HSA-4 3	1/2//06	2.0	2.5	Not Excavated	EU-2					•	•		•				
		1/2//06	2.0	4.0	Not Executed	EU 2												

Location ID	Sample Date	Start Depth (ft bgs)	End Depth (ft bgs)	Excavation Status ^a	Exposure Unit	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	svocs	vocs	TPHg	TPHd/mo	PAHs	TPH (Wet DI)	Alkylated PAHs	Forensic TPH
HSA-4.4	1/23/06	2.0	2.5	Not Excavated	EU-2	•				•	•		•				
	1/23/06	6.0	6.5	Not Excavated	EU-2	•				•	•		•				
	1/23/06	11.0	11.5	Not Excavated	EU-2	٠	٠			•	•		٠				
	1/24/06	16.0	16.5	Not Excavated	EU-2	•				•	•	•	٠				
	1/24/06	21.0	21.5	Not Excavated	EU-2	•				•	•	•	٠				
	1/24/06	26.0	26.5	Not Excavated	EU-2	٠				•	٠	•	٠				
HSA-4.5	1/23/06	2.0	2.5	Not Excavated	EU-2	•				•	•		•				-
	1/23/06	6.0 11.0	0.0	Not Excavated	EU-2	•				•	•		•			<u> </u>	-
	1/23/00	16.0	16.5	Not Excavated	EU-2	•	•	•	•			•	•				
	1/24/06	21.0	21.5	Not Excavated	EU-2	•	-	-	-	•	•	•	•				
	1/24/06	26.0	26.5	Not Excavated	EU-2	•				•	•	•	٠				-
	1/24/06	31.0	31.5	Not Excavated	EU-2	•				•	•	•	•				
HSA-4.6	1/23/06	2.0	2.5	Not Excavated	EU-2	•				•	•	•	•				-
	1/23/06	11.0	11.5	Not Excavated	EU-2	•	•			•	•		٠				
	1/24/06	16.0	16.5	Not Excavated	EU-2	•	٠			•	•		•				
	1/24/06	21.0	21.5	Not Excavated	EU-2	٠	٠			•	•	•	•				
	1/24/06	26.0	26.5	Not Excavated	EU-2	٠				•	•	•	٠				
	1/24/06	31.0	31.5	Not Excavated	EU-2	•				•	•	•	٠				
MW-4.1	12/16/03	1.0	1.5	Not Excavated	EU-2						•		٠				
MW-4.5	9/28/07	0.0	0.5	Not Excavated	EU-2	•			•	٠	•	•	٠				<u> </u>
	9/28/07	8.5	9.0	Not Excavated	EU-2	•			•	•	•	•	•			<u> </u>	-
00E-DF-030	6/22/10	3	4	Not Excavated	EU-2 FU-2	•				•	•		•	•			
	6/22/10	5	7	Not Excavated	EU-2	•				•	•		٠	•			-
OUE-DP-037	6/22/10	0	2.8	Not Excavated	EU-2	٠			•	•	•		•	٠			
	6/22/10	3	4	Not Excavated	EU-2	٠				•			٠	•			
	6/22/10	5	7	Not Excavated	EU-2	•				•	•		٠	٠			
OUE-DP-038	6/22/10	0	2.5	Not Excavated	EU-2				-		•		٠			•	ŀ
	6/22/10	1	1.5	Not Excavated	EU-2				•							<u> </u>	-
	6/23/10	11	11.5	Not Excavated	EU-2				•								
	6/23/10	16	16.5	Not Excavated	FU-2				•								
OUE-DP-039	6/23/10	2	2.7	Not Excavated	EU-2			<u> </u>	•				•				
	6/23/10	5	5.5	Not Excavated	EU-2				•				•				
	6/24/10	10	11.5	Not Excavated	EU-2				•				٠				
	6/24/10	16.5	17	Not Excavated	EU-2				•				٠				
OUE-DP-040	6/22/10	0.2	0.7	Not Excavated	EU-2	•							•	•			
	6/22/10	0.7	1.7	Not Excavated	EU-2	•							•	•			-
	6/22/10	1.7	2.7	Not Excavated	EU-2	•							٠	•			<u> </u>
OUE-DP-045	6/22/10	5	5.5	Not Excavated	EU-2	•			•							<u> </u>	-
OUE-DP-046	6/22/10	3.5	0.5 4	Not Excavated	EU-2 FU-2	•		•					•	•			
	6/22/10	5	6	Not Excavated	EU-2	•					•		•	•			
OUE-DP-047	6/22/10	5.5	6.5	Not Excavated	EU-2	•		•					٠	٠			
	6/22/10	6.0	6.5	Not Excavated	EU-2						•						
	6/22/10	11.5	12.5	Not Excavated	EU-2								٠	•			
OUE-DP-048	6/26/10	6	6.5	Not Excavated	EU-2	•			•								
	6/26/10	8	9	Not Excavated	EU-2	•			•								
OUE-DP-049	6/23/10	13	13.5	Not Excavated	EU-2	•			•								
1	6/23/10	13.5	15	Not Excavated	FU-2	•			•								

	Sample	Start Depth	End Depth	Excavation	Exposure	etals	exavalent Chromium	CBs	oxins/Furans	/ocs	DCs	ънg	om/bHc	AHs	PH (Wet DI)	kylated PAHs	orensic TPH
	Date	(ft bgs)	(ft bgs)	Status "	Unit	ž	Ť	ĕ	ā	Ś	ž	F	Ē	Ч	F	₹	ц
00E-DP-050	6/26/10	8	9	Not Excavated	EU-2	•			•								
	6/26/10	9	10	Not Excavated	EU-2	•			•							<u> </u>	
00L-DF-031	6/26/10	1.5	2	Not Excavated	EU-2												
OUE-DP-052	6/26/10	0.0	0.5	Not Excavated	EU-2				•							<u> </u>	
002 01 002	6/26/10	0.5	1.5	Not Excavated	EU-2				•								
	6/26/10	3.0	4.0	Not Excavated	EU-2				•								
OUE-DP-053	6/26/10	0.0	0.5	Not Excavated	EU-2				•								
	6/26/10	0.5	1.5	Not Excavated	EU-2				•								
OUE-DP-054	6/25/10	0.0	0.5	Not Excavated	EU-2								٠				
	6/25/10	0.5	1.5	Not Excavated	EU-2								•				
	6/25/10	2.0	3.5	Not Excavated	EU-2								•				
OUE-DP-057	6/24/10	0	1	Not Excavated	EU-2				•								
	6/24/10	5	5.8	Not Excavated	EU-2				•							<u> </u>	
	6/24/10	10.5	11	Not Excavated	EU-2				•								
00E-DP-076	11/2/10	5.0	6.0 7.0	Not Excavated	EU-2	•			•							<u> </u>	
	11/2/10	8.0	9.0	Not Excavated	EU-2	•											
	11/5/10	10.0	9.0	Not Excavated	EU-2	•										<u> </u>	_
OUE-DP-077	11/2/10	12.5	13.0	Not Excavated	EU-2	•			•					•			
002 21 011	11/2/10	15.0	16.0	Not Excavated	EU-2	•			•					•			
OUE-DP-078	11/4/10	2.2	2.7	Not Excavated	EU-2	•			•					•			
	11/4/10	5.0	5.5	Not Excavated	EU-2	٠			•					٠			
	11/4/10	10.0	10.5	Not Excavated	EU-2	•											
OUE-DP-079	11/5/10	0.5	1.5	Not Excavated	EU-2	•			•								
	11/5/10	2.5	3.0	Not Excavated	EU-2	•			•								
	11/5/10	3.5	4.0	Not Excavated	EU-2	•			•								
00E-DP-080	11/5/10	5.0	5.5	Not Excavated	EU-2	•			•							<u> </u>	
	11/5/10	10.0	11.0	Not Excavated	EU-2	•											
	11/5/10	2.5	3.0	Not Excavated	EU-2	•			-							<u> </u>	
COL DI COI	11/5/10	5.0	5.5	Not Excavated	EU-2	•			•								
OUE-DP-086	11/4/10	0.0	0.5	Not Excavated	EU-2	•											
	11/4/10	0.5	1.5	Not Excavated	EU-2	•											
	11/4/10	3.0	3.5	Not Excavated	EU-2	•											
	11/4/10	5.0	6.0	Not Excavated	EU-2	٠											
OUE-DP-087	11/4/10	0.0	0.5	Not Excavated	EU-2	•											
	11/4/10	0.5	1.5	Not Excavated	EU-2	•											
	11/4/10	3.5	4.5	Not Excavated	EU-2	•											
	11/4/10	5.0	6.0	Not Excavated	EU-2	•											
OUE-DP-088	11/4/10	0.0	0.5	Not Excavated	EU-2	•			•							<u> </u>	
	11/4/10	0.5	1.5	Not Excavated	EU-2 FU-2	•			•								
	11/5/10	6.0	7.0	Not Excavated	EU-2	•											
OUE-DP-089	11/2/10	5.4	5.9	Not Excavated	EU-2	•			•								
	11/2/10	5.9	6.8	Not Excavated	EU-2	•			•								
	11/2/10	10.0	10.5	Not Excavated	EU-2	•			•								
OUE-DP-090	11/5/10	1.0	1.5	Not Excavated	EU-2	•			•								
	11/5/10	2.0	2.5	Not Excavated	EU-2	•			•								
	11/5/10	3.0	3.5	Not Excavated	EU-2	•											
	11/5/10	5.5	6.0	Not Excavated	FU-2	•											

	Sample	Start Depth	End Depth	Excavation	Exposure	etals	xavalent Chromium	Bs	oxins/Furans	OCs	Cs	Hg	Hd/mo	Hs	H (Wet DI)	cylated PAHs	rensic TPH
Location ID	Date	(ft bgs)	(ft bgs)	Status ^a	Unit	Me	He	РС	Di	sv	2	ТР	дT	Þ٩	ТР	ΠA	Ъ
OUE-DP-093	11/3/10	6.8	7.3	Not Excavated	EU-2	•			•				•				
	11/3/10	11.2	11.7	Not Excavated	EU-2	•							•				
OUE-DP-094	12/12/10	2.5	3.0	Not Excavated	EU-2	٠											
	12/12/10	3.5	4.0	Not Excavated	EU-2	•											
	12/12/10	5.5	6.0	Not Excavated	EU-2	•											
	12/12/10	7.0	7.5	Not Excavated	EU-2	•											
OUE-DP-095	12/14/10	0.0	0.5	Not Excavated	EU-2	•											
	12/14/10	2.5	3.0	Not Excavated	EU-2	•											
	12/14/10	5.5	6.0	Not Excavated	EU-2	•											
	12/14/10	7.5	8.5	Not Excavated	EU-2	•											
OUE-DP-101	12/14/10	1.2	1.7	Not Excavated	EU-2	•											
	12/14/10	2.0	2.5	Not Excavated	EU-2	•											
	12/14/10	3.5	4.0	Not Excavated	EU-2	•											
	12/14/10	4.5	5.0	Not Excavated	EU-2	•											
00E-HA-012	6/21/10	0.0	0.5		EU-2	•											
	6/21/10	0.5	1.5	Not Excavated	EU-2	•											
OUE-HA-014	6/21/10	0.0	0.5		EU-2	•											
	6/21/10	0.5	0.8	Not Excavated	EU-2	•											
OUE-HA-015	6/21/10	0.0	0.5	Not Excavated	EU-2	•			•				•				
	6/21/10	0.5	1.3	Not Excavated	EU-2	•			•				•				
OUE-HA-016	6/24/10	0.0	0.5	Not Excavated	EU-2	•							•	•			
	6/24/10	0.5	1.5	Not Excavated	EU-2	•							•	•			
	6/24/10	4.0	5.0	Not Excavated	EU-2								•	•		•	•
OUE-HA-017	6/24/10	0.0	0.5	Not Excavated	EU-2								•	•			
	6/24/10	0.5	1.5	Not Excavated	EU-2								•	•			
OUE-HA-018	6/24/10	4.0	0.5	Not Excavated	EU-2 FII-2								•	•			
00211/010	6/24/10	0.5	1.5	Not Excavated	EU 2 FU-2								•	•		•	•
	6/24/10	4.0	5.0	Not Excavated	EU-2								•	•			
OUE-HA-019	6/21/10	0.0	0.5	Not Excavated	EU-2	•											
	6/21/10	0.5	1.5	Not Excavated	EU-2	٠											
OUE-HA-020	6/24/10	0	.5	Not Excavated	EU-2	•		•					٠	٠			
	6/24/10	0.5	1.5	Not Excavated	EU-2	•					•		•	•			
	6/24/10	4	5	Not Excavated	EU-2						•		٠	٠			
OUE-HA-021	6/22/10	0.0	0.5	Not Excavated	EU-2			•									
	6/22/10	0.5	1.5	Not Excavated	EU-2			•									
OUE-HA-022	6/22/10	0.0	0.5	Not Excavated	EU-2			•									
OUE-HA-023A	6/26/10	11	12	Not Excavated	EU-2	•			•				•	•			-
OUE-HA-023B	6/26/10	5	65	Not Excavated	EU-2	•				•	•		•	•			
002 11/ 0200	6/26/10	65	0.0 g	Not Excavated	EU-2									•			
	6/26/10	10	11	Not Excavated	EU-2					-	-		•	•			
50E HA-024	6/26/10	10	12.0	Not Excertate	EU-2	-							-	-			
	6/21/10	0.0	0.5	Not Excavated	EU-2				È				Ļ	Ļ			
OUE-HA-025	6/21/10	0.0	0.5	Not Excavated	FU-2			•									
OUE-HA-033	11/12/10	0.0	0.5	Not Excavated	EU-2								•				
	11/13/10	0.5	1.0	Not Excavated	EU-2						•		•				
OUE-HA-034	11/12/10	0.0	0.5	Not Excavated	FU-2									•			
	11/12/10	0.5	1.5	Not Excavated	FU-2									•			
	11/12/10	3.0	4.0	Not Excavated	EU-2									•			

Loosting ID	Sample	Start Depth	End Depth	Excavation	Exposure	etals	exavalent Chromium	CBs	ioxins/Furans	vocs	ocs	PHg	PHd/mo	AHs	PH (Wet DI)	Ikylated PAHs	orensic TPH
	11/12/10	(it bgs)		Not Executed	- Unit	Σ	Т	٩		S	>	-	F		-	<	Ľ.
00E-11A-000	11/13/10	0.0	1.5	Not Excavated	EU-2									•			
	11/13/10	2.5	3.0	Not Excavated	FU-2									•			+
OUE-HA-036	11/13/10	0.0	0.5	Not Excavated	FU-2									•			+
00210000	11/13/10	0.5	1.5	Not Excavated	FU-2									•			+
OUE-HA-037	11/13/10	0.0	0.5	Not Excavated	FU-2									•			+
00211/001	11/14/10	0.5	1.5	Not Excavated	EU-2									•			+
	11/14/10	2.0	2.5	Not Excavated	EU-2									•			
OUE-HA-038	11/14/10	0.0	0.5	Not Excavated	EU-2									•			+
	11/14/10	0.5	1.5	Not Excavated	EU-2									•			
OUE-HA-039	11/16/10	0.0	0.5	Not Excavated	EU-2									٠			
	11/16/10	0.5	1.5	Not Excavated	EU-2									•			
	11/16/10	3.0	3.5	Not Excavated	EU-2									•			
OUE-T1-1	11/1/10	15.5	16.0	Not Excavated	EU-2				•								
OUE-T2-2a	11/3/10	6.0	6.5	Not Excavated	EU-2				•								
OUE-T2-2b	12/14/10	6.0	6.5	Not Excavated	EU-2				•								
P4-25	3/11/03	0.0	0.5	Not Excavated	EU-2			•								<u> </u>	-
P4-20 P4-27	3/11/03	0.0	0.5	Not Excavated	EU-2			•								<u> </u>	-
P4-28	3/11/03	0.0	0.5	Not Excavated	EU-2			•									+
P4-29	3/11/03	0.0	0.5	Not Excavated	EU-2			•									+
P4-30	3/11/03	0.0	0.5	Not Excavated	EU-2			•									
P4-31	3/11/03	0.0	0.5	Not Excavated	EU-2			•									
P4-38	7/20/04	10.0	10.5	Not Excavated	EU-2	•		•		•	٠		•				
P4-38	7/20/04	10.5	11.0	Not Excavated	EU-2						•						
P4-38	7/20/04	12.0	12.5	Not Excavated	EU-2	•		•		•	•		•			<u> </u>	-
P4-39 P4-40	7/20/04	4.0	4.5	Not Excavated	EU-2	•		•		•	•		•			<u> </u>	
P4-40 P4-41	7/20/04	5.5	6.0	Not Excavated	EU-2 FU-2	•		•		•	•		•				
	7/20/04	6.0	6.5	Not Executated	EU-2												-
P4-PH2	7/20/04	2.0	2.5	Not Excavated	EU-2						•		•				
1 7 1 1 2	7/20/04	4.0	4.5	Not Excavated	EU-2								•				
Pond 8 Fill Area A	0																
HSA-6.29	1/18/06	2.0	2.5	Not Excavated	EU-1	٠				•	٠		•				
	1/18/06	6.0	6.5	Not Excavated	EU-1	•				•	•		•				
	1/18/06	11.0	11.5	Not Excavated	EU-1	•				•			•				
	1/18/06	16.0	16.5	Not Excavated	EU-1	٠				•	٠		•				
	1/19/06	20.5	21.0	Not Excavated	EU-1	•				•	•		•				
HSA-6.30	1/19/06	2.0	2.5	Not Excavated	EU-1	•				•			•				
	1/19/06	5.5	6.0	Not Excavated	EU-1	•				•	•		•				
	1/19/06	60	65	Not Excavated	FU-1												-
	1/19/00	0.0	11 5	Not Excavated							-		-				-
	1/19/00	11.0	11.5			·				·			-				
DC 40	1/19/06	16.0	16.5	Not Excavated	EU-1	•				•	•		•				
10-10	12/19/03	0.5	2.0	Not Excavated	EU-1	•	•										
D 0.40	12/19/03	4.0	5.5	Not Excavated	EU-1	•	•										-
P6-19	12/19/03	0.5	2.0	Not Excavated	EU-1	•	•										-
	12/19/03	4.0	5.5	Not Excavated	EU-1	•	•										
P6-PH2	//20/04	4.0	4.5	Not Excavated	EU-1								•				-
20 720	//20/04	10.0	10.5	Not Excavated	EU-1								•				
P6-TP3	12/18/03	4.0	4.5	Not Excavated	FU-1	•				•			•				

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility Fort Bragg, California

Location ID	Sample Date	Start Depth (ft bgs)	End Depth (ft bgs)	Excavation Status ^a	Exposure Unit	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	SVOCs	vocs	ТРНд	TPHd/mo	PAHs	TPH (Wet DI)	Alkylated PAHs	Forensic TPH
P6-TP6	12/19/03	10.0	10.5	Not Excavated	EU-1	•				•			•				
P6-TP8	12/19/03	8.0	8.5	Not Excavated	EU-1	•				•			•				

Notes:

a. Refers to excavations conducted at the site and do not represent the risk assessment dataset.

Table 4-3 North Pond and Ponds 6,7 and 8 – Sediment Sampling and Analysis Summary

Location ID North Pond	Sample Date	Sample Depth	Start Depth (feet bgs)	End Depth (feet bgs)	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	SVOCs	vocs	трнд	ТРНИ	TPHmo	PAHs	Pesticides	Cyanide	Chlorophenols
DP-4 7	17-Apr-06	0 to 0.5 ft	0.0	0.5	•	•		•		•	•			•			
51 1.1	17-Apr-06	8 to 8.5 ft	8.0	8.5	•	•						•	•	•			
	17-Apr-06	14 to 14.5 ft	14.0	14.5	•	•	•	•		•	•	•	•	•			
	17-Apr-06	19 to 19 5 ft	19.0	19.5	•	•	-	•		•	•	•	•	•			
North Pond-01	19-Mar-08	0 to 0.5 ft	0.0	0.5	•		•	•				•	•	•			
Pond 6	To Mar oo	0 10 0.0 11															-
DP-4.8	26-Apr-06	0 to 0.5 ft	0.0	0.5	•	•				•	•	•	•	•			
DF-4.0	26-Apr-06	0100.01	13.0	13.5	•	•					•	•	•	•		-	
	26-Apr-06		18.0	18.5	•	•					•	•	•	•		-	
	26-Apr-06		23.0	23.5	•	•					•	•	•	•		-	
	26-Apr-06		23.0	23.5		•				-						-	
	20-Api-00		20.0	20.5	-	•				÷	•	-	•				
DD 4.0	20-Apr-00	0 E to 1 ft	33.0	33.5	•	•				•	•	•	•	•			
DP-4.9	25-Apt-06	0.5 10 1 11	0.5	1.0	•	•	•	•	•	•	•	•	•	•			•
	25-Apt-06	0 10 0.5 II	0.0	0.5	•	•	•	•	•	•	•	•	•	•			Ŀ
	25-Apt-06	11 10 11.5 11	11.0	11.5	•	•				•	•	•	•	•			
	25-Apr-06	16 10 16.5 11	16.0	16.5	•	•				•	•	•	•	•			
	25-Apr-06	21 to 21.5 ft	21.0	21.5	•	•				•	•	•	•	•			
	25-Apr-06	26 to 26.5 ft	26.0	26.5	•	•				•	•	•	•	•			
	25-Apr-06	31 to 31.5 ft	31.0	31.5	•	•				•	•	•	•	•		<u> </u>	
DP-4.10	18-Apr-06	0 to 0.5 ft	0.0	0.5	•			•		•	•	•	•	•			
	18-Apr-06	5 to 5.5 ft	5.0	5.5	•	•	•	٠		•	•	•	•	•			
	18-Apr-06	14.5 to 15 ft	14.5	15.0	•	•				•	•	•	•	•			
	18-Apr-06	10 to 10.5 ft	10.0	10.5	•	•				·	•	•	•	•			
Pond6-01	18-Mar-08	0 to 0.5 ft	0.0	0.5	•		•	•				•	•	•			
	11-Mar-08	0.5 to 1.5 ft	0.5	1.5	•		•	•				•	•	•			
Pond6-02	18-Mar-08	0 to 0.5 ft	0.0	0.5	•		•	•				•	•	•			
	12-Mar-08	0.5 to 1.5 ft	0.5	1.5	•		•	•				•	٠	•			
	12-Mar-08	1.5 to 2.5 ft	1.5	2.5				٠									
	12-Mar-08	2.5 to 3.5 ft	2.5	3.5				•									
	12-Mar-08	4.5 to 5.5 ft	4.5	5.5	•			•									
Pond 7																	
DP-4.11	17-Apr-06	0 to 0.5 ft	0.0	0.5	٠	٠					٠	٠	٠	٠			
	17-Apr-06	6 to 6.5 ft	6.0	6.5	٠	٠	٠	٠		٠	٠	٠	٠	٠			
	18-Apr-06	11 to 11.5 ft	11.0	11.5	•	٠				•		•	•	•			
DP-4.12	18-Apr-06	0 to 0.5 ft	0.0	0.5	٠					•	•	٠	٠	٠			
	18-Apr-06	6 to 6.5 ft	6.0	6.5	•		•	•		•	•	•	•	•			
	18-Apr-06	11 to 11.5 ft	11.0	11.5	•	٠		•		•	•	•	•	•			
DP-4.13	18-Apr-06	0 to 0.5 ft	0.0	0.5	٠			٠		٠	٠	٠	٠	٠			
	18-Apr-06	5 to 5.5 ft	5.0	5.5	٠		•			٠	٠	٠	٠	٠			
Pond7-01	18-Mar-08	0 to 0.5 ft	0.0	0.5	٠		•	٠				٠	٠	٠			
	12-Mar-08	0.5 to 1.5 ft	0.5	1.5	٠		•	٠				٠	٠	٠			
Pond7-02	18-Mar-08	0 to 0.5 ft	0.0	0.5	٠		•	٠				٠	٠	٠			
	12-Mar-08	0.5 to 1.5 ft	0.5	1.5	٠		•	٠				٠	٠	٠			
	12-Mar-08	1.5 to 2.5 ft	1.5	2.5				•									
	12-Mar-08	2.5 to 3.5 ft	2.5	3.5				•									
	12-Mar-08	4.5 to 5.5 ft	4.5	5.5	•			•									
	12-Mar-08	5.5 to 6.5 ft	5.5	6.5				•									
Pond 8																	
DP-4.14	24-Apr-06	0 to 0.5 ft	0.0	0.5	•	•	•	•				•	•	•			•
	24-Apr-06	4 to 4.5 ft	4.0	4.5	•	•				•	•	•	•	•			•
	24-Apr-06	7.5 to 8 ft	75	8.0	•	•				•	•	•	•	•			•
DP-4 15	20-Apr-06	0 to 0.5 ft	0.0	0.5	•	•				•	•	•	•	•			•
51-4.13	20 4 00	2 to 2 5 4	2.0	0.0													
	20-Apr-06	∠ IU 2.5 II	2.0	2.0	•	•	•	•				•	•	•			ŀ
	20-Apr-06	7 to 7.5 ft	7.0	7.5	•	•		•		•	•	•	•	•			•
	20-Apr-06	11.5 to 12 ft	11.5	12	•	•				•	•	•	•	•			•

Table 4-3 North Pond and Ponds 6,7 and 8 – Sediment Sampling and Analysis Summary

Location ID	Sample Date 20-Apr-06	Sample Depth 3 to 3.5 ft	Start Depth (feet bgs) 3.0	End Depth (feet bgs) 3.5	Metals	Hexavalent Chromium	• PCBs	Dioxins/Furans	svocs	• vocs	• TPHg	• TPHd	• TPHmo	• PAHs	Pesticides	Cyanide	Chlorophenols
51 0.00	20-Apr-06	8 to 8 5 ft	8.0	8.5	•	•						•	•	•			•
	20-Apr-06	12 to 12 5 ft	12.0	12.5	•	•	•			•	•	•	•	•			•
	20-Apr-06	16.5 to 17 ft	16.5	17.0										•			
DP-5.61	19-Apr-06	0 to 0.5 ft	0.0	0.5	•	•		•		•	•	•	•	•			•
51 0.01	19-Apr-06	5 to 5.5 ft	5.0	5.5	•	•	•			•	•	•	•	•			•
	19-Apr-06	10 to 10 5 ft	10.0	10.5	•	•	•	•		•	•	•	•	•			•
	10-Apr-06	15 to 15 5 ft	15.0	15.5				-									
	10 Apr 06	20 to 20 5 ft	20.0	20.5	-	-						-	-	-			-
	19-Api-06	20 to 20.5 ft	20.0	20.5	•	•				•	•	•	•	•			
DD 5 62	19-Apr-06	25 to 25.5 ft	25.0	25.5	•	•				•	•	•	•	•			•
DP-5.62	24-Apr-06	6 to 6.5 ft	5.0	0.5						•	•						
	24-Api-00	5 10 5.5 II	5.0	5.5	•			•				•	•	•			•
	24-Apr-06	10 to 10.5 lt	10.0	10.5	•	•	•	•		•	•	•	•	•			•
	24-Apr-06	15 to 15.5 ft	15.0	15.5	•	•	•			•	•	•	•	•			•
	24-Apr-06	20 to 20.5 ft	20.0	20.5	•	•				•	•	•	•	•			•
Pond8-01	17-Mar-08	0 to 0.5 ft	0.0	0.5	•		•	•				•	•	•			
	18-Mar-08	0.5 to 1.5 ft	0.5	1.5	•		•	•				•	•	•			
D 10.00	18-Mar-08	1.5 to 2.5 ft	1.5	2.5	•		_	•						-			
Pond8-02	17-Mar-08	0 to 0.5 ft	0.0	0.5	•		•	•				•	•	•			
Dando 02	18-Mar-08	0.5 to 1.5 ft	0.5	1.5	•		•	•				•	•	•			
P0nd8-03	17-Ivial-00	0100.51	0.0	0.5													
Pond8-04	18-Mar-08	0.5 to 1.5 ft	0.5	0.5	•		•	•				•	•	•	•		
1 0100-04	12 Mar 09	0.5 to 1.5 ft	0.5	1.5													
	12-Mar 09	1.5 to 7.5 ft	0.5	1.5			•					•	•	•	•		
	12-11/101-00	1.5 10 2.5 11	1.5	2.5	•												
	12-Mar-08	3.5 to 4.5 ft	3.5	4.5				•									
Dando OF	12-Mar-08	4.5 to 5.5 ft	4.5	5.5	•			•									
P0108-05	17-Mar-00	1.5 to 7.5 ft	0.5	1.5			•					•	•	•			
	17-Ivial-00	1.5 to 2.5 ft	1.5	2.5	-												
	17-Mar-08	2.5 10 3.5 11	2.5	3.5	•			•				-	•				
Dond 9.06	17-Mar-08	3.5 to 4 ft	3.5	4.0										•			
F UTUO-UU	19 Mar 09	0.5 to 1.5 ft	0.0	1.5													
Pond8-07	17-Mar-08	0.5 to 1.5 ft	0.5	0.5	•		•	•				•	•	•	•		
	17-Mar-08	0.5 to 1.5 ft	0.5	15	•		•	•				•	•	•	•		
	17-Mar-08	1.5 to 2.5 ft	1.5	2.5	-							-					
	17-Mar-00	1.5 to 2.5 ft	1.5	2.5													
	17-IVIAI-00	2.5 10 3.5 11	2.5	3.5	ŀ			-									
	17-Mar-08	3.5 t0 4.5 lt	3.5	4.5				•									
	17-IVIAR-08	4.5 to 5.5 ft	4.5	5.5	•			•				•	•				
Dande 00	17-Mar-08	5.6 to 6.1 ft	5.6	6.1 0.5								-					
rona8-08	47 Mar 00		0.0	0.0			ŀ						-	-	ŀ		
	17-IVIar-08	U.5 to 1.5 ft	0.5	1.5	•		•	•				•	•	•	•		
Bond [®] 00	17-Mar-08	1.5 to 2.5 ft	1.5	2.5	•			•				•	•				
Pond8-10	18-Jun-09	0-0.5	0.0	0.5	•			•				•	•				
Pond8-11	18-Jun-09	0-0.5	0.0	0.5	•			•				•	•				
Pond8-12	18-Jun-09	0-0.5	0.0	0.5	•			•				•	•				
Pond8-14	17-Jun-09	0-0.5	0.0	0.5	٠			٠				٠	٠				
Pond8-15	17-Jun-09	0-0.5	0.0	0.5	•			•				•	•				
	1 17-JUN-U9	u-u D	I U.U	0.0	•			•				•					

Table 4-3 North Pond and Ponds 6,7 and 8 – Sediment Sampling and Analysis Summary

Location ID Pond8-17	Sample Date 17-Jun-09	Sample Depth 0-0.5	Start Depth (feet bgs) 0.0	End Depth (feet bgs) 0.5	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	svocs	vocs	TPHg	• TPHd	• TPHmo	PAHs	Pesticides	Cyanide	Chlorophenols
Pond8-18	17- Jun-09	0-0.5	0.0	0.5	•			•				•	•				
	17-3011-09	0-0.5	0.0	0.0	-			-				-	•				
SD-5.1	5-Apr-06	1.5 to 2 ft	1.5	2.0	٠	•			•	•	•	٠	•			•	
SD-5.2	5-Apr-06	1.5 to 2 ft	1.5	2.0	•	•			•	•	•	•	٠			•	

Table 4-4

North Pond and Ponds 6, 7 and 8 - Surface Water Sampling and Analysis Summary

Late Late <thlate< th=""> Late Late <thl< th=""><th>Lession ID</th><th>Sample</th><th>letals</th><th>exavalent Chromium</th><th>CBs</th><th>ioxins/Furans</th><th>vocs</th><th>ocs</th><th>PHg</th><th>PHd/mo</th><th>AHs</th><th>hlorophenols</th></thl<></thlate<>	Lession ID	Sample	letals	exavalent Chromium	CBs	ioxins/Furans	vocs	ocs	PHg	PHd/mo	AHs	hlorophenols
Pond G Pond G<	North Pond	Date	2	Ι			S	>	F	F	4	0
DP-4.1 DP-4.9 25-Apr-06 Image: Constraint of the second sec	DP-47	17-Apr-06	•									
DP-4.8 26-Apr-06 Image: State of the st	Pond 6	17 / 100										
DP-4.9 25-Apr-06 Image: Constraints	DP-4.8	26-Apr-06	•									
DP-4.10 18 Apr-06 Image bit is a pr-06 Image bit is a pr-06 Image bit is a pr-06 Image bit is a pr-07 Image bit is a pr-07 <td>DP-4.9</td> <td>25-Apr-06</td> <td>•</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	DP-4.9	25-Apr-06	•				-			-		
D1-4110 10-19-00 0	DP-4.10	18-Apr-06	•				-			-		
(Pond 6 Outfall) 09-Mar-07 • </td <td>Drainage-B1</td> <td>12- Jul-06</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>-</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td></td>	Drainage-B1	12- Jul-06	•	•	•	•	-	•	•	•	•	
Od. Societation Od. Sec. 07 Image: Societation of the societation of t	(Pond 6 Outfall)	09-Mar-07	•		•	•	•	•	•	•	•	•
0-0-00-07 0		04-Sep-07	•		•	•	•	•	•	•	•	
100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 100000000 100000000 1000000000 1000000000000 10000000000000000 1000000000000000000000000000000000000		10-Dec-07	•		•	•	•	•	•	•	•	
Default of the second		26-Mar-08	•			•					•	
Interface Interface <thinterface< th=""> Interface <thinterface< th=""> Interface Interface</thinterface<></thinterface<>		04-Mar-09	•			•					•	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		15-Sen-09	•			•					•	
Ite-Mar-10 Ite-Mar		13- Jun-07	•		•	•	•	•	•	•	•	•
Invalinity Invalin		16-Mar-10										
Pond 7 DP-4.11 17-Apr-06 Image: Constraint of the second seco		23-Sep-10	-				-			-		
DP-4.11 17-Apr-06 Image: Constraint of the second sec	Pond 7	20-0ep-10				-						
DP-4.12 18-Apr-06 Image: Constraint of the system of		17-Apr-06										
DP-4.12 10-Apr-06 •	DF-4.11 DP-4.12	18-Apr-06										
Transform Toppendo Participation Participatina Partina Participation Participation Participation Pa	DF-4.12 DP-4.12	18-Apr-06										
SW-4.1 24-Jan-06 •	Standing Water	10-Api-00										
SW-4.1 24-3a1-00 0		24- Jan-06				-			-			
BW4.2 21-301-000 0	SW-4.1	24-Jan-06										
DP-4.14 24-Apr-06 •	Bond 8	27-5011-00										
DP-4.15 20-Apr:06 Image: Constraint of the second sec		24-Apr-06										
DP-5.60 20-Apr-06 •	DP-4.14	24-Api-00										
DP-5.00 20-Apr00 0 0 0 0 0 DP-5.61 19-Apr-06 0 0 0 0 0 0 Drainage-B 03-Apr-06 0 0 0 0 0 0 0 Q9-Mar-07 0 0 0 0 0 0 0 0 11-Apr-07 0 0 0 0 0 0 0 0 13-Jun-07 0 0 0 0 0 0 0 0 10-Dec-07 0 0 0 0 0 0 0 0 26-Mar-08 0 0 0 0 0 0 0 0 24-Sep-08 0 0 0 0 0 0 0 0 17-Sep-09 0 0 0 0 0 0 0 0 16-Mar-10 0 0 0 0 0 0 0 0	DP-4.13	20-Apr-06	•									
DP-5.62 24-Apr:06 •	DP-5.60	19-Apr-06										
Drainage-B 03-Apr:00 03-Apr:00 0	DP-5.62	24-Apr-06										
(Pond 8 Outfall) 03-Aproco 0 </td <td>DF-5.02 Drainago_B</td> <td>24-Api-00</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	DF-5.02 Drainago_B	24-Api-00	•									
09-Mar-07 •	(Pond 8 Outfall)	24-May-06	-	-		•		-	-	-		
11-Apr-07 •		09-Mar-07	•				•	•	•	•		•
13-Jun-07 •		11_Apr-07	-		-		-	-	-			-
10-Sep-07 •		13- Jun-07										
04-Sep-07 •		04 Sop 07	-		-	-	-	-	-	-	-	-
10-bec-07 0		10 Dec 07	-		-	-	-	-	-	-	-	
24-Sep-08 •		26-Mar-09	÷		<u> </u>	÷	-	÷	÷	÷	÷	
24-Sep-00 •		20-ivial-08	÷		Ŀ	÷		÷	÷	÷	÷	
04-11/101-05 • <t< td=""><td></td><td>24-Sep-06</td><td>÷</td><td></td><td></td><td>÷</td><td></td><td>÷</td><td>÷</td><td>÷</td><td>÷</td><td></td></t<>		24-Sep-06	÷			÷		÷	÷	÷	÷	
17-Sep-09 • • • • • 06-Apr-07 • • • • • 16-Mar-10 • • • •		17-Son 00	÷			÷		÷	÷	÷	÷	
16-Mar-10 • •		06-Apr 07	-		-	÷			÷	÷	÷	
23-Sep-10		16-Mor-10				-						
		23-Sen-10				-						

Table 4-5 Southern Ponds – Sediment Sampling and Analysis Summary

Location ID Pond 1	Sample Date	Start Depth (feet bgs)	End Depth (feet bgs)	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	SVOCs	vocs	ТРНО	TPHmo	PAHs	Cyanide
DP-7.9	12-Apr-06	0.0	0.5	٠	٠	٠	٠		٠	٠	٠	٠	•
	12-Apr-06	0.5	1.0	٠	٠				٠	٠	٠	٠	٠
	12-Apr-06	5.0	5.5	٠	٠				٠	٠	٠	٠	٠
DP-7.10	12-Apr-06	0.0	0.5	•	•	٠	•		•	•	•	•	•
	12-Apr-06	5.0	5.5	٠	٠				٠	٠	٠	٠	٠
Pond1-01	18-Mar-08	0.0	0.5	٠		٠	٠			•	٠	٠	
	14-Mar-08	0.5	1.5	٠		٠	•			٠	٠	٠	
	14-Mar-08	1.5	2.5				•						
	14-Mar-08	2.5	3.0	٠			•						
Pond1-02	18-Mar-08	0.0	0.5	•		•	•			•	•	•	
SP1A	06-Aug-03	0.0	0.5										•
SP1B	06-Aug-03	0.0	0.5										•
Pond 2													
DP-7.11	05-Apr-06	2.0	2.5	٠	•	٠	٠		•	٠	٠	٠	•
	05-Apr-06	7.0	7.5	٠	٠				•	٠	٠	٠	•
DP-7.12	05-Apr-06	2.0	2.5	•	•	•	•		•	•	•	•	•
	05-Apr-06	7.0	7.5	•	•				•	•	•	•	•
Pond2-01	19-Mar-08	0.0	0.5	•		•	•			•	•	•	
	13-Mar-08	0.5	1.5	•		•	•			•	•	•	
Pond2-02	19-Mar-08	0.0	0.5	•		•	•			•	•	•	
	13-Mar-08	0.5	1.5	•		•	•			•	•	•	
	13-Mar-08	1.5	2.5	•			•						
	13-Mar-08	2.5	3.5				•						
	13-Mar-08	4.5	5.5	•			•						
Pond 3													
DP-7.13	06-Apr-06	0.0	0.5	٠	٠	٠	٠		٠	٠	٠	٠	•
	06-Apr-06	7.0	7.5	٠	٠		٠			٠	٠	٠	٠
DP-7.14	06-Apr-06	1.0	1.5	٠	٠				٠	•	٠	٠	٠
	06-Apr-06	6.0	6.5	٠	٠	٠	•		٠	٠	٠	٠	٠
	06-Apr-06	6.5	7.0	٠	٠				٠	٠	٠	٠	٠
	06-Apr-06	13.0	13.5	٠	٠					٠	٠	٠	٠
DP-7.15	06-Apr-06	0.0	0.5	٠	٠	•	•		•	•	٠	•	•
	06-Apr-06	5.0	5.5	•	•				•	•	•	•	•
DP-7.16	10-Apr-06	4.0	4.5	٠	٠	•	•		٠	٠	٠	•	•
Pond3-01	13-Mar-08	0.5	1.5	٠		٠	•			٠	٠	•	
	13-Mar-08	1.5	2.5				•						
	13-Mar-08	2.5	3.5				•						
	13-Mar-08	3.5	4.5	٠			•						
Pond3-02	14-Mar-08	0.5	1.5	٠		٠	•			٠	٠	٠	
	14-Mar-08	1.5	2.5	٠			٠						
Pond3-03	14-Mar-08	0.5	1.5	•		٠	•			٠	٠	٠	
Pond3-04	19-Mar-08	0.0	0.5	•		•	•			•	•	•	
	14-Mar-08	1.5	2.5	•			•						
Pond3-05	14-Mar-08	0.5	1.5	•		٠	•			٠	٠	٠	
	14-Mar-08	1.5	2.5	٠			٠						
Pond3-06	19-Mar-08	0.0	0.5	٠		٠	٠			٠	٠	٠	
Pond3-07	19-Mar-08	0.0	0.5	٠		٠	٠			٠	٠	٠	
Pond3-08	19-Mar-08	0.0	0.5	٠		•	•			•	٠	٠	
Pond3-09	19-Mar-08	0.0	0.5	•		•	٠			•	•	٠	
SP3A	06-Aug-03	0.0	0.5										•
SP3B	06-Aug-03	0.0	0.5										•
Pond 4	<u> </u>	:											
DP-7.17	13-Apr-06	0.0	0.5	•	•	•	•		•	•	•	•	•
-	13-Apr-06	5.0	5.5	•	٠				•	•	•	٠	•
DP-7.18	13-Apr-06	0.0	0.5	٠	٠	٠	•		٠	٠	٠	٠	•
-	13-Apr-06	0.5	1.0	٠	٠				•	٠	٠	٠	•
	13-Apr-06	5.0	5.5	•	٠				•	•	•	٠	•
Pond4-01	18-Mar-08	0.0	0.5	•		•	•			•	•	٠	
SP2A	06-Aug-03	0.0	0.5										•
	06-Aug-03	6.0	6.5										•

 Table 4-5

 Southern Ponds – Sediment Sampling and Analysis Summary

Location ID	Sample Date	Start Depth (feet bgs)	End Depth (feet bgs)	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	svocs	vocs	ТРНО	TPHmo	PAHs	Cyanide
SP2B	06-Aug-03	0.0	0.5										٠
	06-Aug-03	6.0	6.5										٠

Table 4-6

Southern Ponds - Surface Water Sampling and Analysis Summary

Location ID	Sample Date	Metals	Hexavalent Chromium
Pond 1			
DP-7.9	12-Apr-06	•	
DP-7.10	12-Apr-06	•	
Pond 2			
DP-7.11	05-Apr-06	•	
DP-7.12	05-Apr-06	•	
Pond 3			
DP-7.13	06-Apr-06	•	
DP-7.14	06-Apr-06	•	
DP-7.15 (Shallow)	06-Apr-06	٠	
DP-7.15 (Deep)	06-Apr-06	•	
DP-7.16	10-Apr-06	•	
Pond 4			
DP-7.17	13-Apr-06	•	
DP-7.18	13-Apr-06	٠	

Table 4-7 Ponds 5 and 9 – Sediment Sampling and Analysis Summary

Location ID Pond 5	Sample Date	Start Depth (feet bgs)	End Depth (feet bgs)	Metals	Hexavalent Chromium	PCBs	Dioxins/Furans	SVOCs	vocs	TPHd	TPHmo	PAHs	Chlorophenols
DP-5.63	25-Apr-06	0.0	0.5	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	25-Apr-06	5.5	5.5	•	•				•	•	•	•	
	25-Apr-06	10.0	10.5	•	•				•	•	•	•	
Pond5-01	14-Mar-08	0.0	1.0	•		•	٠			•	•	•	
Pond5-02	14-Mar-08	0.0	1.0	•		•	٠			•	•	•	
Pond5-03	18-Mar-08	0.0	0.5	•		•	٠			•	•	•	
Pond 9													
DP-1.5	27-Apr-06	0.0	0.5	٠	٠				٠	٠	٠	٠	
	27-Apr-06	2.0	2.5	٠	٠	٠	٠		٠	٠	٠	٠	٠
	27-Apr-06	7.0	7.5	•	•				•	•	•	•	
	27-Apr-06	12.0	12.5	•	•				•	•	•	•	
	27-Apr-06	17.0	17.5	•	•				•	•	•	•	
	27-Apr-06	19.5	20.0	•	•				•	•	•	•	
Pond9-01	17-Jun-09	0.0	0.5	•			٠			•	•		

Table 4-8

Ponds 5 and 9 - Surface Water Sampling and Analysis Summary

Location ID	Sample Date	Metals	Hexavalent Chromium										
Pond 5													
DP-5.63 (Shallow)	25-Apr-06	•											
DP-5.63 (Deep)	25-Apr-06	•											
Pond 9		-											
	_	June 2010 Sa	June 2010 Sampling		October	/Nove	mber	2010 Sa	mpling				
---------------------------	--------------------------------------	--------------------	--------------------	--------------------	-----------------	-----------------	-----------------	---	-------------------------------------	---------------	---	---	--
Area of Interest (AOI)	Region within AOI	Sample Location	Sample Depth	Sample Location	Sample Depth	Sampling Method	Sampling Matrix	Lead by 6020 PCBs (8082 - Congeners)	TPHd/TPHmo by 8015B ^a	VOCs by 8260B	PAHs by 8270C-SIM	PCDDs/PCDFs by 8290	Purpose/Rationale for October/November 2010 Sampling Results of October/November 2010 Sam
Water Treatment					1 to 2	DP	S	1		1	1		The lead concentration of 150 mg/kg from soil sample OI IE-DP-
and Truck Dump				OUE-DP-058	5 to 6	DP	S	1		1	1		001, collected at 4 to 5 feet below ground surface (bgs)
AUI					6 to 7	DP	s	1		1	1		exceeded the California Human Health Screening Level Sampling completed as proposed. Lead and
			4 to 5		2 to 3	DP	s	1		1	1		(CHHSL) for residential soil of 80 mg/kg. The B(a)P TEQ
	Sewage Pumping Station/Drain Line	OUE-DP-001		OUE-DP-059	5 to 6	DP	S	1		1	1		exceeded the CHHSL (0.038 mg/kg) and PCE (0.039 mg/kg)
					6.5 to 7.5	DP	S	1		1	1		was also detected, although the concentration was well below concentrations did not exceed 0.016 mg/kg.
					2 to 3	DP	s	1		1	1		the screening level of 0.55 mg/kg. Additional investigation
				OUE-DP-060	5 to 6	DP	S	1		1	1		recommended to define lateral and vertical extent of elevated
					7 to 8	DP	S	1		1	1		
	Drain Lines			OUE-DP-061	0 to 0.5	HA	S	1					
				0010.001	0.5 to 1.5	HA	S	1					The lead concentration of 230 mg/kg in the surface (0 to 1 foot
		OUF-DP-003	0 to 1	OUE-DP-062	0 to 0.5	HA	S	1					- CHHSL of 80mg/kg. Additional investigation recommended to below human health screening levels. No ad
		001 2. 000			0.5 to 1.5	HA	S	1					 define lateral and vertical extent of elevated lead is recommended at this time.
				OUE-DP-063	0 to 0.5	HA	S	1					_ concentrations.
					0.5 to 1.5	HA	S	1					
				OUE-DP-064	0 to 0.5	HA	S		1		1		TPHd was detected at a concentration of 6, 330 mg/kg in the
					0.5 to 1.5	HA	S		1		1		subsurface (1 to 2 feet bgs) sample from this soil boring,
					3 to 4	HA	S		1		1		forensics for this location suggest the TPH is largely from NOM from OUE-DP-064 and -066 were ND for TP
					NA	HA	GW		X		X		- with probably minor amount of weathered heavy type residual sample from OUE-DP-065 was below the TP
					0 to 0.5	HA	S		1		1		oil. The groundwater TPHd concentration (0.41 mg/L) level. The B(a)P TEQ concentration at OUE-
	Drain Lines	OUE-DP-004	1 to 2	OUE-DP-065	0.5 to 1.5	HA	S	$\left\{ \begin{array}{c} \end{array} \right\}$	1		1		the TPHmo concentration (0.87 mg/l) exceeded the RWOCB recommanded; and to the porthwast of OUI
					3 to 4	HA	S		1		1		taste and odor value of 0.175 mg/L. The groundwater B(a)P to the west of OUE-DP-065. Soil will be colle
					NA O ta O E	HA	GW		X		X		- TEQ of 0.0434 μg/L also exceeded the Regional Water Quality 0.5-1.5 and 2.5-3.0 ft bgs to be analyzed for
					0 to 0.5	HA	5		1		1		$_$ Objective (RWQO) of 0.004 μ g/L, but not the primary screening concentrations in soil from locations OUE-DF
				OUE-DP-066	0.5 10 1.5		3		1		1		level of 0.3 μg/L. Additional investigation recommended to were below human health screening levels.
					3 10 4 NA	ПΑ	S		I V				concentrations.
					6 to 7	DP	S		1		1		
					10 to 10 5	DP	S		н		н		Elevated concentrations of PAHs and TPH were detected in
				OUE-DF-091	10 10 10.0		0						_ the sidewall samples collected from the FOL excavation. Due
	Fuel Oil Line			OUE-DP-092	12 to 12.5	DP	S		н		H to GW only one sample could be collected. Additional sample could be collected additional investigation is recommended to determine if elevated correctly additional sample could be collected.	investigation is recommended to determine if elevated investigations were below screening levels.	
	Excavation				5.5 to 6	DP	S		1		1	1 investigation is recommended to determine if elevated concernance concernance 1 concentrations of TPH and/or PAHs are present at the former bottom of the FOL excavation. Samples are to be collected below the fill material. sampli	concentrations of TPH and/or PAHs are present at the former sampling is recommended at this time.
					DP-092 7 to 7.5	DP	S		н		н		bottom of the FOL excavation. Samples are to be collected
				1	10 to 10.5	DP	S		Н		Н		below the fill material.

ling Discussion	Results of December 2010 Sampling Discussion
PAH eening levels. Low ons but lo additional	N/A
entrations were itional sampling	N/A
ndwater samples d, and the grab ld screening IP-065 (0.5-1.5 ft is are IDP-065 and one ted from 0-0.5, AHs. PAH -064 and -066	 B(a)P TEQ concentrations in soil samples from 0.5-2.5 ft bgs in OUE-DP-099 and from 2.5-3.0 ft bgs in OUE-DP-100 were greater than 10 times the human health screening level, at 1.5 mg/kg and 1.3 mg/kg, respectively. No additional sampling is needed for the RI, but pre-construction sampling may be warranted in the future to refine the boundaries of the elevated PAH concentrations in soil in this area.
PAH No additional	N/A

		June 2010 Sa	ampling	October/November 2010 Sampling										
Area of Interest	Region within	Sample	Sample	Sample	Sample Depth	Sampling Method	sampling Matrix	-ead by 6020	ordes (8082 - Congeners)	FPHd/TPHmo by 3015B ^a	/OCs by 8260B	AHs by 8270C-SIM	PCDDs/PCDFs by	Results of October/November 2010 Sampling Results of October/November 2010 Sampling
Water Treatment			- op		0 to 1	DP	S	_	- 0	<u>н</u>	-	1		
and Truck Dump					2.5 to 3.5	DP	S			Н		1		
AOI				OUE-DP-084	6.5 to 7.5	DP	S			Н		1		Sampling completed as proposed. The B(a)P T
	East of Eucl Oil				8.5 to 9.5	DP	S			Н		1		The B(a)P TEQ in soil sample FL-CS-014 from the eastern concentration in samples from both locations e
	Line Excavation	FL-CS-014	6.5-7		NA	DP	GW			Х		Х		s 0.61 mg/kg, which exceeds the CHHSL of 0.038 mg/kg.
	Boundary				0 to 1	DP	S			H		1		Additional investigation is recommended to define the lateral
					2.5 to 3.5	DP	S			н		1		and vertical extent of the elevated PAH concentrations additional sampling is recommended at this
				00E-DP-085	6.5 to 7.5		S			н		1		
					8.5 t0 9		GW					I V		
					0 to 0.7	DP	s			1		н		An elevated TPHd concentration of 2,684 mg/kg was detected in soil collected from 13.5 to 14.5 feet bgs at OUE-DP-012. Additional investigation is proposed to the west of OUE-DP-012 (adjust boring location as needed so that outside of backfilled
	West of the Truck Dump	OUE-DP-012	13.5 to 14.5	OUE-DP-083	5 to 5.5	DP	s			1		Н		fuel-line excavation) to delineate the TPHd and TPHmo concentrations in this direction. To determine the appropriate sample depth intervals, a boring will be completed to 10 feet below ground surface. Samples will be collected from at least 3
					8.5 to 9	DP	s			1		Н		depth intervals, with one sample from the surface interval, and subsurface intervals determined in the field based on groundwater elevation and visual observation, but at approximately 3.5 to 4.5 feet bgs and 6 to 7 ft bgs.
Compressor	Compressor				2 to 3	DP	S					1		The B(a)P TEQ in the soil sample collected from 4 to 5 feet bgs in the backfilled TPH excavation (location OUC-HA-053) was Sampling completed as proposed. B(a)P TEQ
House and Lath Building AOI	House Excavation	OUC-HA-053	4 to 5	OUE-DP-067	4 to 5	DP	s					1		0.25 mg/kg, which exceeds the CHHSL of 0.038 mg/kg. Additional investigation recommended to define backfill concentrations.
Sawmill #1 AOI					NA	HA	S	х						
					NA	HA	S	х						
				OUE-DP-069	NA NA	HA	S	X						_
					NA	HA	S	X						-
	South end of Sawmill #1 Building	OUE-DP-017	1 to 1.5	OUE-DP-070	NA	HA	S	x						 Lead was detected at a concentration of 160 mg/kg in the sample from 1 to 1.5 feet bgs (directly below the cap), compared to the CHHSL of 80 mg/kg for residential soil. Additional investigation recommended to define lateral and vertical extent of elevated lead concentrations. Refusal encountered during sampling with Locations will be attempted with drill rig in
				1	2.2 to 2.7	DP	S	+				+		
	Fast end of			OUE-DP-071	3 to 3.5	DP	S	1			$\left \right $	1		Lead was detected at a concentration of 190 mg/kg in the Shallow depth interval added where geotextile
	Sawmill #1	OUE-DP-024	2 to 2.5		7.5 to 8.5	DP	S	H			┢┼┤	H	<u> </u>	compared to the CHHSL of 80 mg/kg for residential soil. human health screening levels. PAH concentra
	Building				2.5 to 3	DP	S	1				1		Additional investigation recommended to define lateral and area are adequately characterized. No additio
				OUE-DP-072	3.5 to 4	DP	S	1			\square	1		vertical extent of elevated lead concentrations. recommended at this time.
	1			1	1 5.5 to 6.5	IUP	5	I H	1		1	н	1	

unling Discussion	Results of December 2010 Sampling Discussion
P TEQ s exceeded the E-DP-085 (2.5 to sidential CHHSL of cterized. No this time.	N/A
ations were below additional	N/A
Q concentrations el. No additional	N/A
th hand auger. in December.	Lead concentrations in soil samples from OUE-DP-068 were less than the lowest site-specific background concentration of 22 mg/kg (for marine sediment/bedrock). These data provide the southernmost extent of elevated lead concentrations for this area. Lead concentrations in the sample from 4.5-5.5 ft bgs in OUE-DP-069 and all three samples from OUE-DP-070 exceeded background. Lead in two samples from OU-DP-070, from 2.5-3.0 ft bgs and 3.0-4.0 ft bgs, were greater than the CHHSLr . One of these, from 3.0-4.0, was more than 10 times the CHHSLr at 3,800 mg/kg, No additional sampling is needed for the RI, but pre-construction sampling may be warranted in the future to refine the vertical and lateral boundaries of the elevated lead concentrations in soil in this area.
ile material was trations were below ntrations in this tional sampling is	N/A

		June 2010 Sa	ampling	October/November 2010 Sampling													
Area of Interest (AOI)	Region within AOI	Sample Location	Sample Depth	Sample Location	Sample Depth	Sampling Method	Sampling Matrix	Lead by 6020 PCBs (8082 -	Congeners)	1 РНd/ 1 РНmo by 8015B ^a	VOCs by 8260B	PAHs by 8270C-SIM	PCDDs/PCDFs by 8290	Purpose/Rationale for October/November 2010 Sampling	Results of October/November 2010 Sampli		
Sawmill #1 AOI					0.5 to 1.5	HA	S					1			Shallow depth interval added where geotextile		
				OUE-DP-073	2 to 3 HA S 1		encountered at OUE-DP-075. The B(a)P TEQ										
					3 to 4	HA	S					1		Ine B(a)P TEQ in the soil sample from 2 to 3.5 feet bgs at	samples from all three locations exceeded the		
	South of Sawmill	OUE-DP-026	2 to 3.5	OUE-DP-074	0.5 to 1.5	HΔ	S					1		the residential soil CHHSL of 0.038 mg/kg. Additional	and concentrations in some samples more than		
	#1 Building		2 10 0.0		3 to 3.8	HA	S					1		investigation recommended to define lateral and vertical extent	residential CHHSL of 0.038 mg/kg. The area is		
					0 to 0.5	HA	S					1		of elevated PAH concentrations.	collected at the time of removal No additional		
				OUE-DP-075	0.5 to 1.5	HA	S					1			recommended at this time.		
					2 to 3	HA	S					1		-			
Powerbouse and					3 to 4	HA	S					1			Sampling completed as proposed TPH conce		
Fuel Barn AOI	North of former South Pond			OUE-HA-033	0 to 0.5 0.5 to 1.5	НА НА	s s			1	1	н н		Investigate potential impacts to soil from unidentified material in above ground tank.	below screening levels and VOCs were not det exception of acetone (lilkely aboratory contamin additional sampling is recommended at this		
					0 to 0 5	НА	S					1					
				OUE-HA-034	0.5 to 1.5	НΔ	S					. 1					
				00E-11A-034	3 to 4	нΔ	9					1					
					0 to 0 5	нΔ	9					1					
				OUE-HA-035	0 to 0.5	НΔ	5					1					
				00211/000	2.5 to 3	НΔ	s					1					
					0 to 0.5	HA	s					1		The B(a)P TEQ in the samples collected around location HSA-	Deeper samples could not be collected at locat		
				OUE-HA-036	0.5 to 1.5	HA	S					1		4.3 (sampled during previous investigations) exceeded the CHHSLr. The B(a)P TEO concentration in the soil sample	samples from locations OUF-HA-035 and OUF		
	Northwost of	OUE-HA-016			NA	HA	S					-		collected from OUE-HA-018 at 0.5 to 1.5 feet bgs was of 0.44	below screening levels but concentrations in sa		
	former Fuel Barn	and	0.5 to 1.5	;	0 to 0.5	HA	S					1		mg/kg, which is more than ten times the CHHSL (0.038	OUE-HA-034 and -037 exceeded the CHHSLr.		
		OUE-HA-018		OUE-HA-037	0.5 to 1.5	HA	S					1		mg/kg). The concentration at OUE-HA-016 at 0.5 to 1.5 teet bas was of 0.18 mg/kg. Additional investigation recommended	factor of 10, and samples from OUE-HA-039 w		
					2 to 2.5	HA	S					1		to define lateral and vertical extent of elevated PAH	the CHHSLr. No additional sampling is reco		
					0 to 0.5	HA	S					+		concentrations and better characterize the area.	this time.		
				OUE-HA-038	0.5 to 1.5	HA	S					+					
					NA	HA	S					-					
					0 to 0.5	HA	S					+		1			
				OUE-HA-039	0.5 to 1.5	HA	S					+					
			OUE-HA-039	3 to 4	HA	S					+		1				

Ing Discussion	Results of December 2010 Sampling Discussion
concentration in screening level an ten times the s a likely les will be al sampling is	N/A
centrations were	
inant). No	N/A
is time.	
ations OUE-HA- concentrations in E-HA-036 were amples from ∴ Samples from r by less than a were less than ommended at	N/A

		June 2010 Sa	mpling		October	November 2010 Sampling										
Area of Interest (AOI)	Region within AOI	Sample Location	Sample Depth	Sample Location	Sample Depth	Sampling Method	Sampling Matrix	Lead by 6020 PCBs (8082 - Congeners)	TPHd/TPHmo by 8015B ^a VOCs by 8260B	PAHs by 8270C-SIM	PCDDs/PCDFs by 8290	Purpose/Rationale for October/November 2010 Sampling	Results of October/November 2010 Sampling Discussion	Results of December 2010 Sampling Discussion		
Powerhouse and					5 to 6	DP	s	1			1	The lead concentration of 3600 mg/kg in the subsurface soil				
Fuel Barn AOI	North of the Concrete Lined	OUE-HA-023B	6.5 to 8	OUE-DP-076	6 to 7	DP	S	1			1	sample collected from 6.5 to 8 feet bgs at OUE-HA-023B exceeds the residential soil CHHSL of 80 mg/kg. Additional investigation recommended to define lateral and vertical extent	Fourth interval added at agency request. Dioxin concentrations were below the screening level but lead concentrations were more than ten times the human health screening level. The			
	I di ik				8 to 9	DP	S	1			Н	of elevated lead concentrations. 11/3: drill down to native (max 10 to 15 ft). If native is more than 1 ft below the last proposed	area is a likely presumptive remedy area for lead. Confirmation	N/A		
					10 to 11		ç	4				interval, collect and hold an extra soil sample(s) from between	sampling is recommended at this time.			
					101011	DP	3	1				the last proposed sample interval and native.				
					12.5 to 13.5	DP	S	1		1	1	Elevated lead, SVOC (PAHs only) and dioxin/furan concentrations were detected at location HA-4.90 during				
				OUE-DP-077	15 to 16	DP	S	1		1	1	the foundation removal in 2006. Logs from the Site Investigation in this area (locations OUE-HA-023A and OUE-	Sampling completed as proposed, with a deeper interval			
	North of the Concrete Lined Tank	HA-4.90	2 to 2.5		17 to 18	DP	S	н		н	Н	HA-024) suggest the cap extends to 10 or 11 feet bgs, suggesting the soil may have been removed during the	B(a)P TEQ concentration at OUE-DP-078 exceeded the human health screening levels. Dioxin concentrations at both	N/A		
					2 to 2.7	DP	s	1		1	1	determine soil/cap interface and COI concentrations in this area. Appropriate sample depths will be determined in the field,	locations were below screening levels. The sample from 10- 10.5 ft bgs at location OUE-DP-078 contained a lead	N/A		
				00E-DP-078	5 to 5.5	DP	s	1		1	1	but will at a minimum be collected from six inches below the cap. 11/3: drill down to native (max 10 to 15 ft). If native is more than 1 ft below the last proposed interval, collect and hold	is recommended at this time.			
					10-10.5	DP	S	+		н	Н	an extra soil sample(s) from between the last proposed sample interval and native				
Powerhouse and					0 to 0.5	DP	S	1					Sampling completed as proposed. The lead concentrations at	Samples were collected from OUE-DP-095 and -101, west and		
Fuel Barn AOI					0.5 to 1.5	DP	S	1					OUE-DP-087 from 3.5-4.5 ft bgs was 260 mg/kg, which	northwest of OUE-DP-087. Samples from 2.5-3.0 ft bgs and		
				00E-DI -000	3 to 3.5	DP	S	1				Lead was detected at a concentration of 200 mg/kg in sample	exceeds background and the CHHSLr. Samples will be	5.5-6 ft bgs in OUE-DP-095 and from 3.5-4 ft bgs in OUE-DP-		
	Northwest of the	HA-4.66 &	4 to 4 5		5 to 6	DP	S	1		HA-4.66 and 150 mg/kg from sample HA-4.67 both collected from 4 to 4.5 feet bgs, compared to the CHHSL of 80 mg/kg for		from 4 to 4.5 feet bas, compared to the CHHSL of 80 mg/kg for	collected from four depths at one additional location	101 contained lead concentrations that exceeded the CHHSLr		
	Powerhouse	HA-4.67			0 to 0.5	DP	S	1				residential soil. Additional investigation recommended to define	northwest of OUE-DP-087 and analyzed for lead to	by less than an order of magnitude. Deeper samples from bo		
				OUE-DP-087	0.5 to 1.5	DP	S	1			lateral and vertical extent of elevated lead concentrations.	characterize soil concentrations in this area. Soil in the	CHSSL r. The area is adequately characterized so no			
					3.5 to 4.5	DP	S	1					line excavation area is clean backfill)	additional samples are recommended.		
					5 to 6	DP	S	1		1				additional samples are recommended.		

		June 2010 Sampling		October/November 2010 Sampling												
Area of Interest (AOI)	Region within AOI	Sample Location	Sample Depth	Sample Location	Sample Depth	Sampling Method	Sampling Matrix	Lead by 6020 PCBs (8082 -	congeners) TPHd/TPHmo by	8015B ^a	VOCs by 8260B	PAHs by 8270C-SIM	PCDDs/PCDFs by 8290	Purpose/Rationale for October/November 2010 Sampling	Results of October/November 2010 Sampl	
Powerhouse					0.5 to 1.5	DP	S	1					1	Elevated 2,3,7,8-TCDD TEQ concentrations were detected in		
and Fuel Barn				OUE-DP-079	2.5 to 3	DP	S	1					1	the surface (0 to 0.5 foot bgs) soil sample from this boring at		
AOI					3.5 to 4	DP	S	1					1	203 pg/g and from the subsurface (0.5 to 1.5 feet bgs) soil	Sampling completed as proposed, with a deep	
					5 to 5.5	DP	S	1					1	sample at 2,730 pg/g, compared to the California Dioxin	collected at location OUE-DP-080 at agency re	
	Fly ASN Reinjection	OUE-DP-052	0 to 0.5	OUE-DP-080	OUE-DP-080 5.5 to 6.5 DP S 1 1 Remediation Goal of 50 pg/g and the CHHSL of 4.6 pg/g.	elevated lead concentrations were detected at										
	System	002-01-002	0.5 to 1.5	i	10 to 11	DP	S	1					1	vertical extent of elevated dioxin/furan concentrations. Drill	5.5 to 6.5 feet bgs. Additional samples are r	
	- ,				15.5 to 16		5	H 1	_				H 1	down to native (max 10 to 15 ft). If native is more than 1 ft	recommended because the area is adequat	
					2.5 10 5		0	-		-			-	below the last proposed interval, collect and hold an extra soil	characterized.	
				OUE-DP-081	5 10 5.5	DP	3	1					1	sample(s) from between the last proposed sample interval and		
					NA	DP	S	Х					Х	halive		
					0 to 0.5	DP	S	1					1		Sampling completed as proposed, with a dec	
				OUE-DP-088	0.5 to 1.5	DP	S	1					1		Sampling completed as proposed, with a deep collected at locations OLIE-DP-088 and -090 to	
					3 to 4	DP	S	1					Н	Elevated 2,3,7,8-TCDD TEQ and lead concentrations were	agency request. Dioxin concentrations were v CDRG but incidentally exceeded the CHHSL.	
	East of the				6 to 7	DP	S	+					Н	detected in samples south of the proposed sampling locations.		
	Powerhouse	HA-4.90 & OUE-	0.5 to		5.4 to 5.9	DP	S	1					1	presence of lead and/or Dioxins/Furans where samples have not yet been collected. Drill down to native (max 10 to 15 ft). If	from 10 to 11.5 ft bgs at OUE-DP-089 was not	
	including the Fly	DP-052	1.5	OUE-DP-089	5.9 to 6.7	DP	S	1					1		dioxins/furans. Lead concentrations in sample	
	System				10 to 11 5	DP	0 0	1					- -	native is more than 1 ft below the last proposed interval, collect	level, with the highest concentrations detected	
	Cycloni				1 to 1 5		9	1					1	and hold an extra soil sample(s) from between the last	Concentrations in shallower samples at OUE-	
					1101.5		0	1	_				1	proposed sample interval and halive	also slightly above the screening level. Addition	
				00E-DP-090	2 to 2.5		S	1					1		sampling is recommended from 1 location	
					4.5 to 5	DP	5	1					н		HA-4.59 to to complete the characterization of	
					4.5 to 5	DP	S	+					н		to 4 depth intervals between the cap and appr bgs.	
	Southern Perimeter Former Powerhouse	OUD-DP-043 and -044	NA	OUE-DP-082/ OUE-DP-093	6.8 to 7.3	DP	S	1	-	+			1	Soil sampling at locations OUE-DP-043 and OUE-DP-044 was unsuccessful due to refusal in concrete (presumed to be remnants of Powerhouse foundation). These samples were intended to investigate lead-based paint impacts and	Refusal on 2 attempts at originally proposed lo 082. Location moved east of OUE-DP-082 and	
					11.2 to 11.7	DP	S	+	-	+				dioxin/furan concentrations. Although 3 attempts were made, 1 more attempt will be made to collect a soil sample to address potential lead and dioxin contamination associated with removal of the building foundation.	analysis. Lead and dioxin/furan concentrations screening levels. No additional sampling is i	

ling Discussion	Results of December 2010 Sampling Discussion
per interval equest. Deeper p refusal. Slightly t OUE-DP-080 at not tely	N/A
ber interval o comply with vell below the The sample n-detect for s from the d the screening d at OUE-DP-090. DP-089 were onal soil proximate to f lead ollected from up oximately 10 feet	One sample from 5.5-6.0 ft bgs at OUE-DP-094 (northeast of HA-4.59) contained lead at 2,100 mg/kg, more than 10 times the CHHSLr. A deeper sample from that boring contained lead at 22 mg/kg, less than the CHHSLr. No additional sampling is needed for the RI, but pre-construction sampling may be warranted in the future to refine the boundaries of the elevated lead concentrations in soil in this area.
ocation OUE-DP- d renamed OUE- well as TPH s were below recommended.	N/A

Table 4-9 Rationale and Results Evaluation for Step-Out Sampling Events Oct/Nov 2010 and Dec 2010 Remedial Investigation Report Operable Unit-E Former Georgia-Pacific Wood Products Facility Fort Bragg, California

		June 2010 Sa	ampling		October	/Nove	mber	2010	Sam	pling					
Area of Interest (AOI)	Region within AOI	Sample Location	Sample Depth	Sample Location	Sample Depth	Sampling Method	Sampling Matrix	Lead by 6020 PCBs (8082 -	Congeners)	1РН d/1РН mo by 8015В ^a	VOCs by 8260B	PAHs by 8270C-SIM	PCDDs/PCDFs by 8290	Purpose/Rationale for October/November 2010 Sampling	Results of October/November 2010 Sampl
Transect Sample	E Locations Adde	d to Matrix Base	d on Field	Observations											
Powerhouse and Fuel Barn	E-W Transect	NA	NA	OUE-T1-1	15.5 to 16	DP	S						+	Ash observed	2,3,7,8-TCDD TEQ was 0.0104 pg/g which wa CHHSL and CDRG. No additional sampling
	N-S Transect	NA	NA	OUE-T2-2	6 to 6.5	DP	S						+	Ash observed	2,3,7,8-TCDD TEQ was 31.6 pg/g which is bel and CDRG and similar to the concentration in HA-4.68. Additional samples will be collected locations in this area to investigate the pre Borings will be completed to 10 feet bgs and s based on the observation of ash and analyzed dioxins/furans. Deeper samples will also be location OUE-T2-2, with the sample from 7 submitted for immediate dioxin/furan analy sample from 9 to 10 feet submitted on hold
Sawmill #1 AOI	N-S Transect	NA	NA	OUE-T5-3	3 to 3.5	DP	S			+				Fuel-like odor and black sheen	TPH concentration was above the screening le concentrations in this area are adequately cha additional sampling is recommended.

Notes and Acronyms:

1 = from work plan and agency comments prior to field event

+ = analysis added based on field observation

x = proposed but not collected. See " results" column for details.

H = collected but submitted on hold.

NA = not applicable.

CDRG = California Dioxin Remedial Goal

CHHSL = California Human Health Screening Level

PRA = presumptive remedy area

BGS = below ground surface

ling Discussion	Results of December 2010 Sampling Discussion
a well below the	
required.	N/A
low the CHHSL adjacent location ed from three sence of ash. samples collected i for collected from to 8 feet bgs ysis, and a J. evel but	OUE-T2-2b was advanced adjacent to OUE-T2-2a (previously OUE-T2-2). A sample from 6-6.5 ft bgs contained 2,3,7,8- TCDD TEQ at 36 pg/g. Ash was not observed in three additional borings advanced nearby, so no additional samples were submitted for analysis for dioxins/furans. No additional sampling is recommended.
aracterized; no	
	N/A

Table 4-11 Dissolved Metals Detected in Groundwater Grab Samples

	Sample Date / Analyte	Antimony	Arsenic	Barium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Thallium	Vanadium	Zinc
Location ID	Units	µg/L	μg/L	μg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L
Location ib	PSL	6	10	1000	50	11	1300	15	180	100	50	2	36	5000
	WQO	6	0.004	1000	50	50	200	0.2	10	12	10	0.1	50	2000
	Bkgd	0.40	2.5	25.6	1.5	0.64	1.5	1	0.91	1.1	0.57	0.97	3	12.2
DP-5.59	20-Oct-05	<1	<1	1200 [PSL,WQO]	<1	<1	<1	<1	6	<1	<1	<1	3	<5
HSA-4.1	23-Jan-06	<1	6.2 [WQO]	83	1.3	1.3	1	<1	5.8	1.4	<1	<1	4.8	8.2
HSA-4.4	23-Jan-06	<1	5.7 [WQO]	2400 [PSL,WQO]	8	4.3	12	51 [PSL,WQO]	<1	8	2.1	<1	38 [PSL]	8/
HSA-4.5	23-Jan-06	1.5	3.1 [WQU]	230	1.1	2.2	<1	<1	19 [WQO]	2.3	1.7	<1	6.5	3.7
HSA-4.0	23-Jan-06	1.1	10 [PSL,WQO]	100	1.7	1.4	< 1	>	30 [WQU]	1.2	1.7	1 9 1 41 10001	10	J.0 44 [7 7]
HSA-0.29	10-Jan-06	<1	2.1 [2.1]	250	1.4[1]	24	<1	<1 [<1]	<1 [1.4]	1.5[1.0]	< [<]	1.0 [<1] [WQU]	2.0[1.0]	11[7.7]
	19-Jan-06	<1.0	4.3 [WQU]	250	1.0	3.4	<1	<1.0		1.9	2	<1.0	3.1 -1.0	12
OUE-DP-001	28-Jun-10	<1.0	<1.0 2 2 IWOO1	<1.0	<1.0	<1.0	43	<1.0	<1.0	0.7	<1.0	<1.0	<1.0	<5.0
OUE-DF-002	20-Jun-10	<1.0	-10[10]	410	10[15]	21[22]	32 2 1 [~1 0]	<1.0		0.7	<1.0	<1.0	2.9	<0.0
OUE-DF-003	23- Jun-10	<1.0 [<1.0]	<1.0 [1.3]	53 [110]	-10	2.1 [2.2]	2.1 [<1.0]	<1.0 [<1.0]	<1.0703 [4.073]	5.3	<1.0 [<1.0]	<1.0 [<1.0]	-1.0	<5.0
OUE-DP-018	23-Jun-10	~1.0			<1.0			<1.0			<1.0 			
OUE-DP-024	23-Jun-10	<10	23	150	<10	<10	17	<1.0	<10	51	<10	<10	16	<50
OUE-DP-024	29-Jun-10	<1.0	14 [PSI_WOO]	180	<1.0	17	<1.0	<1.0	<10/11	1.9	<1.0	<1.0	6.7	<21 /UB
OUE-DP-027	25-Jun-10	<10[<10]	2.5 [3.0] [WQO]	340 [390]	<10[<10]	<1.0 [1.1]	<10[<10]	<10[<10]	<10[<10]	<10[<10]	<10[<10]	<10[<10]	<10[<10]	6.0 [<5.0]
OUE-DP-028	23-Jun-10	<1.0	<1.0	52	<1.0	<1.0	31	<1.0	<1.0	7.4	<1.0	<1.0	<1.0	5.7
OUE-DP-032	29-Jun-10	<1.0	15 [PSL.WQ0]	60	<1.0	2.8	<1.0	<1.0	<1.0 /UJ	<1.0	<1.0	<1.0	<1.0	<32 /UB
OUE-DP-033	30-Jun-10	<1.0	1.9	53	<1.0	1.6	1.8	<1.0	<1.0 /UJ	2.4	<1.0	<1.0	1.6	<39 /UB
OUE-DP-034	26-Jun-10	<1.0	4.2 [WQO]	51	<1.0	<1.0	<1.0	<1.0	3.3	<1.0	<1.0	<1.0	5	<5.0
OUE-DP-035	26-Jun-10	<1.0	6.9 [WQO]	170	<1.0	1	<1.0	<1.0	1.5	<1.0	<1.0	<1.0	1.1	5.9
OUE-DP-036	25-Jun-10	<1.0	1.4	68	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0
OUE-DP-037 (Shallow)	23-Jun-10	<1.0	<1.0	290	<1.0	<1.0	18	1.4 [WQO]	<1.0	6.6	<1.0	<1.0	<1.0	<5.0
OUE-DP-037	23-Jun-10	<1.0	6.7 [WQO]	380	<10	<10	7.7	<1.0	7.5	6.6	<10	<1.0	1.4	12
(Deep) OUE-DP-038	20 0011 10	1.0	0.1 [1140]		(1.0	1.0		(1.0		0.0	(1.0	(1.0		
(Shallow)	24-Jun-10	<1.0	<1.0	2000 [PSL,WQO]	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0
(Deep)	23-Jun-10	<1.0	13 [PSL,WQO]	280	2.8	1.1	20	<1.0	38 [WQO]	12	<1.0	<1.0	3.5	48
OUE-DP-039 (Shallow)	23-Jun-10	<1.0	3.0 [WQO]	340	<1.0	<1.0	12	<1.0	6.1	5.3	<1.0	<1.0	3.2	<5.0
OUE-DP-039 (Deep)	24-Jun-10	<1.0	3.0 [WQO]	200	1.2	<1.0	<1.0	<1.0	5	<1.0	<1.0	<1.0	3.9	<5.0
OUE-DP-040 (Shallow)	23-Jun-10	<1.0	<1.0	1200 [PSL,WQO]	<1.0	<1.0	13	<1.0	<1.0	8.3	<1.0	<1.0	<1.0	47
OUE-DP-040	25-Jun-10	<1.0	<1.0	900	1.6	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	<1.0	<1.0	13
OUE-DP-046	23-Jun-10	<1.0	4.8 [WQO]	560	<1.0	9.2	19	<1.0	16 [WQO]	17 [WQO]	<1.0	<1.0	<1.0	150
OUE-DP-057 (Shallow)	25-Jun-10	<1.0	<1.0	1100 [PSL,WQO]	1.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.2	<5.0
OUE-DP-057	24-Jun-10	<1.0 [<1.0]	<1.0 [<1.0]	360 [360]	1.3 [2.8]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	1.5 [1.4]	<5.0 [<5.0]

Table 4-11 Dissolved Metals Detected in Groundwater Grab Samples

	Sample Date / Analyte	Antimony	Arsenic	Barium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Thallium	Vanadium	Zinc
Location ID	Units	µg/L	μg/L	μg/L	µg/L	μg/L	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	μg/L
Location iD	PSL	6	10	1000	50	11	1300	15	180	100	50	2	36	5000
	WQO	6	0.004	1000	50	50	200	0.2	10	12	10	0.1	50	2000
	Bkgd	0.40	2.5	25.6	1.5	0.64	1.5	1	0.91	1.1	0.57	0.97	3	12.2
OUE-HA-012	25-Jun-10	<1.0	4.0 [WQO]	470	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<5.0
OUE-HA-013 (Shallow)	24-Jun-10	<1.0	2.2	640	<1.0	<1.0	<1.0	<1.0	4.3	<1.0	<1.0	<1.0	1.7	5.1
OUE-HA-013 (Deep)	24-Jun-10	<1.0	15 [PSL,WQO]	910	<1.0	<1.0	<1.0	<1.0	12 [WQO]	1.4	<1.0	<1.0	<1.0	<5.0
OUE-HA-015	25-Jun-10	1.3	3.9 [WQO]	8.3	<1.0	<1.0	<1.0	<1.0	16 [WQO]	6.9	<1.0	<1.0	7.4	5.6
OUE-HA-016	25-Jun-10	<1.0	<1.0	540	<1.0	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0
OUE-HA-017	25-Jun-10	<1.0	<1.0	620	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0
OUE-HA-018	25-Jun-10	<1.0	1.1	2300 [PSL,WQO]	5.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.8
OUE-HA-020	24-Jun-10	4	2.3	200	<1.0	2.6	<1.0	<1.0	55 [WQO]	30 [WQO]	<1.0	<1.0	1.1	10
OUE-HA-022	23-Jun-10	<1.0	<1.0	1400 [PSL,WQO]	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0
OUE-HA-023A	29-Jun-10	<1.0 [<1.0]	2.6 [3.0] [WQO]	91 [100]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	11 /J [11 /J] [WQO]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	3.9 [3.7]	<7.8 /UB [<58 /UB]
OUE-HA-023B	29-Jun-10	2.3	2.6 [WQO]	900	1.9	1	24	<1.0	3.3 /J	<1.0	<1.0	<1.0	1.1	<5.0
OUE-HA-024	30-Jun-10	<1.0	7.8 [WQO]	37	<1.0	<1.0	1	<1.0	14 /J [WQO]	2.1	<1.0	<1.0	7.8	<14 /UB
P4-15	19-Mar-03	<60	<5	34	<10	<20	<10	<3	<20	<20	<5	<5	<10	<20
P4-16	20-Mar-03	<60	<5	63	<10	<20	<10	<3	<20	<20	6.5	<5	<10	<20

	Sample Date / Analyte	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24
Location ID	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Location ID	RBSC-ali_gw	0.597	1.22	1.22	1.22	1.22	1.22
	RBSC-aro_gw		0.31	0.31	0.31	0.31	0.47
	RWQCB			0.05			
DP-5.54	05-Oct-05				< 0.05	<0.05	<0.05
DP-5.55	05-Oct-05				< 0.05	<0.05	<0.05
DP-5.56	05-Oct-05				< 0.05	<0.05	<0.05
DP-5.59	20-Oct-05				< 0.05	<0.05	0.059
HSA-4.1	23-Jan-06				< 0.05	<0.05	<0.05
HSA-4.2	25-Jan-06				<0.05	<0.05	<0.05
HSA-4.3	25-Jan-06				<0.05	<0.05	<0.05
HSA-4.4	23-Jan-06	<0.05	<0.05	ND	<0.05	<0.05	0.18
HSA-4.5	23-Jan-06	< 0.05	< 0.05	ND	<5	<5	16 [RBSC-ali_gw,RBSC-aro_gw]
HSA-4.6	23-Jan-06	< 0.05	< 0.05	ND	< 0.05	0.16	0.95 [RBSC-aro_gw]
HSA-6.29	18-Jan-06				<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]
HSA-6.30	19-Jan-06				<0.05	<0.05	<0.05
OUE-DP-001	28-Jun-10				<0.05	<0.05	<0.05
OUE-DP-002	28-Jun-10				<0.05	<0.05	0.0097 J
OUE-DP-003	30-Jun-10				<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]
OUE-DP-004	23-Jun-10				0.0099 J	<0.05	0.4
OUE-DP-018	23-Jun-10				<0.05	<0.05	0.037 J
OUE-DP-024	23-Jun-10				< 0.05	0.1	2.1 [RBSC-ali_gw,RBSC-aro_gw]
OUE-DP-025	06-Nov-10				0.025 J [<0.05]	1.6 /J [0.25 /J] [RBSC-ali_gw,RBSC-aro_gw]	20 /J [3 /J] [RBSC-ali_gw,RBSC-aro_gw]
OUE-DP-026	29-Jun-10				<0.05	<0.05	<0.05 J/UB
OUE-DP-027	25-Jun-10				<0.05 [0.011 J]	<0.05 [0.01 J]	0.018 J [0.019 J]
OUE-DP-028	23-Jun-10				<0.05	<0.05	0.013 J
OUE-DP-032	29-Jun-10				<0.05	<0.05	<0.05 J/UB
OUE-DP-033	30-Jun-10				<0.05	<0.05	0.11
OUE-DP-034	26-Jun-10				<0.05	<0.05	<0.05
OUE-DP-035	26-Jun-10				0.012 J	0.015 J	0.026 J
OUE-DP-036	25-Jun-10				<0.05	<0.05	<0.05
OUE-DP-037 (Shallow)	23-Jun-10				<0.05	<0.05	<0.05
OUE-DP-037 (Deep)	23-Jun-10				<0.05	<0.05	<0.05
OUE-DP-038 (Shallow)	24-Jun-10				<0.05	<0.05	<0.05
OUE-DP-038 (Deep)	23-Jun-10				<0.05	<0.05	<0.05
OUE-DP-039 (Shallow)	23-Jun-10				<0.05	<0.05	0.037 J
OUE-DP-039 (Deep)	24-Jun-10				<0.05	<0.05	0.1
OUE-DP-040 (Shallow)	23-Jun-10				<0.05	<0.05	0.012 J
OUE-DP-040 (Deep)	25-Jun-10				<0.05	<0.05	0.03 J
OUE-DP-046	23-Jun-10				< 0.05	<0.05	<0.05

	Sample Date / Analyte	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24
Location ID	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Location ID	RBSC-ali_gw	0.597	1.22	1.22	1.22	1.22	1.22
	RBSC-aro_gw		0.31	0.31	0.31	0.31	0.47
	RWQCB			0.05			
OUE-DP-054	28-Jun-10				< 0.05	<0.05	0.054
OUE-DP-055	28-Jun-10				< 0.05	<0.05	0.04 J
OUE-DP-056	28-Jun-10				< 0.05	<0.05	0.027 J
OUE-DP-057 (Shallow)	25-Jun-10				0.011 J	0.012 J	<0.05
OUE-DP-057 (Deep)	24-Jun-10				<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]
OUE-DP-064	05-Nov-10				< 0.05	<0.05	<0.05
OUE-DP-065	05-Nov-10				< 0.05	<0.05	0.04 J
OUE-DP-066	05-Nov-10				< 0.05	<0.05	<0.05
OUE-DP-094	16-Dec-10				< 0.05	<0.05	<0.05
OUE-DP-099	16-Dec-10				< 0.05	<0.05	<0.05
OUE-DP-100	16-Dec-10				< 0.05	<0.05	<0.05
OUE-DP-102	16-Dec-10				< 0.05	<0.05	<0.05
OUE-HA-012	25-Jun-10				< 0.05	<0.05	<0.05
OUE-HA-013 (Shallow)	24-Jun-10				<0.05	<0.05	0.031 J
OUE-HA-013 (Deep)	24-Jun-10				<0.05	<0.05	0.14
OUE-HA-015	25-Jun-10				< 0.05	<0.05	0.0097 J
OUE-HA-016	25-Jun-10				<0.05	<0.05	<0.05
OUE-HA-017	25-Jun-10				<0.05	<0.05	<0.05
OUE-HA-018	25-Jun-10				<0.05	<0.05	0.033 J
OUE-HA-020	24-Jun-10				<0.05	<0.05	0.022 J
OUE-HA-022	23-Jun-10				<0.05	<0.05	<0.05
OUE-HA-023A	29-Jun-10				<0.05 [<0.05]	<0.05 [<0.05]	<0.05 J/UB [<0.05 J/UB]
OUE-HA-023B	29-Jun-10				<0.05	<0.05	<0.05 J/UB
OUE-HA-024	30-Jun-10				<0.05	<0.05	0.096
P3-46	18-Mar-03			0.11 [RWQCB]			
P3-47	17-Mar-03			0.17 [RWQCB]			
P4-15	19-Mar-03			< 0.05			
P4-16	20-Mar-03			< 0.05			
P4-18	28-Mar-03			<0.05			
P4-20	28-Mar-03			<0.05			
P5-1	24-Mar-03			<0.05			
P5-2	24-Mar-03			<0.05			
P5-4	24-Mar-03			< 0.05			

	Sample Date /	Total Diesel	Motor Oil C24 C26
	Analyte	(C10-C24) ²	Motor On 624-636
Location ID	Units	mg/L	mg/L
Location ID	RBSC-ali_gw	1.22	31.3
	RBSC-aro_gw	0.47	0.47
	RWQCB	0.1	0.175
DP-5.54	05-Oct-05	ND	<0.3
DP-5.55	05-Oct-05	ND	<0.3
DP-5.56	05-Oct-05	ND	<0.3
DP-5.59	20-Oct-05	0.059	0.38 [RWQCB]
HSA-4.1	23-Jan-06	ND	<0.3
HSA-4.2	25-Jan-06	ND	<0.3
HSA-4.3	25-Jan-06	ND	<0.3
HSA-4.4	23-Jan-06	0.18 [RWQCB]	0.59 [RBSC-aro_gw,RWQCB]
HSA-4.5	23-Jan-06	16 [RBSC-ali_gw,RBSC-aro_gw,RWQCB]	130 H [RBSC-ali_gw,RBSC-aro_gw,RWQCB]
HSA-4.6	23-Jan-06	1.11 [RBSC-aro_gw,RWQCB]	3 H [RBSC-aro_gw,RWQCB]
HSA-6.29	18-Jan-06	ND [ND]	<0.3 [<0.3]
HSA-6.30	19-Jan-06	ND	<0.3
OUE-DP-001	28-Jun-10	ND	<0.3
OUE-DP-002	28-Jun-10	0.0097	<0.3
OUE-DP-003	30-Jun-10	ND [ND]	0.12 J [<0.3]
OUE-DP-004	23-Jun-10	0.4099 [RWQCB]	0.87 [RBSC-aro_gw,RWQCB]
OUE-DP-018	23-Jun-10	0.037	0.11 J
OUE-DP-024	23-Jun-10	2.2 [RBSC-ali_gw,RBSC-aro_gw,RWQCB]	4.3 [RBSC-aro_gw,RWQCB]
OUE-DP-025	06-Nov-10	21.625 /J [3.25 /J] [RBSC-ali_gw,RBSC-aro_gw,RWQCB]	34 /J [5.4 /J] [RBSC-ali_gw,RBSC-aro_gw,RWQCB]
OUE-DP-026	29-Jun-10	ND /UB	0.13 J
OUE-DP-027	25-Jun-10	0.018 [0.04]	<0.3 [<0.3]
OUE-DP-028	23-Jun-10	0.013	<0.3
OUE-DP-032	29-Jun-10	ND /UB	<0.3
OUE-DP-033	30-Jun-10	0.11 [RWQCB]	0.77 [RBSC-aro_gw,RWQCB]
OUE-DP-034	26-Jun-10	ND	<0.3
OUE-DP-035	26-Jun-10	0.053	<0.3
OUE-DP-036	25-Jun-10	ND	<0.3
OUE-DP-037	23-Jun-10	ND	<0.3
(Shallow)	20 0011 10		
OUE-DP-037	23-Jun-10	ND	<0.3
(Deep)	20 0011 10		
OUE-DP-038	24- Jun-10	ND	<0.3
(Shallow)	24 0001 10		
OUE-DP-038	23-Jun-10	ND	<0.3
(Deep)	20 0411 10		
OUE-DP-039	23-Jun-10	0.037	0.32 [RWQCB]
(Shallow)	20 0411 10		0.01 [201]
OUE-DP-039	24-Jun-10	0.1	0.48 [RBSC-aro_gw.RWQCB]
(Deep)	24 041110		
OUE-DP-040	23-Jun-10	0.012	<0.3
(Shallow)	20 0011 10	0.012	
OUE-DP-040 (Deep)	25-Jun-10	0.03	0.16 J
OUE-DP-046	23-Jun-10	ND	<0.3

	Sample Date /	Total Diesel	Mater 01 004 000
	Analyte	(C10-C24) ²	Motor OII C24-C36
Location ID	Units	mg/L	mg/L
Location ID	RBSC-ali_gw	1.22	31.3
	RBSC-aro_gw	0.47	0.47
	RWQCB	0.1	0.175
OUE-DP-054	28-Jun-10	0.054	0.19 J [RWQCB]
OUE-DP-055	28-Jun-10	0.04	0.19 J [RWQCB]
OUE-DP-056	28-Jun-10	0.027	<0.3
OUE-DP-057	25- Jun-10	0.023	<0.3
(Shallow)	23-Juli-10	0.025	۷0:5
OUE-DP-057	24 Jun 10		-0.3 [-0.3]
(Deep)	24-Juli-10	[10] [10]	<0.3 [<0.3]
OUE-DP-064	05-Nov-10	ND	<0.3
OUE-DP-065	05-Nov-10	0.04	0.16 J
OUE-DP-066	05-Nov-10	ND	<0.3
OUE-DP-094	16-Dec-10	ND	<0.3
OUE-DP-099	16-Dec-10	ND	<0.3
OUE-DP-100	16-Dec-10	ND	<0.3
OUE-DP-102	16-Dec-10	ND	<0.3
OUE-HA-012	25-Jun-10	ND	<0.3
OUE-HA-013	24- Jun-10	0.031	0.13.1
(Shallow)	24-Juli-10	0.031	0:13 5
OUE-HA-013	24- Jun-10		1 1 IPBSC-aro, dw PWOCBI
(Deep)	24-5011-10	0.14 [KW&CD]	
OUE-HA-015	25-Jun-10	0.0097	<0.3
OUE-HA-016	25-Jun-10	ND	<0.3
OUE-HA-017	25-Jun-10	ND	<0.3
OUE-HA-018	25-Jun-10	0.033	0.11 J
OUE-HA-020	24-Jun-10	0.022	<0.3
OUE-HA-022	23-Jun-10	ND	<0.3
OUE-HA-023A	29-Jun-10	ND /UB [ND /UB]	0.12 J [0.21 J] [RWQCB]
OUE-HA-023B	29-Jun-10	ND /UB	0.12 J
OUE-HA-024	30-Jun-10	0.096	0.51 [RBSC-aro_gw,RWQCB]
P3-46	18-Mar-03	200 HY [RBSC-ali_gw,RBSC-aro_gw,RWQCB]	
P3-47	17-Mar-03	23 HY [RBSC-ali_gw,RBSC-aro_gw,RWQCB]	
P4-15	19-Mar-03	0.054 HY	<0.3
P4-16	20-Mar-03	0.33 HY [RWQCB]	
P4-18	28-Mar-03	0.066 Y	
P4-20	28-Mar-03	0.085 Y	
P5-1	24-Mar-03	3.1 HY [RBSC-ali_gw,RBSC-aro_gw,RWQCB]	
P5-2	24-Mar-03	0.5 HY [RBSC-aro_gw,RWQCB]	
P5-4	24-Mar-03	44 HY [RBSC-ali_gw,RBSC-aro_gw,RWQCB]	

	Sample Date / Analyte	4-Methylphenol	Benzoic acid	Benzyl Alcoho	bis(2-Ethylhexyl)Phthalate	Phenol	Resorcinol
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	PSL	180	150000	3700	4	11000	
	WQO		28000		4	300	500
OUE-DP-001	28-Jun-10	<9.4	<47	<9.4	2.6 J	<9.4	<19
OUE-DP-002	28-Jun-10	<9.4	<47	<9.4	<9.4	<9.4	<19
OUE-DP-003	30-Jun-10	1.8 J [0.80 J]	<48 [<48]	<9.5 [<9.6]	<9.5 [<9.6]	<9.5 [<9.6]	<19 /UJ [<19 /UJ]
OUE-DP-004	23-Jun-10	<9.4	<47	<9.4	<9.4	<9.4	<19
OUE-DP-018	23-Jun-10	<9.4	<47	<9.4	<9.4	<9.4	<19
OUE-DP-026	29-Jun-10	<9.4	<47	<9.4	<9.4	<9.4	<19 /UJ
OUE-DP-027	25-Jun-10	3.7 J [4.5 J]	<47 [13 J]	<9.4 [<9.5]	<9.4 [<9.5]	2.6 J [3.8 J]	14 J [14 J]
OUE-DP-028	23-Jun-10	<9.4	<47	<9.4	14 [PSL,WQO]	<9.4	<19
OUE-DP-032	29-Jun-10	11	15 J	1.5 J	<9.4	<9.4	<19 /UJ
OUE-DP-033	30-Jun-10	<9.4	<47	<9.4	<9.4	<9.4	<19 /UJ
OUE-DP-034	26-Jun-10	<9.7	<49	<9.7	<9.7	<9.7	<19
OUE-DP-035	26-Jun-10	<9.9	<50	<9.9	<9.9	<9.9	<20
OUE-DP-036	25-Jun-10	<9.4	<47	<9.4	<9.4	<9.4	<19
OUE-DP-037	22 Jun 10	-0.4	- 47	-0.4	-0.1	-0.4	-10
(Shallow)	23-Jun-10	<9.4	<47	<9.4	< 9.4	<9.4	<19
OUE-DP-037	22 Jun 10	-0.4	- 47	-0.4	-0.1	-0.4	-10
(Deep)	23-Jun-10	<9.4	<47	<9.4	< 9.4	<9.4	<19
OUE-DP-038	24 Jun 10	-0.4	<47 /111	-0.4	-0.1	-0.4	-10
(Shallow)	24-Jun-10	<9.4	<47/03	<9.4	< 9.4	<9.4	<19
OUE-DP-038	22 Jun 10	-0.4	22.1	-0.4	-0.1	-0.4	-10
(Deep)	23-3011-10	<3.4	32 J	<5.4	<5.4	< 3.4	<13
OUE-DP-039	23- lun-10	-9.1	<17	-9.1	221	-9.1	<10
(Shallow)	23-3011-10	<3.4	< 47	<5.4	2.3 5	< 3.4	<19
OUE-DP-039	24- Jun-10	-9.1	<17	-9.1	-9.1	-9.1	<10
(Deep)	24-0011-10	<0.4	~~1	~ 5.4	\ 0.7	NO.4	<15
OUE-DP-046	23-Jun-10	1.3 J	<48	<9.5	<9.5	<9.5	<19
OUE-DP-057	25-Jun-10	<10	<50	<10	<10	<10	<20
(Shallow)	20 0011 10	110	100	110		110	-20
OUE-DP-057	24-Jun-10	< 9.4 [< 9.5]	<47 [<48]	< 9.4 [< 9.5]	<94 [<95]	< 9.4 [< 9.5]	<19 [<19]
(Deep)		[]				[]	
OUE-HA-020	24-Jun-10	<9.4	<47	<9.4	<9.4	<9.4	<19
OUE-HA-022	23-Jun-10	<9.4	<47	<9.4	<9.4	<9.4	<19
OUE-HA-023A	29-Jun-10	<9.5 [<9.4]	<48 [<47]	<9.5 [<9.4]	<9.5 [<9.4]	<9.5 [<9.4]	<19 /UJ [<19 /UJ]
OUE-HA-023B	29-Jun-10	<9.5	<48	<9.5	<9.5	<9.5	<19 /UJ
OUE-HA-024	30-Jun-10	6.2 J	<48	<9.5	<9.5	6.2 J	<19 /UJ
P4-15	19-Mar-03	<9.4	<47	<9.4	<9.4	<9.4	
P4-16	20-Mar-03	<9.4	<47	<9.4	<9.4	<9.4	
P4-18	28-Mar-03	<9.4	<47	<9.4	<9.4 /UJ	<9.4	
P4-20	28-Mar-03	<9.4	<47	<9.4	<9.4 /UJ	<9.4	
P5-1	24-Mar-03	<9.4	<47	<9.4	<9.4	<9.4	
P5-2	24-Mar-03	<9.4	<47	<9.4	<9.4	<9.4	
P5-4	24-Mar-03	<9.4	<47	<9.4	<9.4	<9.4	

	Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene
Location ID	Units	µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L
	PSL	150	370		1800	0.029	0.2	0.029		0.056	0.56
	WQO	28	20		2100	0.04	0.007	0.04		0.04	0.4
DP-5.54	05-Oct-05		<0.06	<0.09	<0.008	<0.005	<0.008	<0.01	<0.01	<0.005	<0.007
DP-5.55	05-Oct-05		<0.06	<0.09	<0.008	<0.005	<0.008	<0.01	0.06 J	<0.005	<0.007
DP-5.56	05-Oct-05		<0.06	<0.09	<0.008	<0.005	<0.008	<0.009	<0.01	<0.005	<0.006
DP-5.59	20-Oct-05		<0.06	<0.09	<0.007	<0.005	<0.008	<0.009	<0.01	<0.005	<0.006
HSA-4.1	23-Jan-06		<0.06	<0.09	<0.008	<0.005	<0.007	<0.009	<0.009	<0.005	<0.006
HSA-4.2	25-Jan-06		< 0.06	<0.09	<0.008	<0.005	<0.007	<0.009	<0.009	<0.005	<0.006
HSA-4.3	25-Jan-06		<0.06	<0.09	<0.008	0.05 J [PSL,WQO]	0.09 J [WQO]	0.08 J [PSL,WQO]	0.21	0.04 J	0.07 J
HSA-4.4	23-Jan-06		<0.06	1.8 J	0.04 J	0.005 J	<0.007	<0.009	<0.009	<0.005	<0.006
HSA-4.5	23-Jan-06		<0.06	<0.09	0.03 J	0.03 J [PSL]	0.01 J [WQO]	0.03 J [PSL]	<0.009	<0.005	0.11
HSA-4.6	23-Jan-06		<0.06	<0.09	0.38	0.06 J [PSL,WQO]	0.02 J [WQO]	0.02 J	<0.009	0.01 J	0.11
HSA-6.29	18-Jan-06		<0.06 [<0.06]	<0.09 [<0.09]	<0.008 [<0.008]	<0.005 [<0.005]	<0.007 [<0.007]	<0.009 [<0.009]	<0.009 [<0.009]	<0.005 [<0.005]	<0.006 [<0.006]
HSA-6.30	19-Jan-06		< 0.06	<0.09	<0.008	<0.005	<0.007	<0.009	<0.009	<0.005	<0.006
OUE-DP-001	28-Jun-10	0.03 J	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-002	28-Jun-10	0.1	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-003	30-Jun-10	<0.1 J/UB [<0.1 J/UB]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
OUE-DP-004	23-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	0.04 J [WQO]	<0.09	<0.09	0.03 J	0.04 J
OUE-DP-018	23-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-024	23-Jun-10	<0.1 b	0.09 Jb	0.03 Jb	0.04 Jb	0.07 Jb [PSL,WQO]	<0.1 b	0.05 Jb [PSL,WQO]	0.03 Jb	<0.1 b	0.3 b
OUE-DP-025	06-Nov-10	<0.2 /UB [<0.2 /UB]	0.2 [0.1]	0.08 J [0.06 J]	0.3 [0.06 J]	0.2 [<0.1] [PSL,WQO]	<0.09 [0.07 J] [WQO]	<0.09 [<0.1]	0.04 J [<0.1]	<0.09 [<0.1]	0.6 /J [0.2 /J] [PSL,WQO]
OUE-DP-026	29-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-027	25-Jun-10	<0.09 [<0.1]	<0.09 [<0.1]	0.02 J [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]
OUE-DP-028	23-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-032	29-Jun-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
OUE-DP-033	30-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09 /UJ					
OUE-DP-034	26-Jun-10	0.04 J	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-035	26-Jun-10	0.02 J	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-036	25-Jun-10	<0.09	<0.09	0.02 J	<0.09	0.02 J	<0.09	0.02 J	<0.09	<0.09	0.03 J
OUE-DP-037 (Shallow)	23-Jun-10	<0.09	<0.09	<0.09	<0.09	0.03 J [PSL]	0.03 J [WQO]	0.04 J [PSL]	0.02 J	<0.09	0.04 J
OUE-DP-037 (Deep)	23-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-038 (Shallow)	24-Jun-10	<0.09	0.05 J	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-038	23-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-039 (Shallow)	23-Jun-10	0.2	0.04 J	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.03 J
OUE-DP-039 (Deep)	24-Jun-10	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	0.3 J
OUE-DP-040 (Shallow)	23-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-040 (Deep)	25-Jun-10	0.2 J	0.1 J	0.7 /J	0.5 /J	1.5 /J [PSL,WQO]	1.9 /J [PSL,WQO]	2.2 /J [PSL,WQO]	1.8 /J	0.9 /J [PSL,WQO]	1.7 /J [PSL,WQO]

	Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene
Location ID	Units	μg/L	μg/L	μg/L	µg/L	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L
	PSL	150	370		1800	0.029	0.2	0.029		0.056	0.56
	WQO	28	20		2100	0.04	0.007	0.04		0.04	0.4
OUE-DP-046	23-Jun-10	0.06 J	<0.1	<0.1	<0.1	<0.1	<0.1	0.02 J	<0.1	<0.1	0.02 J
OUE-DP-057 (Shallow)	25-Jun-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
OUE-DP-057 (Deep)	24-Jun-10	<0.09 [<0.09]	<0.09 [<0.09]	<0.09 [<0.09]	<0.09 [<0.09]	<0.09 [<0.09 /UJ]	<0.09 [<0.09 /UJ]	<0.09 [<0.09 /UJ]	<0.09 [<0.09 /UJ]	<0.09 [<0.09 /UJ]	<0.09 [<0.09 /UJ]
OUE-DP-064	05-Nov-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
OUE-DP-065	05-Nov-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
OUE-DP-066	05-Nov-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-DP-084	06-Nov-10	<0.1	0.02 J	0.02 J	0.02 J	0.04 J [PSL]	0.09 J [WQO]	0.05 J [PSL,WQO]	<0.1	<0.1	0.04 J
OUE-DP-085	06-Nov-10	<0.1	<0.1	<0.1	<0.1	<0.1	0.06 J [WQO]	<0.1	<0.1	<0.1	<0.1
OUE-HA-012	25-Jun-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.02 J
OUE-HA-013 (Shallow)	24-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-HA-013 (Deep)	24-Jun-10	0.04 J	<0.09	0.02 J	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-HA-015	25-Jun-10	0.1	0.1	0.04 J	0.04 J	<0.1 /UJ	<0.1 /UJ	<0.1 /UJ	<0.1 /UJ	<0.1 /UJ	0.03 J
OUE-HA-016	25-Jun-10	<0.1	1.1	0.05 J	<0.1	<0.1	<0.1	0.02 J	<0.1	<0.1	0.02 J
OUE-HA-017	25-Jun-10	<0.1	0.08 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
OUE-HA-018	25-Jun-10	0.03 J	<0.1	0.03 J	0.03 J	0.05 J [PSL,WQO]	0.05 J [WQO]	0.08 J [PSL,WQO]	0.05 J	0.02 J	0.06 J
OUE-HA-020	24-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-HA-022	23-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
OUE-HA-023A	29-Jun-10	<0.1 J/UB [<0.1 J/UB]	0.02 J [0.03 J]	0.02 J [0.02 J]	<0.1 [<0.1]	0.03 J [0.04 J] [PSL]	<0.1 [0.02 J] [WQO]	0.03 J [0.04 J] [PSL]	<0.1 [<0.1 /UJ]	<0.1 [<0.1 /UJ]	0.04 J [0.05 J]
OUE-HA-023B	29-Jun-10	<0.1 J/UB	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
OUE-HA-024	30-Jun-10	<0.09 J/UB	0.06 J	0.04 J	0.04 J	0.1 /J [PSL,WQO]	0.08 J [WQO]	0.1 /J [PSL,WQO]	0.05 J	0.04 J	0.1 /J

	Sample Date / Analyte	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L
	PSL	0.0029	1500	240	0.029	0.14		180		0.2
	WQO	0.0085	280	280	0.04	17		210		0.007
DP-5.54	05-Oct-05	<0.009	<0.02	<0.02	<0.006	<0.07	<0.009	<0.007	ND	ND
DP-5.55	05-Oct-05	0.16 J [PSL,WQO]	0.06 J	<0.02	<0.006	<0.07	0.02 J	0.04 J	0.28	0.16 [WQO]
DP-5.56	05-Oct-05	<0.009	<0.02	<0.01	<0.006	<0.07	<0.009	0.04 J	0.040	ND
DP-5.59	20-Oct-05	<0.009	<0.01	<0.01	<0.006	<0.07	<0.009	<0.007	ND	ND
HSA-4.1	23-Jan-06	<0.008	<0.01	<0.01	<0.006	<0.07	<0.008	<0.007	ND	ND
HSA-4.2	25-Jan-06	<0.008	<0.01	<0.01	<0.006	<0.07	<0.008	<0.007	ND	ND
HSA-4.3	25-Jan-06	0.17 J [PSL,WQO]	0.21	<0.01	0.1 [PSL,WQO]	<0.07	0.1	0.15	1.1	0.29 [PSL,WQO]
HSA-4.4	23-Jan-06	<0.008	0.09 J	<0.01	<0.006	<0.07	<0.008	0.02 J	1.9	0.00050
HSA-4.5	23-Jan-06	<0.008	0.2	<0.01	<0.006	<0.07	0.05 J	0.09 J	0.35	0.017 [WQO]
HSA-4.6	23-Jan-06	<0.008	0.56	2.1	<0.006	26 [PSL,WQO]	1.9	0.41	5.0	0.030 [WQO]
HSA-6.29	18-Jan-06	<0.008 [<0.008]	<0.01 [<0.01]	<0.01 [<0.01]	<0.006 [<0.006]	<0.07 [<0.07]	<0.008 [<0.008]	<0.007 [<0.007]	ND [ND]	ND [ND]
HSA-6.30	19-Jan-06	<0.008	<0.01	<0.01	<0.006	<0.07	<0.008	< 0.007	ND	ND
OUE-DP-001	28-Jun-10	<0.09	<0.09	<0.09	<0.09	0.08 J	<0.09	<0.09	ND	ND
OUE-DP-002	28-Jun-10	<0.09	< 0.09	<0.09	<0.09	0.08 J	0.03 J	< 0.09	0.030	ND
OUE-DP-003	30-Jun-10	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 J/UB [<0.1 J/UB]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
OUE-DP-004	23-Jun-10	<0.09	0.03 J	<0.09	<0.09	0.04 J	0.03 J	0.05 J	0.19	0.043
OUE-DP-018	23-Jun-10	<0.09	0.02 J	<0.09	<0.09	0.03 J	0.03 J	0.03 J	0.060	ND
OUE-DP-024	23-Jun-10	<0.1 b	0.1 b	0.4 b	<0.1 b	0.05 Jb	0.04 Jb	0.2 b	1.2	0.015 [WQO]
OUE-DP-025	06-Nov-10	<0.09 [<0.1]	0.1 [0.05 J]	1.2 /J [0.8 /J]	<0.09 [<0.1]	<0.3 /UB [<0.4 /UB]	0.5 [0.3]	0.5 /J [0.1 /J]	3.4 /J [1.6 /J]	0.026 /J [0.072 /J] [WQO]
OUE-DP-026	29-Jun-10	<0.09	0.04 J	<0.09	<0.09	<0.09 J/UB	0.04 J	0.05 J	0.090	ND
OUE-DP-027	25-Jun-10	<0.09 [<0.1]	0.02 J [0.03 J]	<0.09 [<0.1]	<0.09 [<0.1]	0.02 J [0.02 J]	0.03 J [0.03 J]	0.03 J [0.04 J]	0.080 [0.070]	ND [ND]
OUE-DP-028	23-Jun-10	<0.09	< 0.09	< 0.09	<0.09	0.03 J	< 0.09	<0.09	ND	ND
OUE-DP-032	29-Jun-10	<0.1	<0.1	0.02 J	<0.1	<0.1 J/UB	<0.1	<0.1	0.020	ND
OUE-DP-033	30-Jun-10	<0.09 /UJ	<0.09 /UJ	< 0.09	<0.09 /UJ	<0.09 J/UB	< 0.09	<0.09 /UJ	ND	ND /UJ
OUE-DP-034	26-Jun-10	<0.09	<0.09	< 0.09	<0.09	0.04 J	0.02 J	< 0.09	0.020	ND
OUE-DP-035	26-Jun-10	<0.09	< 0.09	< 0.09	<0.09	0.04 J	< 0.09	< 0.09	ND	ND
OUE-DP-036	25-Jun-10	<0.09	0.05 J	< 0.09	<0.09	0.09 J	0.08 J	0.05 J	0.22	0.0043
OUE-DP-037 (Shallow)	23-Jun-10	<0.09	0.07 J	<0.09	<0.09	0.03 J	0.04 J	0.08 J	0.28	0.037
OUE-DP-037 (Deep)	23-Jun-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	ND	ND
OUE-DP-038 (Shallow)	24-Jun-10	<0.09	<0.09	<0.09	<0.09	0.03 J	<0.09	<0.09	ND	ND
OUE-DP-038 (Deep)	23-Jun-10	<0.09	<0.09	<0.09	<0.09	0.02 J	<0.09	<0.09	ND	ND
OUE-DP-039 (Shallow)	23-Jun-10	<0.09	0.03 J	0.03 J	<0.09	0.08 J	0.06 J	0.04 J	0.16	0.0003
OUE-DP-039 (Deep)	24-Jun-10	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	0.30	0.0030
OUE-DP-040 (Shallow)	23-Jun-10	<0.09	0.04 J	<0.09	<0.09	0.04 J	0.03 J	0.04 J	0.070	ND
OUE-DP-040 (Deep)	25-Jun-10	0.4 /J [PSL,WQO]	3.9 /J	0.2 J	1.5 /J [PSL,WQO]	1.3 /J [PSL]	2.2 /J	3.6 /J	19	2.9 /J [PSL,WQO]

	Sample Date / Analyte	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L
	PSL	0.0029	1500	240	0.029	0.14		180		0.2
	WQO	0.0085	280	280	0.04	17		210		0.007
OUE-DP-046	23-Jun-10	<0.1	0.04 J	<0.1	<0.1	0.2 [PSL]	0.05 J	0.04 J	0.13	0.0022
OUE-DP-057 (Shallow)	25-Jun-10	<0.1	<0.1	<0.1	<0.1	0.02 J	<0.1	<0.1	ND	ND
OUE-DP-057 (Deep)	24-Jun-10	<0.09 [<0.09 /UJ]	<0.09 [<0.09 /UJ]	<0.09 [<0.09]	<0.09 [<0.09 /UJ]	<0.09 [<0.09]	<0.09 [<0.09]	<0.09 [<0.09 /UJ]	ND [ND]	ND [ND /UJ]
OUE-DP-064	05-Nov-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	ND
OUE-DP-065	05-Nov-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	ND
OUE-DP-066	05-Nov-10	<0.09	<0.09	<0.09	<0.09	<0.1 /UB	<0.09	<0.09	ND	ND
OUE-DP-084	06-Nov-10	<0.1	0.09 J	<0.1 J/UB	0.07 J [PSL,WQO]	<0.1 /UB	0.05 J	0.09 J	0.50	0.11 [WQO]
OUE-DP-085	06-Nov-10	<0.1	0.05 J	<0.1	<0.1	<0.1	0.03 J	0.06 J	0.15	0.060 [WQO]
OUE-HA-012	25-Jun-10	<0.1	<0.1	<0.1	<0.1	0.05 J	<0.1	<0.1	0.020	0.0002
OUE-HA-013 (Shallow)	24-Jun-10	<0.09	<0.09	<0.09	<0.09	0.05 J	<0.09	<0.09	ND	ND
OUE-HA-013 (Deep)	24-Jun-10	<0.09	<0.09	<0.09	<0.09	0.1	0.03 J	<0.09	0.050	ND
OUE-HA-015	25-Jun-10	<0.1 /UJ	0.1 /J	0.08 J	<0.1 /UJ	0.3 [PSL]	0.2	0.2 /J	0.59	0.00030 /J
OUE-HA-016	25-Jun-10	<0.1	0.04 J	0.02 J	<0.1	0.2 [PSL]	0.06 J	0.03 J	0.20	0.0022
OUE-HA-017	25-Jun-10	<0.1	<0.1	<0.1	<0.1	0.08 J	0.04 J	<0.1	0.040	ND
OUE-HA-018	25-Jun-10	<0.1	0.1	<0.1	0.04 J [PSL]	0.2 [PSL]	0.1	0.1 J	0.61	0.070 [WQO]
OUE-HA-020	24-Jun-10	<0.09	<0.09	<0.09	<0.09	0.02 J	<0.09	<0.09	ND	ND
OUE-HA-022	23-Jun-10	<0.09	<0.09	<0.09	<0.09	0.03 J	0.03 J	<0.09	0.030	ND
OUE-HA-023A	29-Jun-10	<0.1 [<0.1 /UJ]	0.08 J [0.08 J]	<0.1 [<0.1]	<0.1 [<0.1 /UJ]	<0.2 /UB [<0.3 /UB]	0.1 [0.09 J]	0.1 [0.1 /J]	0.32 [0.36]	0.0064 [0.0285 /J] [WQO]
OUE-HA-023B	29-Jun-10	<0.1	0.02 J	<0.1	<0.1	<0.3 /UB	0.05 J	<0.1	0.050	ND
OUE-HA-024	30-Jun-10	<0.09 /UJ	0.2 /J	0.05 J	0.04 J [PSL]	<0.4 /UB	0.3	0.3 /J	1.2	0.11 /J [WQO]

	Sample Date / Analyte	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone	2-Chlorotoluene	Acetone	Benzene	Carbon Disulfide	Chloromethane	Isopropyl alcohol
Location ID	Units	μg/L	µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	PSL	5	6	15	5	7100	120	22000	1	1000	190	
	WQO	3	6	15	5	4200	6.9	6300	0.15	0.39	3	160000
DP-5.54	05-Oct-05	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	<0.5	<1	<100
DP-5.55	05-Oct-05	<0.5	<0.5	<0.5	<0.5	<10	<0.5	16	<0.5	<0.5	<1	<100
DP-5.56	05-Oct-05	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	<0.5	<1	<100
DP-5.59	20-Oct-05	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	<0.5	<1	<100
HSA-4.2	25-Jan-06				<0.5				<0.5			
HSA-4.3	25-Jan-06				<0.5				<0.5			
HSA-4.4	23-Jan-06	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	<0.5	<1	<100
HSA-4.5	23-Jan-06	<0.5	<0.5	<0.5	<0.5	<10	<0.5	36	0.6 [WQO]	<0.5	<1	<100
HSA-4.6	23-Jan-06	<0.5	<0.5	<0.5	<0.5	<10	<0.5	29	<0.5	1.8 [WQO]	<1	170
HSA-6.29	18-Jan-06	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<10 [14]	<0.5 [<0.5]	<0.5 [<0.5]	<1 [<1]	<100 [<100]
HSA-6.30	19-Jan-06	<0.5	<0.5	<0.5	<0.5	<10	<0.5	16	<0.5	<0.5	<1	<100
OUE-DP-001	28-Jun-10	<0.5	<0.5	0.2 J	0.1 J	<10	<0.5	3.1 J	<0.5	0.1 J	<1.0	
OUE-DP-002	28-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	1.3 J	<0.5	0.2 J	<1.0	
OUE-DP-003	30-Jun-10	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5 J/UB]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<10 J/UB [<10 J/UB]	<0.5 [<0.5 J/UB]	0.4 J [0.7] [WQO]	<1.0 [<1.0]	
OUE-DP-004	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	1.7 Jb	<0.5	0.3 J	<1.0	
OUE-DP-018	23-Jun-10	<0.5	<0.5	<0.5	<0.5	1.3 J	<0.5	<10	<0.5	<0.5	<1.0	
OUE-DP-026	29-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10 J/UB	<0.5 J/UB	0.3 J	<1.0	
OUE-DP-027	25-Jun-10	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	0.9 J [1 J]	<0.5 [<0.5]	5.8 J [8.2 J]	<0.5 [<0.5]	<0.5 [0.2 J]	<1.0 [<1.0]	
OUE-DP-028	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	2.0 Jb	<0.5	0.4 J [WQO]	<1.0	
OUE-DP-032	29-Jun-10	<0.5	<0.5	<0.5	<0.5	<10 J/UB	<0.5	<10 J/UB	<0.5	0.2 J	<1.0	
OUE-DP-033	30-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10 J/UB	<0.5	<0.5	0.2 J	
OUE-DP-034	26-Jun-10	<0.5	<0.5	<0.5	<0.5	1.4 J	<0.5	12	<0.5	0.1 J	<1.0	
OUE-DP-035	26-Jun-10	<0.5	<0.5	<0.5	<0.5	0.5 J	<0.5	6.1 J	0.1 J	0.1 J	<1.0	
OUE-DP-036	25-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	1.4 J	<0.5	0.2 J	0.2 J	
OUE-DP-037 (Shallow)	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	0.2 J	<1.0	
OUE-DP-037 (Deep)	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	3.6 Jb	<0.5	0.5 J [WQO]	<1.0	
OUE-DP-038 (Shallow)	24-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	0.1 J	<1.0	
OUE-DP-038 (Deep)	23-Jun-10	<0.5	<0.5	<0.5	<0.5	1.4 J	<0.5	7.5 Jb	<0.5	0.7 [WQO]	<1.0	
OUE-DP-039 (Shallow)	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	0.9	<10	0.2 J [WQO]	0.4 J [WQO]	<1.0	
OUE-DP-039 (Deep)	24-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	0.9	3.3 J	0.1 J	0.8 [WQO]	<1.0	
OUE-DP-046	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	5.6 Jb	<0.5	<0.5	<1.0	
OUE-DP-057 (Shallow)	25-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	1.8 J	<0.5	0.4 J [WQO]	<1.0	
OUE-DP-057 (Deep)	24-Jun-10	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	0.7 J [0.7 J]	<0.5 [<0.5]	4.5 J [4.5 J]	<0.5 [<0.5]	1.1 [1.0] [WQO]	<1.0 [<1.0]	
OUE-HA-013 (Shallow)	24-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	2.0 J	<0.5	0.2 J	<1.0	
OUE-HA-013 (Deep)	24-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	2.6 J	<0.5	<0.5	<1.0	

	Sample Date / Analyte	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone	2-Chlorotoluene	Acetone	Benzene	Carbon Disulfide	Chloromethane	Isopropyl alcohol
Location ID	Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L
	PSL	5	6	15	5	7100	120	22000	1	1000	190	
	WQO	3	6	15	5	4200	6.9	6300	0.15	0.39	3	160000
OUE-HA-020	24-Jun-10	<0.5	<0.5	<0.5	<0.5	0.8 J	<0.5	5.0 J	0.2 J [WQO]	1.7 [WQO]	<1.0	
OUE-HA-022	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	4.2 Jb	0.1 J	<0.5	<1.0	
OUE-HA-023A	29-Jun-10	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<10 J/UB [<10 J/UB]	<0.5 [<0.5]	<0.5 [<0.5]	<1.0 [<1.0]	
OUE-HA-023B	29-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10 J/UB	<0.5 /UB	0.2 J	<1.0	
OUE-HA-024	30-Jun-10	<0.5	<0.5	<0.5	<0.5	<10 J/UB	<0.5	<10 J/UB	<0.5 J/UB	0.1 J	<1.0	

	Sample Date / Analyte	Methylene Chloride	MTBE	Naphthalene	p-Isopropyl Toluene	Tetrachloroethene	Toluene	Xylenes, m,p-	Xylenes, Total ⁵
Location ID	Units	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	PSL	5	13	0.14		5	150	1750	1750
	WQO	4	5	17		0.06	42	17	17
DP-5.54	05-Oct-05	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
DP-5.55	05-Oct-05	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
DP-5.56	05-Oct-05	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
DP-5.59	20-Oct-05	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
HSA-4.2	25-Jan-06		<0.5				<0.5	<0.5	ND
HSA-4.3	25-Jan-06		<0.5				0.6	<0.5	ND
HSA-4.4	23-Jan-06	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
HSA-4.5	23-Jan-06	<10	<0.5	<2	<0.5	<0.5	0.5	<0.5	ND
HSA-4.6	23-Jan-06	<10	<0.5	3 [PSL]	1	<0.5	1.2	<0.5	ND
HSA-6.29	18-Jan-06	<10 [<10]	<0.5 [<0.5]	<2 [<2]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
HSA-6.30	19-Jan-06	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-001	28-Jun-10	<10	<0.5	<2.0	<0.5	2.6 [WQO]	0.2 J	0.3 J	0.3
OUE-DP-002	28-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	0.2 J	0.2 J	0.2
OUE-DP-003	30-Jun-10	<10 [<10]	0.2 J [0.2 J]	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 J/UB [<0.5 J/UB]	<0.5 J/UB [<0.5 J/UB]	ND
OUE-DP-004	23-Jun-10	0.4 J	0.2 J	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-018	23-Jun-10	0.4 J	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-026	29-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	<0.5 J/UB	<0.5 J/UB	ND
OUE-DP-027	25-Jun-10	0.6 J [0.5 J]	<0.5 [<0.5]	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	0.9 [0.7]	<0.5 [<0.5]	ND [ND]
OUE-DP-028	23-Jun-10	0.3 J	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-032	29-Jun-10	0.1 J	<0.5	<2.0	<0.5	<0.5	<0.7 /UB	<0.5	ND
OUE-DP-033	30-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	<0.5 J/UB	<0.5 J/UB	ND
OUE-DP-034	26-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND
OUE-DP-035	26-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	0.2 J	<0.5	ND
OUE-DP-036	25-Jun-10	0.2 J	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-037 (Shallow)	23-Jun-10	0.3 J	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-037 (Deep)	23-Jun-10	0.4 J	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-038 (Shallow)	24-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-038 (Deep)	23-Jun-10	0.6 J	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND
OUE-DP-039 (Shallow)	23-Jun-10	0.3 J	<0.5	<2.0	0.1 J	<0.5	0.4 J	<0.5	ND
OUE-DP-039 (Deep)	24-Jun-10	<10 J/UB	<0.5	<2.0	<0.5	<0.5	0.5 J	0.1 J	0.1
OUE-DP-046	23-Jun-10	0.3 J	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND
OUE-DP-057 (Shallow)	25-Jun-10	0.5 J	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND
OUE-DP-057 (Deep)	24-Jun-10	<10 J/UB [<10 J/UB]	<0.5 [<0.5]	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	0.1 J [0.1 J]	<0.5 [<0.5]	ND [ND]
OUE-HA-013 (Shallow)	24-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND
OUE-HA-013 (Deep)	24-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND

	Sample Date / Analyte	Methylene Chloride	MTBE	Naphthalene	p-Isopropyl Toluene	Tetrachloroethene	Toluene	Xylenes, m,p-	Xylenes, Total ⁵
Location ID	Units	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L
	PSL	5	13	0.14		5	150	1750	1750
	WQO	4	5	17		0.06	42	17	17
OUE-HA-020	24-Jun-10	<10 J/UB	<0.5	<2.0	<0.5	<0.5	0.2 J	<0.5	ND
OUE-HA-022	23-Jun-10	0.3 J	<0.5	<2.0	<0.5	<0.5	0.2 J	<0.5	ND
OUE-HA-023A	29-Jun-10	<10 [<10]	<0.5 [<0.5]	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
OUE-HA-023B	29-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	<0.5 J/UB	<0.5 J/UB	ND
OUE-HA-024	30-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	<0.5 J/UB	<0.5	ND

	Sample Date / Analyte	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone	2-Chlorotoluene	Acetone	Benzene	Carbon Disulfide	Chloromethane	Isopropyl alcohol
Location ID	Units	μg/L	µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	PSL	5	6	15	5	7100	120	22000	1	1000	190	
	WQO	3	6	15	5	4200	6.9	6300	0.15	0.39	3	160000
DP-5.54	05-Oct-05	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	<0.5	<1	<100
DP-5.55	05-Oct-05	<0.5	<0.5	<0.5	<0.5	<10	<0.5	16	<0.5	<0.5	<1	<100
DP-5.56	05-Oct-05	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	<0.5	<1	<100
DP-5.59	20-Oct-05	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	<0.5	<1	<100
HSA-4.2	25-Jan-06				<0.5				<0.5			
HSA-4.3	25-Jan-06				<0.5				<0.5			
HSA-4.4	23-Jan-06	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	<0.5	<1	<100
HSA-4.5	23-Jan-06	<0.5	<0.5	<0.5	<0.5	<10	<0.5	36	0.6 [WQO]	<0.5	<1	<100
HSA-4.6	23-Jan-06	<0.5	<0.5	<0.5	<0.5	<10	<0.5	29	<0.5	1.8 [WQO]	<1	170
HSA-6.29	18-Jan-06	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<10 [14]	<0.5 [<0.5]	<0.5 [<0.5]	<1 [<1]	<100 [<100]
HSA-6.30	19-Jan-06	<0.5	<0.5	<0.5	<0.5	<10	<0.5	16	<0.5	<0.5	<1	<100
OUE-DP-001	28-Jun-10	<0.5	<0.5	0.2 J	0.1 J	<10	<0.5	3.1 J	<0.5	0.1 J	<1.0	
OUE-DP-002	28-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	1.3 J	<0.5	0.2 J	<1.0	
OUE-DP-003	30-Jun-10	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5 J/UB]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<10 J/UB [<10 J/UB]	<0.5 [<0.5 J/UB]	0.4 J [0.7] [WQO]	<1.0 [<1.0]	
OUE-DP-004	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	1.7 Jb	<0.5	0.3 J	<1.0	
OUE-DP-018	23-Jun-10	<0.5	<0.5	<0.5	<0.5	1.3 J	<0.5	<10	<0.5	<0.5	<1.0	
OUE-DP-026	29-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10 J/UB	<0.5 J/UB	0.3 J	<1.0	
OUE-DP-027	25-Jun-10	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	0.9 J [1 J]	<0.5 [<0.5]	5.8 J [8.2 J]	<0.5 [<0.5]	<0.5 [0.2 J]	<1.0 [<1.0]	
OUE-DP-028	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	2.0 Jb	<0.5	0.4 J [WQO]	<1.0	
OUE-DP-032	29-Jun-10	<0.5	<0.5	<0.5	<0.5	<10 J/UB	<0.5	<10 J/UB	<0.5	0.2 J	<1.0	
OUE-DP-033	30-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10 J/UB	<0.5	<0.5	0.2 J	
OUE-DP-034	26-Jun-10	<0.5	<0.5	<0.5	<0.5	1.4 J	<0.5	12	<0.5	0.1 J	<1.0	
OUE-DP-035	26-Jun-10	<0.5	<0.5	<0.5	<0.5	0.5 J	<0.5	6.1 J	0.1 J	0.1 J	<1.0	
OUE-DP-036	25-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	1.4 J	<0.5	0.2 J	0.2 J	
OUE-DP-037 (Shallow)	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	0.2 J	<1.0	
OUE-DP-037 (Deep)	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	3.6 Jb	<0.5	0.5 J [WQO]	<1.0	
OUE-DP-038 (Shallow)	24-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10	<0.5	0.1 J	<1.0	
OUE-DP-038 (Deep)	23-Jun-10	<0.5	<0.5	<0.5	<0.5	1.4 J	<0.5	7.5 Jb	<0.5	0.7 [WQO]	<1.0	
OUE-DP-039 (Shallow)	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	0.9	<10	0.2 J [WQO]	0.4 J [WQO]	<1.0	
OUE-DP-039 (Deep)	24-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	0.9	3.3 J	0.1 J	0.8 [WQO]	<1.0	
OUE-DP-046	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	5.6 Jb	<0.5	<0.5	<1.0	
OUE-DP-057 (Shallow)	25-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	1.8 J	<0.5	0.4 J [WQO]	<1.0	
OUE-DP-057 (Deep)	24-Jun-10	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	0.7 J [0.7 J]	<0.5 [<0.5]	4.5 J [4.5 J]	<0.5 [<0.5]	1.1 [1.0] [WQO]	<1.0 [<1.0]	
OUE-HA-013 (Shallow)	24-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	2.0 J	<0.5	0.2 J	<1.0	
OUE-HA-013 (Deep)	24-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	2.6 J	<0.5	<0.5	<1.0	

	Sample Date / Analyte	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone	2-Chlorotoluene	Acetone	Benzene	Carbon Disulfide	Chloromethane	Isopropyl alcohol
Location ID	Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L
	PSL	5	6	15	5	7100	120	22000	1	1000	190	
	WQO	3	6	15	5	4200	6.9	6300	0.15	0.39	3	160000
OUE-HA-020	24-Jun-10	<0.5	<0.5	<0.5	<0.5	0.8 J	<0.5	5.0 J	0.2 J [WQO]	1.7 [WQO]	<1.0	
OUE-HA-022	23-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	4.2 Jb	0.1 J	<0.5	<1.0	
OUE-HA-023A	29-Jun-10	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<10 J/UB [<10 J/UB]	<0.5 [<0.5]	<0.5 [<0.5]	<1.0 [<1.0]	
OUE-HA-023B	29-Jun-10	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<10 J/UB	<0.5 /UB	0.2 J	<1.0	
OUE-HA-024	30-Jun-10	<0.5	<0.5	<0.5	<0.5	<10 J/UB	<0.5	<10 J/UB	<0.5 J/UB	0.1 J	<1.0	

	Sample Date / Analyte	Methylene Chloride	MTBE	Naphthalene	p-Isopropyl Toluene	Tetrachloroethene	Toluene	Xylenes, m,p-	Xylenes, Total ⁵
Location ID	Units	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	PSL	5	13	0.14		5	150	1750	1750
	WQO	4	5	17		0.06	42	17	17
DP-5.54	05-Oct-05	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
DP-5.55	05-Oct-05	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
DP-5.56	05-Oct-05	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
DP-5.59	20-Oct-05	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
HSA-4.2	25-Jan-06		<0.5				<0.5	<0.5	ND
HSA-4.3	25-Jan-06		<0.5				0.6	<0.5	ND
HSA-4.4	23-Jan-06	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
HSA-4.5	23-Jan-06	<10	<0.5	<2	<0.5	<0.5	0.5	<0.5	ND
HSA-4.6	23-Jan-06	<10	<0.5	3 [PSL]	1	<0.5	1.2	<0.5	ND
HSA-6.29	18-Jan-06	<10 [<10]	<0.5 [<0.5]	<2 [<2]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
HSA-6.30	19-Jan-06	<10	<0.5	<2	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-001	28-Jun-10	<10	<0.5	<2.0	<0.5	2.6 [WQO]	0.2 J	0.3 J	0.3
OUE-DP-002	28-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	0.2 J	0.2 J	0.2
OUE-DP-003	30-Jun-10	<10 [<10]	0.2 J [0.2 J]	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 J/UB [<0.5 J/UB]	<0.5 J/UB [<0.5 J/UB]	ND
OUE-DP-004	23-Jun-10	0.4 J	0.2 J	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-018	23-Jun-10	0.4 J	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-026	29-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	<0.5 J/UB	<0.5 J/UB	ND
OUE-DP-027	25-Jun-10	0.6 J [0.5 J]	<0.5 [<0.5]	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	0.9 [0.7]	<0.5 [<0.5]	ND [ND]
OUE-DP-028	23-Jun-10	0.3 J	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-032	29-Jun-10	0.1 J	<0.5	<2.0	<0.5	<0.5	<0.7 /UB	<0.5	ND
OUE-DP-033	30-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	<0.5 J/UB	<0.5 J/UB	ND
OUE-DP-034	26-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND
OUE-DP-035	26-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	0.2 J	<0.5	ND
OUE-DP-036	25-Jun-10	0.2 J	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-037 (Shallow)	23-Jun-10	0.3 J	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-037 (Deep)	23-Jun-10	0.4 J	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-038 (Shallow)	24-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	ND
OUE-DP-038 (Deep)	23-Jun-10	0.6 J	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND
OUE-DP-039 (Shallow)	23-Jun-10	0.3 J	<0.5	<2.0	0.1 J	<0.5	0.4 J	<0.5	ND
OUE-DP-039 (Deep)	24-Jun-10	<10 J/UB	<0.5	<2.0	<0.5	<0.5	0.5 J	0.1 J	0.1
OUE-DP-046	23-Jun-10	0.3 J	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND
OUE-DP-057 (Shallow)	25-Jun-10	0.5 J	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND
OUE-DP-057 (Deep)	24-Jun-10	<10 J/UB [<10 J/UB]	<0.5 [<0.5]	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	0.1 J [0.1 J]	<0.5 [<0.5]	ND [ND]
OUE-HA-013 (Shallow)	24-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND
OUE-HA-013 (Deep)	24-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	0.1 J	<0.5	ND

	Sample Date / Analyte	Methylene Chloride	MTBE	Naphthalene	p-Isopropyl Toluene	Tetrachloroethene	Toluene	Xylenes, m,p-	Xylenes, Total ⁵
Location ID	Units	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L
	PSL	5	13	0.14		5	150	1750	1750
	WQO	4	5	17		0.06	42	17	17
OUE-HA-020	24-Jun-10	<10 J/UB	<0.5	<2.0	<0.5	<0.5	0.2 J	<0.5	ND
OUE-HA-022	23-Jun-10	0.3 J	<0.5	<2.0	<0.5	<0.5	0.2 J	<0.5	ND
OUE-HA-023A	29-Jun-10	<10 [<10]	<0.5 [<0.5]	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
OUE-HA-023B	29-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	<0.5 J/UB	<0.5 J/UB	ND
OUE-HA-024	30-Jun-10	<10	<0.5	<2.0	<0.5	<0.5	<0.5 J/UB	<0.5	ND

	Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury
Location ID	Units	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Location ib	PSL	6	10	1000	4	5	50	11	1300	15	2
	WQO	6	0.004	1000	1	0.04	50	50	200	0.2	1.2
	Bkgd	0.40	2.5	25.6	0.44	0.5	1.5	0.64	1.5	1	NA
MW-3.14	11-Oct-07	0.084 J	1.1	20	<1.0	<1.0	0.23 J	0.81 J	<1.2	0.15 J	0.047 J
	13-Dec-07	<1.0	1.0	12	<1.0	<1.0	<1.0 J/UB	<1.0 J/UB	3.7	<1.0	<0.20
	26-Mar-08	0.11 J	0.32 J	11	<1.0	<1.0	<1.0 J/UB	1.2	0.83 J	0.088 J	<0.20
	04-Jun-08	<1.0	0.37 J	14		0.046 J	<1.0 J/UB	1.4	<1.2 /UB	0.061 J	<0.20
	23-Sep-08	<1.0	0.40 J	14		<1.0	0.70 J	1.3	<1.2	<1.0	0.062 J
	11-Dec-08	<1.0	<1.0	16		<1.0	<1.0	1.7	<1.0	<1.0	<0.20
	05-Mar-09	<1.0	<1.0	19 /J		<1.0	<1.0	2.1	<1.0 /UJ	<1.0	<0.20
	10-Jun-09	<1.0	<1.0	18		<1.0	<1.0	1.4	<1.0	<1.0	<0.20
	17-Sep-09	<1.0	1.2	18		<1.0	<1.0	2.1	<1.0	<1.0	<0.20
	17-Mar-10	<1.0	<1.0	25		<1.0	<1.0	2.1	<2.0 /UB	<1.0	<0.20
	22-Sep-10	<1.0	<1.0	<25 /UB	<1.0	<1.0	<1.0	1	<1.0	<1.0	<0.20
MW-4.1	23-Sep-04	<60	<5	3300 [PSL,WQO]	<2	<5	<10	<20	<10	<3	<0.2
	08-Dec-04	<60	<5	9600 [PSL,WQO]	<2	<5	<10	<20	<10	<3	<0.2
	30-Mar-05	<60	<5	3400 [PSL,WQO]	<2	<5	<10	<20	<10	<3	<0.2
	12-May-05	<1	1.9	3100 [PSL,WQO]	<1	<1	<1	<1	2.2	<1	<0.2
	18-Aug-05	<1	2.0	4200 [PSL,WQO]	<1	<1	<1	<1	2.7	<1	<0.2
	10-Nov-05	<1 [<1]	1.4 [1.5]	4400 [4400] [PSL,WQO]	<1 [<1]	<1 [<1]	1.1 [1.1]	<1 [<1]	<1 [<1]	<1 [<1]	<0.2 [<0.2]
	07-Mar-06	<1	<1	2400 [PSL,WQO]	<1	<1	1	<1	<1	<1	<0.2
	22-May-06	<1	<1	3300 [PSL,WQO]	<1	<1	1.5	<1	1.4	<1	<0.2
	06-Sep-06	0.076 J/J	<1.8	4100 J/J [PSL,WQO]	<1	<1	<1	0.27 J/J	2.3	<1	<0.2
	05-Dec-06	0.12 J	<1.0 J/UB	3100 [PSL,WQO]	<1.0	<1.0	<1.0	0.33 J	0.77 J	0.12 J	<0.20
	06-Mar-07	<1.0	0.81 J	1900 [PSL,WQO]	<1.0	<1.0	0.58 J	0.54 J	0.83 J	<1.0	<0.20
	13-Jun-07	<1.0	<1.0 J/UB	2000 [PSL,WQO]	0.079 J	<1.0	<1.0 J/UB	0.21 J	<1.0	<1.0	<0.20 J/UB
	05-Sep-07	<1.0 J/UB	1.3	4000 [PSL,WQO]		<1.0	<1.0 J/UB	<1.0 J/UB	<1.2	<1.0 J/UB	<0.20
	11-Dec-07	<1.0	0.75 J	2700 [PSL,WQO]	<1.0	<1.0	<1.0 J/UB	<1.0 J/UB	<1.0 J/UB	<1.0 J/UB	<0.20
	26-Mar-08			1600 [PSL,WQO]							
	23-Sep-08			3800 [PSL,WQO]							
	05-Mar-09			1400 /J [PSL,WQO]							
	17-Sep-09			4400 [PSL,WQO]							
	09-Dec-09			1900 /J [PSL,WQO]							
	17-Mar-10			1400 [1400] [PSL,WQO]							
	22-Sep-10			770							
MW-4.2	23-Sep-04	<60	<5	130	<2	<5	<10	<20	<10	<3	<0.2
	08-Dec-04	<60	<5	200	<2	<5	<10	<20	<10	<3	<0.2
	30-Mar-05	<60	5.8 [WQO]	110	<2	<5	<10	<20	<10	<3	<0.2
	12-May-05	<1	4.1 [WQO]	100	<1	<1	1.6	<1	1.5	<1	<0.2
	18-Aug-05	<1	2.0	120	<1	<1	<1	<1	1.1	<1	<0.2
	10-Nov-05	<1	3.9 [WQO]	100	<1	<1	2	<1	<1	<1	<0.2
	07-Mar-06	<1	4.2 [WQO]	76	<1	<1	2.3	<1	1.1	<1	<0.2
	22-May-06	<1	3 [WQO]	79	<1	<1	1.8	<1	2.8	<1	<0.2
1 1	06-Sep-06	<1	4.5 [WQO]	68 J/J	<1	<1	<1.6	0.49 J/J	0.48 J/J	<1	<0.2
	05-Dec-06	<1.0	2.4	70	<1.0	<1.0	<1.0	0.37 J	0.31 J	0.12 J	<0.20
	06-Mar-07	0.096 J	3.0 [WQO]	64	<1.0	<1.0	1	0.50 J	0.57 J	0.58 J	<0.20
	13-Jun-07	<1.0	2.7 [WQO]	59	0.058 J	<1.0 J/UB	<1.0 J/UB	0.37 J	<1.0	<1.0	<0.20

	Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L
	PSL	6	10	1000	4	5	50	11	1300	15	2
	WQO	6	0.004	1000	1	0.04	50	50	200	0.2	1.2
	Bkgd	0.40	2.5	25.6	0.44	0.5	1.5	0.64	1.5	1	NA
MW-4.2	05-Sep-07	<1.0 J/UB	2.5	72		<1.0	<1.0	<1.0 J/UB	0.72 J	<1.0 J/UB	<0.20
(cont'd)	11-Dec-07	0.087 J	2.5	70	<1.0	<1.0	<1.0 J/UB	<1.0 J/UB	<1.0 J/UB	<1.0 J/UB	<0.20
MW-4.3	30-Mar-05	<60	<5	38	<2	<5	<10	<20	<10	<3	<0.2
	12-May-05	<1	1.7	43	<1	<1	<1	<1	1.4	<1	<0.2
	17-Aug-05	<1	1.3	45	<1	<1	<1	<1	<1	<1	<0.2
	10-Nov-05	<1	1.4	33	<1	<1	1.1	<1	<1	<1	<0.2
	07-Mar-06	<1	1.2	38	<1	<1	<1	<1	<1	<1	<0.2
	22-May-06	<1	<1	35	<1	<1	1.7	<1	<1	<1	<0.2
	06-Sep-06	<1	<2.3	37 J/J	<1	<1	<1.2	<1	1.8	<1	<0.2
	05-Dec-06	<1.0	2.0	30	<1.0	<1.0	<1.0 J/UB	0.072 J	<1.0	0.12 J	<0.20
	06-Mar-07	0.17 J [<1.0]	1.8 [1.8]	29 [29]	<1.0 [<1.0]	<1.0 [<1.0]	1.4 [1.3]	<1.0 [0.16 J]	0.64 J [0.38 J]	<1.0 [0.22 J] [WQO]	<0.20 [<0.20]
MW-4.3R	10-Oct-07	0.12 J [0.15 J]	3.0 [3.0] [WQO]	59 [61]	<1.0 [0.095 J]	<1.0 [<1.0]	1.4 [1.4]	2.1 [2.1]	<1.2 [0.46 J]	<1.0 [0.21 J] [WQO]	<0.20 [<0.20]
	11-Dec-07	0.074 J [0.091 J]	2.8 [2.9] [WQO]	24 [26]	<1.0 [<1.0]	<1.0 [<1.0]	1.6 [1.4]	1.4 [1.6]	<1.0 [<1.0 J/UB]	<1.0 [<1.0 J/UB]	<0.20 [0.31]
	26-Mar-08	<1.0	2.1	33	<1.0	<1.0	1.5	0.48 J	<1.0	0.17 J	<0.20
	04-Jun-08	<1.0	0.95 J	24		<1.0	<1.3 /UB	<1.0 J/UB	<1.0 J/UB	<1.0	<0.20
	23-Sep-08	<1.0	1.6	25		<1.0	1.9	0.40 J	<1.2	0.055 J	<0.20
	11-Dec-08	<1.0	<1.0	26		<1.0	1.1	<1.0	<1.0	<1.0	<0.20
10100-4.4	23-Sep-04	<60	<5	8/	<2	<5	<10	<20	<10	<3	<0.2
	08-Dec-04	<60	<5	11	<2	<5	<10	<20	<10	<3	<0.2
	30-Mar-05	<60	<5	96	<2	<5	<10	<20	<10	<3	<0.2
	12-May-05	<1	3 [WQO]	100	<1	<1	<1	<1	1.2	<1	<0.2
	17-Aug-05	<1	3.5 [WQO]	110	<1	<1	<1	<1	1.1	<1	<0.2
	10-N0V-05	<1	2.8 [WQO]	81	<1	<1	<1	<1	<1	<1	<0.2
	07-IVIar-06	<1	2.9 [WQO]	90	<1	<	<1	<1	<1	<1	<0.2
	22-IVIAy-06	<1 [<1]	1.9 [4]	90 [07]	<1 [<1]	<1 [<1]	2.3 [1.3]	<1		<1[<1]	<0.2 [<0.2]
	06-Sep-06	-10[-10]	4.1 [WQO]	00 J/J	-10[-10]	-10[-10]	<1 0 [-1 0]/UP1		0.27 3/3	10 [-1 0]	2.02
	05-Dec-00	<1.0 [<1.0]	3.0 [3.3] [WQO]	01 [00]	<1.0 [<1.0]	<1.0 [<1.0]		0.0793[0.0733]	0.51 J [0.29 J]		<0.20 [<0.20]
	12 lup 07	<1.0	3.4 [WQO]	00	< 1.0 0.057 L[-1.0]	<1.0	-1 0 1/UP [0 27 1]	-1.0[-1.0]	-1.0[-1.0]	-10[0.10]	
	05-Sep-07	<1.0 [<1.0]	3.2 [3.3] [WQO]	01 [03]	0.037 3 [<1.0]	<1.0 [<1.0]		<1.0 [<1.0]			
	11-Dec-07	0 070 1	3.0 [3.3] [WQU]	92 [09]	-1.0	<1.0 3/05 [<1.0]	<1.0 [<1.0]	<1.0 3/00 [<1.0 3/00]	<1.2 [<1.2]	<1.0 J/UB	<0.20 [<0.20]
MW-4.5	10-Oct-07	0.81 1	2.0	150	<1.0	<1.0	0.22	11	<1.0 0/00	0.21	<0.20
10100-4.5	11-Dec-07	0.010	1.0	140	<1.0	<1.0	<1.0 I/UB	<1.0 I/UB	<1.2	<1.0 I/UB	0.18
	25-Mar-08	0.0000	1.00	150 [150]	<1.0	<10[<10]	16[0 23 1]	0.20 1 [0.16 1]	15[~10]		<0.20[<0.20]
	04-Jun-08	<10	0.68.1	120		<10	<1.0.1/UB	<10.1/UB	<10.1/UB	0.095.1	<0.20 [<0.20]
	24-Sen-08	0 12 .1 [0 43 .1]	2 7 [3 2] [WQQ]	220 [210]		0 076 .1 [0 34 .1]	0 54 .1 [1 7]	0.69.1 [0.76.1]	<1 2 [<1 2]	0.074.1 [0.39.1]	<0.20
	11-Dec-08	<1.0	16	180		<10	<10	<10	<1.2 [(1.2]	<10	<0.20 [<0.20]
1	05-Mar-09	<1.0	<1.0	110 /J		<1.0	<1.0	<1.0	<1.0 /UJ	<1.0	<0.20
	17-Sep-09	<1.0	1.7	200		<1.0	<1.0	<1.0	<1.0	<1.0	<0.20
1	18-Mar-10	<1.0	<1.0	110		<1.0	<1.0	<1.0	<1.0	<1.0	<0.20
1	22-Sep-10	<1.0	<1.0	140	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20
MW-4.6	10-Oct-07	0.079 J	1.5	400	<1.0	<1.0	0.40.J	0.19.J	<1.2	0.18.J	<0.20
	11-Dec-07	0.23 J	2.0	500	<1.0	<1.0	<1.0 J/UB	<1.0 J/UB	<1.0 J/UB	<1.0 J/UB	<0.20
	25-Mar-08	<1.0	2.8 [WQO]	540		<1.0	0.58 J	<1.0	0.57 J	0.30 J	<0.20
L											

	Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury
Location ID	Units	μg/L	µg/L	µg/L	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L	µg/L
Location iD	PSL	6	10	1000	4	5	50	11	1300	15	2
	WQO	6	0.004	1000	1	0.04	50	50	200	0.2	1.2
	Bkgd	0.40	2.5	25.6	0.44	0.5	1.5	0.64	1.5	1	NA
MW-4.6	04-Jun-08	<1.0 [<1.0]	1.5 [1.4]	600 [630]		<1.0 [<1.0]	<1.0 J/UB [<1.0 J/UB]	<1.0 J/UB [<1.0 J/UB]	<1.0 J/UB [<1.0 J/UB]	<1.0 [0.076 J]	<0.20 [<0.20]
(cont'd)	24-Sep-08	0.22 J	1.5	430		0.23 J	0.72 J	0.26 J	1.2	0.23 J	<0.20
	11-Dec-08	<1.0	1.4	500		<1.0	<1.0	<1.0	<1.0	<1.0	<0.20
	05-Mar-09	<1.0	1.3	510 /J		<1.0	<1.0	<1.0	<1.0 /UJ	<1.0	<0.20
	17-Sep-09	<1.0	2.1	470		<1.0	<1.0	<1.0	<1.0	<1.0	<0.20
	18-Mar-10	<1.0	2.4	400		<1.0	<1.0	<1.0	<1.0	<1.0	<0.20
	22-Sep-10	<1.0	2.5	310	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20
MW-5.7	23-Sep-04	<60	23 [PSL,WQO]	210	<2	<5	<10	<20	<10	<3	<0.2
	09-Dec-04	<60	12 [PSL,WQO]	130	<2	<5	<10	<20	<10	<3	<0.2
	30-Mar-05	<60	19 [PSL,WQO]	220	<2	<5	<10	<20	<10	<3	<0.2
	11-May-05	<1	14 [PSL,WQO]	220	<1	<1	1.9	<1	1.6	<1	<0.2
	17-Aug-05	<1	14 [PSL,WQO]	210	<1	<1	<1	<1	<1	<1	<0.2
	09-Nov-05	<1	16 [PSL,WQO]	200	<1	<1	<1	<1	<1	<1	<0.2
	07-Mar-06	<1	15 [PSL,WQO]	150	<1	<1	<1	<1	<1	<1	<0.2
	22-May-06	<1	12 [PSL,WQO]	260	<1	<1	1.5	<1	<1	<1	<0.2
	06-Sep-06	<1	15 [PSL,WQO]	200 J/J	<1	<1	<1	0.46 J/J	0.75 J/J	<1	0.041 J/J
	05-Dec-06	<1.0	15 [PSL,WQO]	220	<1.0	<1.0	<1.0	0.39 J	<1.0	0.13 J	<0.20
	06-Mar-07	0.10 J	20 [PSL,WQO]	250	<1.0	<1.0	0.56 J	0.39 J	0.60 J	0.20 J	0.048 J
	13-Jun-07	<1.0	16 [PSL,WQO]	220	<1.0	0.057 J	0.24 J	0.41 J	0.64 J	0.16 J	<0.20
	05-Sep-07	<1.0 J/UB	15 [PSL,WQO]	170		<1.0 J/UB	<1.0	<1.0 J/UB	<1.2	<1.0 J/UB	<0.20
	12-Dec-07	<1.0	22 [PSL,WQO]	230	<1.0	<1.0	<1.0	0.37 J	4.3	0.15 J	<0.20
	25-Mar-08		18 [PSL,WQO]								
	04-Jun-08		13 [PSL,WQO]								
	24-Sep-08		16 [PSL,WQO]								
	12-Dec-08		19 [PSL,WQO]								
	05-Mar-09		21 [PSL,WQO]								
	10-Jun-09		20 [PSL,WQO]								
	16-Sep-09		23 [PSL,WQO]								
	08-Dec-09		24 [PSL,WQO]	170							
	19-Mar-10		16 [PSL,WQO]								
	16-Jun-10		18 [PSL,WQO]								
	23-Sep-10		21 [19] [PSL,WQO]								
	14-Dec-10		1.9								
MW-5.8	23-Sep-04	<60	<5	78	<2	<5	<10	<20	<10	<3	<0.2
	09-Dec-04	<60	<5	64	<2	<5	<10	<20	<10	<3	<0.2
	30-Mar-05	<60	<5	78	<2	<5	<10	<20	<10	<3	<0.2
	11-May-05	<1	2.3	77	<1	<1	<1	<1	1	<1	<0.2
[17-Aug-05	<1	1.7	76	<1	<1	<1	<1	<1	<1	<0.2
[09-Nov-05	<1	<1	72	<1	<1	<1	<1	<1	<1	<0.2
[07-Mar-06	<1	1.8	71	<1	<1	<1	<1	<1	<1	<0.2
[22-May-06	<1	<1	76	<1	<1	1.5	<1	<1	<1	<0.2
	06-Sep-06	0.074 J/J	<2.2	74 J/J	<1	<1	<1	0.11 J/J	0.3 J/J	<1	<0.2
	05-Dec-06	<1.0	2.0	74	<1.0	<1.0	<1.0	0.098 J	1.3	0.16 J	<0.20
	07-Mar-07	<1.0	1.1	72	<1.0	<1.0	<1.0 J/UB	0.10 J	<1.0 J/UB	<1.0 J/UB	<0.20

	Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury
Location ID	Units	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L
Looution ib	PSL	6	10	1000	4	5	50	11	1300	15	2
	WQO	6	0.004	1000	1	0.04	50	50	200	0.2	1.2
	Bkgd	0.40	2.5	25.6	0.44	0.5	1.5	0.64	1.5	1	NA
MW-5.8	13-Jun-07	<1.0	1.7	72	<1.0	0.061 J	0.31 J	0.060 J	0.94 J	0.16 J	<0.20
(cont'd)	05-Sep-07	<1.0	1.5	76		<1.0	<1.0	<1.0 J/UB	<1.2	<1.0 J/UB	<0.20
	12-Dec-07	<1.0	1.3	80	<1.0	<1.0	<1.0 J/UB	0.058 J	3	0.13 J	0.068 J
MW-5.9	23-Sep-04	<60	<5	250	<2	<5	<10	<20	<10	<3	<0.2
	08-Dec-04	<60	<5	230	<2	<5	<10	<20	<10	<3	<0.2
	30-Mar-05	<60	<5	230	<2	<5	<10	<20	<10	<3	<0.2
	12-May-05	1.1	<1	230	<1	<1 U,b	<1	<1	2.2	<1	<0.2
	18-Aug-05	<1	<1	260	<1	<1	<1	<1	1.3	<1	<0.2
	10-Nov-05	<1	<1	270	<1	<1	<1	<1	<1	<1	<0.2
	07-Mar-06	<1	<1	290	<1	<1	<1	<1	<1	<1	<0.2
	22-May-06	<1	<1	310	<1	<1	1.4	<1	<1	<1	<0.2
	06-Sep-06	<1	<1.3	270 J/J	<1	<1	<1	0.12 J/J	0.41 J/J	<1	<0.2
	05-Dec-06	<1.0	<1.0 J/UB	280	<1.0	<1.0	<1.0	0.10 J	<1.0	0.17 J	<0.20
	06-Mar-07	0.13 J	0.50 J	300	<1.0	<1.0	0.40 J	0.10 J	0.56 J	0.21 J	0.042 J
	13-Jun-07	<1.0	0.71 J	260	<1.0	<1.0	0.36 J	0.085 J	0.77 J	0.14 J	<0.20
	06-Sep-07	0.27 J [<1.0]	0.68 J [0.76 J]	290 [290]		0.37 J [0.12 J]	0.23 J [0.17 J]	0.36 J [0.30 J]	<1.2 [<1.2]	0.16 J [<1.0]	<0.20 [<0.20]
	12-Dec-07	<1.0 [<1.0]	0.45 J [0.39 J]	270 [290]	0.17 J [<1.0]	<1.0 [<1.0]	<1.0 J/UB [<1.0]	0.043 J [0.11 J]	3.1 [3.5]	<1.0 [<1.0]	<0.20 [<0.20]
MW-5.16	11-Dec-09	<1.0	15 [PSL,WQO]	36		<1.0	<1.0	<1.0	<1.0	<1.0	<0.20
	18-Mar-10	<1.0	29 [PSL,WQO]	50		<1.0	<1.0	<1.0	<1.0	<1.0	<0.20
	16-Jun-10	<1.0	37 [PSL,WQO]	56		<1.0	1.6	<1.0	<1.0 /UJ	<1.0 /UJ	<0.20
1	22-Sep-10	<1.0	26 [PSL,WQO]	54	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20
	14-Dec-10	<1.0 /UJ	29 [PSL,WQO]	55	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.20

	Sample Date / Analyte	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Location ID	Units	µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	µg/L
Location iD	PSL	180	100	50	100	2	36	5000
	WQO	10	12	10	35	0.1	50	2000
	Bkgd	0.91	1.1	0.57	0.36	0.97	3	12.2
MW-3.14	11-Oct-07	0.71 J	1.1	<1.0	<1.0	<1.0	0.80 J	1.8 J
	13-Dec-07	<1.0	1.7	<1.0 J/UB	<1.0	<1.0	1.4	<5.0 J/UB
	26-Mar-08	<1.0	2.4	<1.0	<1.0	<1.0	0.69 J	13
	04-Jun-08	<1.0	2.2	<1.0	<1.0	<1.0		<5.0 J/UB
	23-Sep-08	<1.0	1.4	<1.0	<1.0	<1.0		4.4 J
	11-Dec-08	<1.0	1.5	<1.0	<1.0	<1.0		<5.0
	05-Mar-09	<1.0	2.2	<1.0	<1.0 /UJ	<1.0		21
	10-Jun-09	<1.0	<1.0	<1.0	<1.0	<1.0		<24 /UB
	17-Sep-09	<1.0	1.4	<1.0	<1.0	<1.0		11
	17-Mar-10	<1.0	2	<1.0	<1.0	<1.0		<19 /UB
	22-Sep-10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<27 /UB
MW-4.1	23-Sep-04	<20	<20	9.5	<5	<5	<10	<20
	08-Dec-04	<20	<20	<5	<5	<5	<10	77
	30-Mar-05	<20	<20	<5	<5	<5	<10	<20
	12-May-05	<1	<1	<1	<1	<1	<1	21
	18-Aug-05	<1	<1	<1	<1	<1	1.1	25
	10-Nov-05	<1 [<1]	1.8 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	13 [8.7]
	07-Mar-06	<1	<1	<1	<1	<1	<1	6.4
	22-May-06	<1	2.1	<1	<1	<1	<1	9
	06-Sep-06	<1	0.72 J/J	<1	<1	<1	<1	16
	05-Dec-06	<1.0	1.6	<1.0 J/UB	<1.0	<1.0	<1.0 J/UB	18
	06-Mar-07	<1.0	0.79 J	<1.0	<1.0	<1.0	<1.0	7.3
	13-Jun-07	<1.0	<1.0 J/UB	<1.0 J/UB	<1.0	<1.0	<1.0 J/UB	2.5 J
	05-Sep-07	<1.0	0.81 J	<1.0	<1.0	<1.0		<5.0 J/UB
	11-Dec-07	0.35 J	0.77 J	<1.0	<1.0	<1.0	<1.0 J/UB	14
	26-Mar-08							
	23-Sep-08							
	05-Mar-09							
	17-Sep-09							
	09-Dec-09							
	17-Mar-10							
	22-Sep-10							
MW-4.2	23-Sep-04	<20	<20	<5	<5	<5	<10	<20
	08-Dec-04	<20	<20	<5	<5	<5	<10	49
	30-Mar-05	<20	<20	<5	<5	<5	<10	<20
	12-May-05	<1	<1	<1	<1	<1	1.9	15
	18-Aug-05	<1	<1	<1	<1	<1	<1	9.4
	10-Nov-05	<1	<1	<1	<1	<1	2	19
1	07-Mar-06	<1	<1	<1	<1	<1	2.5	16
1	22-May-06	<1	1.1	<1	<1	<1	<1	4.3
1	06-Sep-06	<1	0.65 J/J	<1	<1	<1	<2	6.4
1	05-Dec-06	<1.0	1.1	<1.0 J/UB	<1.0	<1.0	<1.0 J/UB	<5.0 J/UB
1	06-Mar-07	<1.0	0.76 J	<1.0	<1.0	<1.0	0.52 J	5.3
1	13-Jun-07	<1.0	<1.0 J/UB	<1.0	<1.0	<1.0	<1.0 J/UB	2.1 J

	Sample Date / Analyte	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
Location ID	PSL	180	100	50	100	2	36	5000
	WQO	10	12	10	35	0.1	50	2000
	Bkgd	0.91	1.1	0.57	0.36	0.97	3	12.2
MW-4.2	05-Sep-07	<1.0	0.12 J	<1.0	<1.0	<1.0		21
(cont'd)	11-Dec-07	<1.0	0.67 J	<1.0	<1.0	<1.0	<1.0 J/UB	8
MW-4.3	30-Mar-05	<20	<20	<5	<5	<5	<10	<20
	12-May-05	<1	<1	<1	<1	<1	1.2	7.2
	17-Aug-05	<1	<1	<1	<1	<1	<1	3.4
	10-Nov-05	<1	<1	<1	<1	<1	1.3	2.7
	07-Mar-06	<1	<1	<1	<1	<1	1.4	5.4
	22-May-06	<1	<1	<1	<1	<1	<1	4.5
	06-Sep-06	<1	0.51 J/J	<1	<1	<1	<1.6	12
	05-Dec-06	<1.0	0.85 J	<1.0 J/UB	<1.0	<1.0	2.5	<5.0 J/UB
	06-Mar-07	<1.0 [<1.0]	0.63 J [0.71 J]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	1.7 [1.3]	11 [4.8 J]
MW-4.3R	10-Oct-07	1.5 [1.5]	1.3 [1.8]	0.16 J [<1.0]	0.036 J [0.048 J]	<1.0 [<1.0]	2.3 [2.2]	2.5 J [4.8 J]
	11-Dec-07	0.74 J [0.36 J]	1.9 [2.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	2.3 [2.1]	5.1 [7.2]
	26-Mar-08	<1.0	0.88 J	<1.0	<1.0	<1.0	2.1	12
	04-Jun-08	<1.0	<1.0 J/UB	<1.0	<1.0	<1.0		<5.0
	23-Sep-08	<1.0	1	<1.0	<1.0	<1.0		7.5
	11-Dec-08	<1.0	<1.0	<1.0	<1.0	<1.0		<5.0
MW-4.4	23-Sep-04	<20	<20	<5	<5	<5	<10	<20
	08-Dec-04	<20	<20	<5	<5	<5	<10	52
	30-Mar-05	<20	<20	<5	<5	<5	<10	<20
	12-May-05	<1	<1	<1	<1	<1	<1	6.9
	17-Aug-05	<1	<1	<1	<1	<1	<1	12
	10-Nov-05	<1	<1	<1	<1	<1	<1	4.1
	07-Mar-06	<1	<1	<1	<1	<1	<1	6.3
	22-May-06	<1 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	3.6 [2.8]
	06-Sep-06	<1	0.26 J/J	<1	<1	<1	<1	2.7 J/J
	05-Dec-06	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0 J/UB]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0 J/UB]	19 [20]
	06-Mar-07	<1.0	0.85 J	<1.0	<1.0	<1.0	<1.0	14
	13-Jun-07	<1.0 [<1.0]	<1.0 J/UB [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 J/UB [1.0]	<5.0 [7.9]
	05-Sep-07	<1.0 [<1.0]	<1.0 [0.23 J]	<1.0 [<1.0]	<1.0 J/UB [<1.0]	<1.0 [<1.0]		6.8 /J [24 /J]
	11-Dec-07	<1.0	0.19 J	<1.0	<1.0	<1.0	<1.0 J/UB	<5.0 J/UB
MW-4.5	10-Oct-07	1.7	1.4	<1.0	<1.0	<1.0	0.52 J	12
	11-Dec-07	1.8	0.58 J	<1.0	<1.0	<1.0	<1.0 J/UB	<5.0 J/UB
	25-Mar-08	1.7 [1.5]	1.1 [0.35 J]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]		6.7 [2.3 J]
	04-Jun-08	1.5	<1.0 J/UB	<1.0	<1.0	<1.0		<5.0
	24-Sep-08	1.5 [2.0]	1.0 [0.80 J]	<1.0 [<1.0]	0.039 J [0.28 J]	<1.0 [0.28 J] [WQO]		5.0 J [3.8 J]
	11-Dec-08	1.1	<1.0	<1.0	<1.0	<1.0		6.8
	05-Mar-09	1.1	1.3	<1.0	<1.0 /UJ	<1.0		6.4
	17-Sep-09	1.3	<1.0	<1.0	<1.0	<1.0		<5.0
	18-Mar-10	<1.0	1.2	<1.0	<1.0	<1.0		<5.9 /UB
	22-Sep-10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<87 /UB
MW-4.6	10-Oct-07	1.5	0.70 J	<1.0	<1.0	<1.0	0.99 J	4.0 J
	11-Dec-07	2	0.28 J	<1.0	<1.0	<1.0	<1.0 J/UB	5.3
	25-Mar-08	1.1	0.55 J	<1.0	<1.0	<1.0		9.6

	Sample Date / Analyte	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Location ID	Units	μg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L
Location iD	PSL	180	100	50	100	2	36	5000
	WQO	10	12	10	35	0.1	50	2000
	Bkgd	0.91	1.1	0.57	0.36	0.97	3	12.2
MW-4.6	04-Jun-08	1.0 3/08	<1.0 J/UB [<1.0 J/UB]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]		<5.0 [<5.0 J/UB]
(cont'd)	24-Sep-08	1.4	0.71 J	0.36 J	0.14 J	0.18 J		4.5 J
	11-Dec-08	<1.0	<1.0	<1.0	<1.0	<1.0		<5.0
	05-Mar-09	1.3	<1.0	<1.0	<1.0 /UJ	<1.0		8.6
	17-Sep-09	<1.0	<1.0	<1.0	<1.0	<1.0		8.2
	18-Mar-10	<1.0	<1.0	<1.0	<1.0	<1.0		<5.0
	22-Sep-10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<36 /UB
MW-5.7	23-Sep-04	<20	<20	23 [WQO]	<5	<5	<10	<20
	09-Dec-04	<20	<20	<5	<5	<5	<10	<20
	30-Mar-05	<20	<20	<5	<5	<5	<10	<20
	11-May-05	<1	<1	<1	<1	<1	<1	9.5
	17-Aug-05	<1	<1	<1	<1	<1	<1	5.6
	09-Nov-05	<1	<1	<1	<1	<1	<1	6.3
	07-Mar-06	<1	<1	<1	<1	<1	<1	6.3
	22-May-06	<1	3.3	<1	<1	<1	<1	4.9
	06-Sep-06	<1	0.98 J/J	<1	<1	0.05 J/J	<1	17
	05-Dec-06	<1.0	0.51 J	<1.0 J/UB	<1.0	<1.0	<1.0 J/UB	5.9
	06-Mar-07	<1.0	0.69 J	<1.0	<1.0	<1.0	<1.0	16
	13-Jun-07	<1.0	0.51 J	0.14 J	0.043 J	0.044 J	1.2	15
	05-Sep-07	<1.0	0.27 J	0.16 J	<1.0 J/UB	<1.0		<5.0 J/UB
	12-Dec-07	<1.0	<1.0 J/UB	<1.0	<1.0	<1.0	<1.0	5.8
	25-Mar-08							
	04-Jun-08							
	24-Sep-08							
	12-Dec-08							
	05-Mar-09							
	10-Jun-09							
	16-Sep-09							
	08-Dec-09							
	19-Mar-10							
	16-Jun-10							
	23-Sep-10							
	14-Dec-10							
MW-5.8	23-Sep-04	<20	<20	<5	<5	<5	<10	<20
	09-Dec-04	<20	<20	<5	<5	<5	<10	<20
	30-Mar-05	<20	<20	<5	<5	<5	<10	<20
	11-May-05	<1	<1	<1	<1	<1	<1	5.1
	17-Aug-05	<1	<1	<1	<1	<1	<1	10
	09-Nov-05	<1	<1	<1	<1	<1	<1	7.5
	07-Mar-06	<1	<1	<1	<1	<1	<1	10
	22-May-06	<1	<1	<1	<1	<1	<1	2.3
	06-Sep-06	<1	0.31 J/J	<1	<1	0.26 J/J	<1	3.6 J/J
	05-Dec-06	<1.0	1.3	<1.0 J/UB	<1.0	<1.0	<1.0	<5.0 J/UB
	07-Mar-07	<1.0 J/UB	<1.0 J/UB	<1.0	<1.0	<1.0	1.4	6.2

	Sample Date / Analyte	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Location ib	PSL	180	100	50	100	2	36	5000
	WQO	10	12	10	35	0.1	50	2000
	Bkgd	0.91	1.1	0.57	0.36	0.97	3	12.2
MW-5.8	13-Jun-07	<1.0	0.23 J	<1.0	<1.0	0.032 J	1.7	4.0 J
(cont'd)	05-Sep-07	<1.0	<1.0	<1.0	<1.0 J/UB	<1.0		<5.0 J/UB
	12-Dec-07	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0
MW-5.9	23-Sep-04	<20	<20	10	<5	<5	<10	<20
	08-Dec-04	<20	<20	<5	<5	<5	<10	46
	30-Mar-05	<20	<20	<5	<5	<5	<10	<20
	12-May-05	<1	<1	<1	<1	1.3 [WQO]	<1	6.4
	18-Aug-05	<1	<1	<1	<1	<1	<1	11
	10-Nov-05	<1	<1	<1	<1	<1	<1	2.3
	07-Mar-06	<1	<1	<1	<1	<1	<1	11
	22-May-06	<1	1.6		<1	<1	<1	3.6
	06-Sep-06	<1	0.41 J/J	<1	<1	<1	<1	8.1
	05-Dec-06	<1.0	1.9	<1.0 J/UB	<1.0	<1.0	<1.0 J/UB	<5.0 J/UB
	06-Mar-07	<1.0	0.60 J	<1.0	<1.0	<1.0	<1.0	8.4
	13-Jun-07	<1.0	0.26 J	<1.0	<1.0	<1.0	2.3	4.8 J
	06-Sep-07	1.2 [0.34 J]	0.15 J [<1.0]	<1.0 [<1.0]	0.32 J [0.14 J]	0.10 J [<1.0]		<5.0 [2.0 J]
	12-Dec-07	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 J/UB [<1.0]	1.7 J [<5.0]
MW-5.16	11-Dec-09	2.6	4.1	<1.0	<1.0	<1.0		16
	18-Mar-10	2	1.7	<1.0	<1.0	<1.0		<5.0
	16-Jun-10	1.4	<1.0	<1.0	<1.0	<1.0 /UJ		27 /J
	22-Sep-10	1.3	2.3	<1.0	<1.0	<1.0	<1.0	<5.0
	14-Dec-10	1.9	2.4	<1.0	<1.0	<1.0	<1.0	<12 /UB

	Sample Date /	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel	Motor Oil C24-C36
	Analyte			(C6-C10)				(C10-C24) ⁻	
Location ID	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	RBSC-all_gw	0.597	1.22	1.22	1.22	1.22	1.22	1.22	31.3
	RESC-aro_gw		0.31	0.01	0.31	0.31	0.47	0.47	0.47
MW 2 14			-0.05	0.05			-0.05	U.I	0.175
10100-3.14	12 Doc 07	<0.05	<0.05	ND	<0.05	<0.05	<0.05	ND	<0.3
	26-Mar-08	<0.03	<0.05		0.013	<0.05	0.01/	0.027	<0.3
	04- lun-08	<0.13700	<0.05 I/UB	ND /UB	<0.05	<0.05	<0.05	0.027 ND	<0.3
	23-Sen-08	<0.05	<0.05		<0.05	<0.05	<0.05	ND	<0.3
	11-Dec-08	<0.05 I/UB	<0.05 I/UB		<0.05	<0.05	<0.05	ND	<0.3
	05-Mar-09	<0.05 J/UB	<0.05 J/UB	ND /UB	<0.05	<0.05	<0.05	ND	<0.3
	10lun-09	<0.05 3/08	<0.05	ND /0D	<0.05	<0.05	<0.05	ND	<0.3
	17-Sen-09	<0.00	<0.00	ND	<0.00	<0.00	<0.00	ND	<0.0
	17-0cp-05	<0.05	<0.05	ND	<0.05	<0.05	0.016	0.016	<0.3
	22-Sen-10	<0.05	<0.05	ND	<0.05	<0.05	<0.010 3		<0.3
MW-4 1	28-Jan-04		<0.00					<0.05	
10100-4.1	23-Jun-04							<0.05	<0.3
	23-Sen-04			<0.05				<0.05	<0.3
	08-Dec-04			<0.05				<0.05	<0.3
	30-Mar-05			<0.00				<0.00	<0.0
	12-May-05			<0.00				<0.00	<0.0
	18-Aug-05			<0.00				<0.019	<0.076
	10-Nov-05	0 0081 .1 [<0 0062]	0 0091 .1 [0 009 .1]	0 0172 [0 009]	<0.021 [<0.021]	<0.021 [<0.021]	<0.021 [<0.021]		<0.070
	07-Mar-06	<0.01	<0.01	ND	<0.018	<0.018	<0.018	ND	<0.033
	22-May-06	<0.0067	<0.0067	ND	<0.021	<0.021	<0.021	ND	<0.042
	06-Sep-06	0.015 J/J	0.016 J/J	0.031	< 0.05	< 0.05	< 0.05	ND	<0.3
	05-Dec-06	<0.05	< 0.05	ND	< 0.05	< 0.05	< 0.05	ND	<0.3
	06-Mar-07	<0.05	< 0.05	ND	< 0.05	< 0.05	< 0.05	ND	<0.3
	13-Jun-07	<0.05	< 0.05	ND	< 0.05	< 0.05	< 0.05	ND	<0.3
	05-Sep-07	< 0.05	< 0.05	ND	< 0.05	< 0.05	<0.05	ND	<0.3
	11-Dec-07	<0.05	< 0.05	ND	< 0.05	< 0.05	<0.05	ND	<0.3
MW-4.2	28-Jan-04							<0.05	
	23-Jun-04							<0.05	<0.3
	23-Sep-04			<0.05				<0.05	<0.3
	08-Dec-04			<0.05				<0.05	<0.3
	30-Mar-05			<0.05				<0.05	<0.3
	12-May-05			<0.05				<0.019	<0.076
	18-Aug-05			<0.05				<0.019	<0.076
	10-Nov-05	0.0082 J	0.011 J	0.0192	<0.021	<0.021	<0.021	ND	<0.042
1	07-Mar-06	<0.01	<0.01	ND	<0.018	<0.018	<0.018	ND	< 0.033
	22-May-06	<0.0067	<0.0067	ND	<0.021	<0.021	0.025 JY	0.025	0.057 JY
	06-Sep-06	<0.05	0.016 J/J	0.016	< 0.05	< 0.05	<0.05	ND	<0.3
	05-Dec-06	<0.05	<0.05	ND	<0.05	< 0.05	<0.05	ND	<0.3
	06-Mar-07	<0.05	<0.05	ND	<0.05	< 0.05	<0.05	ND	<0.3
	13-Jun-07	<0.05	< 0.05	ND	<0.05	< 0.05	< 0.05	ND	<0.3
	05-Sep-07	<0.05	<0.05	ND	<0.05	< 0.05	<0.05	ND	<0.3
	11-Dec-07	<0.05	0.011 J	0.011	<0.05	<0.05	<0.05	ND	<0.3

	Sample Date /	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel	Motor Oil C24-C36
	Analyte			(C6-C10)				(C10-C24) ⁻	
Location ID	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	RBSC-all_gw	0.597	1.22	1.22	1.22	1.22	1.22	1.22	31.3
			0.31	0.05	0.31	0.31	0.47	0.47	0.47
MW-4.3	28- Jan-04			0.05				0.076 V	0.175
10100-4.5	20-Jan-04							<0.05	<03
	30-Mar-05			<0.05				<0.05	<0.3
	12-May-05			<0.05				<0.00	0.29 JYZ [RWQCB]
	17-Aug-05			<0.05				<0.019	<0.076
	10-Nov-05	0.0066 J	0.014 J	0.0206	< 0.021	< 0.021	<0.021	ND	< 0.042
	07-Mar-06	<0.01	< 0.01	ND	< 0.018	< 0.018	<0.018	ND	< 0.033
	22-May-06	<0.0067	< 0.0067	ND	< 0.021	< 0.021	0.044 JY	0.044	0.082 JY
	06-Sep-06	0.011 J/J	0.012 J/J	0.023	< 0.05	< 0.05	<0.05	ND	<0.3
	05-Dec-06	<0.05	< 0.05	ND	<0.05	< 0.05	<0.05	ND	<0.3
	06-Mar-07	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.3 [<0.3]
MW-4.3R	10-Oct-07	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.05 [<0.05]	0.02 J [0.027 J]	<0.05 [<0.05]	0.02 [0.027]	<0.3 [<0.3]
	11-Dec-07	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.3 [<0.3]
	26-Mar-08	<0.12 b/UBJ	<0.05 b/UJ	ND /UJ	<0.05	<0.05	0.018 J	0.018	0.11 J
	04-Jun-08	<0.05 J/UB	<0.05 J/UB	ND /UB	<0.05	<0.05	<0.05	ND	<0.3
	23-Sep-08	<0.05	<0.05	ND	<0.05	<0.05	<0.05	ND	<0.3
	11-Dec-08	<0.05 J/UB	<0.05	ND /UB	<0.05	<0.05	<0.05	ND	<0.3
MW-4.4	28-Jan-04							<0.05	
	24-Jun-04							<0.05	<0.3
	23-Sep-04			<0.05				<0.05	<0.3
	08-Dec-04			<0.05				<0.05	0.32 YZ [RWQCB]
	30-Mar-05			<0.05				<0.04	<0.24
	12-May-05			<0.05				<0.019	<0.076
	17-Aug-05			<0.05				<0.019	<0.076
	10-Nov-05	<0.0062	0.012 J	0.012	<0.021	<0.021	<0.021	ND	<0.042
	07-Mar-06	<0.01	<0.01	ND	<0.021	<0.021	0.033 J	0.033	0.049 JY
	22-May-06	<0.0067 [<0.0067]	<0.0067 [<0.0067]	ND [ND]	<0.021 [<0.021]	<0.021 [<0.021]	0.023 JY [0.022 JY]	0.023 [0.022]	0.059 JY [0.084 JY]
	06-Sep-06	< 0.05	0.012 J/J	0.012	< 0.05	< 0.05	<0.05	ND	<0.3
	05-Dec-06	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	
	06-Mar-07	<0.05	<0.05	ND	<0.05	<0.05	<0.05	ND	<0.3
	13-Jun-07	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]		<0.3 [<0.3]
	05-Sep-07	<0.05 [<0.05]	<0.05 [<0.05]	נטאן טא	<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]		<0.3 [<0.3]
	17 Mar 10	<0.05	<0.05	ND	<0.05	<0.05	<0.05	ND	<0.3
	17-Ivial-10	<0.05	<0.05	ND	<0.05	<0.05	<0.05	ND	<0.3
	15-Jun-10	<0.05	<0.05		<0.05	<0.05	<0.05		<0.3
	22-Sep-10	<0.05 J/UD	<0.05 J/UB		<0.05	<0.05	<0.05		<0.3
	14-Dec-10	<0.05 3/06	<0.05 J/0B		<0.05	<0.05	<0.05		<0.3
10100-4.5	11-Dec-07	<0.03	<0.05	סא	<0.05	<0.05	<0.05		<0.3
	25-Mar-08	<0.05 b [<0.05 b]	<0.00	עאו וחאז חא					<0.3
	04- lup-08			עזין טא ND /וופ	<0.05 [<0.05]	<0.05 [<0.05]		נטאן טא חוא	<0.3 [<0.3]
	24-Sen-08		0.012 [0.015]	0.012 [0.015]					
	11-Dec-08	<0.05 [<0.03]	<0.012 0 [0.015 J]	ND /UB	<0.05	<0.05	<0.03 [<0.03]	עזין שא ND	<0.3 [<0.3]
L	11-060-00	<0.05 J/0D	NO.03	100/00	NO.03	NU.UU	NU.UU	שא	NO.5

	Sample Date /	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel	Motor Oil C24-C36
	Analyte			(C6-C10)				(C10-C24) ⁻	
Location ID	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	RBSC-all_gw	0.597	1.22	1.22	1.22	1.22	1.22	1.22	31.3
	RDSC-aro_gw		0.31	0.01	0.31	0.31	0.47	0.47	0.47
			-0.05	0.03				U.1	0.175
IVIVV-4.5	05-Mai-09	<0.05 J/06	<0.05		<0.05	<0.05	<0.05	ND	<0.3
(cont a)	17-Sep-09	<0.05	<0.05	ND	<0.05	<0.05	<0.05	ND	<0.3
	10-IVIAI-10	<0.05	<0.05		<0.05	<0.05	<0.05	ND	<0.3
MW 46	22-Sep-10	<0.05 J/06	<0.05 J/06		<0.05	<0.05	<0.05	ND	<0.3
10100-4.0	10-Oct-07	<0.05	<0.05	ND	<0.05	<0.05	<0.05	ND	<0.3
	DE Mar 08	<0.0>	<0.0>	0.024	<0.05	<0.05	<0.05	ND	<0.3
	25-Mar-08		0.012 J		<0.05	<0.05	<0.05		<0.3
	04-Jun-08	<0.05 J/UB [<0.05 J/UB]	<0.05 [<0.05 J/UB]	נפט/ עאן פט/ עא	<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]		<0.3 [<0.3]
	24-Sep-06	<0.05	<0.05		<0.05	<0.05	<0.05	ND	<0.3
	11-Dec-08	<0.05 J/UB	<0.05	ND /UB	<0.05	<0.05	<0.05	ND	0.039 J
	05-Mar-09	<0.05	<0.05	ND	<0.05	<0.05	<0.05	ND	<0.3
	17-Sep-09	<0.05	<0.05	ND	<0.05	<0.05	<0.05	ND	<0.3
	18-Mar-10	<0.05	<0.05	ND ND (UD	<0.05	<0.05	0.019 J	0.019	<0.3
104/57	22-Sep-10	<0.05 J/UB	<0.05 J/UB	ND /UB	<0.05	<0.05	<0.05	ND	<0.3
MW-5.7	29-Jan-04							<0.05	
	24-Jun-04							<0.05	<0.3
	23-Sep-04			<0.05				<0.05	<0.3
	09-Dec-04			<0.05				<0.05	<0.3
	30-Mar-05			<0.05				<0.04	<0.24
	11-May-05			<0.05				0.029 JY	<0.076
	17-Aug-05			<0.05				<0.016	<0.055
	09-Nov-05	<0.0062	0.0093 J	0.0093	<0.021	<0.021	<0.021	ND	<0.042
	07-Mar-06	<0.01	<0.01	ND	<0.021	<0.021	0.037 J	0.037	<0.042
	22-May-06	<0.0067	<0.0067	ND	<0.021	<0.021	0.03 JY	0.03	0.051 JY
	06-Sep-06	<0.05	0.011 J/J	0.011	<0.05	<0.05	<0.05	ND	<0.3
	05-Dec-06	<0.05	<0.05	ND	<0.05	0.029 J	0.028 J	0.057	<0.3
	06-Mar-07	<0.05	<0.05	ND	<0.05	<0.05	<0.05	ND	<0.3
	13-Jun-07	<0.05	<0.05	ND	<0.05	<0.05	0.011 J	0.011	<0.3
	05-Sep-07	<0.05	<0.05	ND	<0.05	<0.05	0.011 J	0.011	<0.3
	12-Dec-07	0.016 J	0.021 J	0.037	0.01 J	0.02 J	0.026 J	0.056	<0.3
MW-5.8	30-Jan-04							<0.05	
	24-Jun-04							<0.05	<0.3
	23-Sep-04			<0.05				<0.05	<0.3
	09-Dec-04			<0.05				<0.05	<0.3
	30-Mar-05			<0.05				<0.04	<0.24
1	11-May-05			<0.05				<0.013	<0.033
1	17-Aug-05			<0.05				<0.019	<0.076
1	09-Nov-05	0.0076 J	0.012 J	0.0196	<0.021	<0.021	<0.021	ND	<0.042
1	07-Mar-06	<0.01	<0.01	ND	<0.021	<0.021	0.027 J	0.027	<0.076
1	22-May-06	<0.0067	<0.0067	ND	<0.021	<0.021	<0.021	ND	0.059 JY
1	06-Sep-06	0.02 J/J	0.013 J/J	0.033	< 0.05	< 0.05	< 0.05	ND	<0.3
1	05-Dec-06	<0.05	<0.05	ND	< 0.05	<0.05	<0.05	ND	<0.3
	07-Mar-07	<0.05	<0.05	ND	<0.05 /UJ	<0.05 /UJ	<0.05 /UJ	ND	<0.3 /UJ
Table 4-17 Total Petroleum Hydrocarbons Detected in Groundwater Monitoring Well Samples

	Sample Date / Analyte	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Location ID	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Location ib	RBSC-ali_gw	0.597	1.22	1.22	1.22	1.22	1.22	1.22	31.3
	RBSC-aro_gw		0.31	0.31	0.31	0.31	0.47	0.47	0.47
	RWQCB			0.05			-	0.1	0.175
MW-5.8	13-Jun-07	<0.05	< 0.05	ND	< 0.05	< 0.05	<0.05	ND	<0.3
(cont'd)	05-Sep-07	<0.05	< 0.05	ND	<0.05 b	<0.05 b	<0.05 b	ND	0.13 Jb
	12-Dec-07	<0.05	<0.05	ND	< 0.05	< 0.05	<0.05	ND	<0.3
MW-5.9	28-Jan-04							<0.05	<0.3
	24-Jun-04							<0.05	<0.3
	23-Sep-04			<0.05				<0.05	<0.3
	08-Dec-04			<0.05				<0.05	<0.3
	30-Mar-05			<0.05				<0.05	<0.3
	12-May-05			<0.05				<0.019	<0.076
	18-Aug-05			<0.05				<0.019	<0.076
	10-Nov-05	0.0068 J	0.0073 J	0.0141	<0.021	<0.021	<0.021	ND	<0.042
	07-Mar-06	<0.01	<0.01	ND	<0.021	<0.021	<0.021	ND	<0.076
	22-May-06	<0.0067	<0.0067	ND	<0.021	<0.021	0.023 JY	0.023	0.067 JY
	06-Sep-06	<0.05	0.011 J/J	0.011	<0.05	< 0.05	<0.05	ND	<0.3
	05-Dec-06	<0.05	<0.05	ND	<0.05	< 0.05	<0.05	ND	<0.3
	06-Mar-07	<0.05	<0.05	ND	<0.05	< 0.05	<0.05	ND	<0.3
	13-Jun-07	<0.05	<0.05	ND	<0.05	< 0.05	<0.05	ND	<0.3
	06-Sep-07	<0.05 [0.016 J]	<0.05 [<0.05]	ND [0.016]	<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.3 [<0.3]
	12-Dec-07	<0.05 [<0.05]	0.019 J [<0.05]	0.019 [ND]	<0.05 [<0.05]	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.3 [<0.3]
MW-5.16	11-Dec-09	<0.05	<0.05	ND	<0.05	<0.05	0.027 J	0.027	0.095 J
1	18-Mar-10	<0.05	< 0.05	ND	<0.05	< 0.05	0.043 J	0.043	0.083 J
1	16-Jun-10	<0.05	<0.05 J/UB	ND /UB	< 0.05	<0.05	<0.05	ND	<0.3
	22-Sep-10	<0.05 J/UB	<0.05 J/UB	ND /UB	< 0.05	< 0.05	0.022 J	0.022	0.1 J
	14-Dec-10	<0.05 J/UB	<0.05 J/UB	ND /UB	< 0.05	< 0.05	<0.05	ND	<0.3

Table 4-18 Polychlorinated Biphenyls Detected in Groundwater Monitoring Well Samples

	Sample Date /	PCB #8	PCB #128	PCB #138	PCB #153	PCB #170	PCB #180	PCB #187	PCB #195	Total PCB
Location ID	Units	ua/I	ua/l	ua/l	ua/I	ua/l	ua/l	ua/l	ua/l	
	PSL								µg/⊏ 	0.5
	WQO	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
MW-4.1	12-May-05	< 0.0095	< 0.01	< 0.018	< 0.011	< 0.012	< 0.017	< 0.0097	< 0.015	ND
	18-Aug-05	< 0.012	<0.011	<0.011	< 0.014	< 0.014	<0.011	< 0.0099	< 0.013	ND
	10-Nov-05	<0.01 [<0.01]	<0.0081 [<0.0081]	<0.0096 [<0.0096]	<0.011 [<0.011]	<0.008 [<0.008]	<0.0073 [<0.0073]	<0.008 [<0.008]	<0.0091 [<0.0091]	ND [ND]
	07-Mar-06	< 0.01	<0.0081	< 0.0096	<0.011	<0.008	< 0.0073	<0.008	<0.0091	ND
	22-May-06	<0.011	< 0.0083	< 0.0099	<0.011	<0.0082	< 0.0075	<0.0083	< 0.0093	ND
	06-Sep-06	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	ND
	05-Dec-06	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	ND
	06-Mar-07	<0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	ND
	13-Jun-07	< 0.049	<0.049	< 0.049	< 0.049	<0.049	<0.049	<0.049	<0.049	ND
MW-4.2	12-May-05	<0.0095	<0.01	<0.018	<0.011	<0.012	<0.017	< 0.0097	<0.015	ND
	18-Aug-05	<0.012	<0.01	<0.011	< 0.014	<0.014	<0.011	<0.0098	<0.012	ND
	10-Nov-05	<0.01	<0.0081	< 0.0096	<0.011	<0.008	< 0.0073	<0.008	<0.0091	ND
	07-Mar-06	<0.01	<0.0083	<0.0098	<0.011	<0.0081	< 0.0074	<0.0082	<0.0093	ND
	22-May-06	<0.011	<0.0083	< 0.0099	<0.011	<0.0082	<0.0075	<0.0083	<0.0093	ND
	06-Sep-06	<0.049	<0.049	<0.049	< 0.049	<0.049	<0.049	<0.049	<0.049	ND
	05-Dec-06	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	ND
	06-Mar-07	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	ND
	13-Jun-07	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	ND
MW-4.3	12-May-05	<0.0095	<0.01	<0.018	<0.011	<0.012	<0.017	<0.0097	<0.015	ND
	17-Aug-05	<0.012	<0.011	<0.011	<0.015	<0.015	<0.011	<0.01	<0.013	ND
	10-Nov-05	<0.01	<0.0082	<0.0097	<0.011	<0.0081	< 0.0073	<0.0081	<0.0092	ND
	07-Mar-06	<0.01	<0.0081	< 0.0096	<0.011	<0.008	<0.0073	<0.008	<0.0091	ND
	22-May-06	<0.011	<0.0083	<0.0099	<0.011	<0.0082	<0.0075	<0.0083	<0.0093	ND
	06-Sep-06	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	ND
	05-Dec-06	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	ND
	06-Mar-07	<0.049 [<0.059]	<0.049 [<0.059]	<0.049 [<0.059]	<0.049 [<0.059]	<0.049 [<0.059]	<0.049 [<0.059]	<0.049 [<0.059]	<0.049 [<0.059]	ND [ND]
MW-4.4	12-May-05	<0.012	<0.01	<0.01	<0.014	<0.014	<0.01	<0.0097	<0.012	ND
	17-Aug-05	<0.012	<0.011	<0.011	<0.014	<0.014	<0.011	<0.0099	<0.013	ND
	10-Nov-05	<0.01	<0.0082	< 0.0097	<0.011	<0.0081	< 0.0073	<0.0081	<0.0092	ND
	07-Mar-06	<0.01	<0.008	< 0.0095	<0.01	< 0.0079	< 0.0072	<0.008	<0.009	ND
	22-May-06	<0.011 [<0.01]	<0.0083 [<0.0083]	<0.0099 [<0.0098]	<0.011 [<0.011]	<0.0082 [<0.0081]	< 0.0075 [< 0.0074]	<0.0083 [<0.0082]	<0.0093 [<0.0093]	ND [ND]
	06-Sep-06	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	ND
	05-Dec-06	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	ND [ND]
	06-Mar-07	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	ND
	13-Jun-07	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	<0.049 [<0.049]	ND [ND]
MW-4.5	10-Oct-07	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	ND
	11-Dec-07	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	ND
1	25-Mar-08	<0.051 [<0.050]	<0.051 [<0.050]	<0.051 [<0.050]	<0.051 [<0.050]	<0.051 [<0.050]	<0.051 [<0.050]	<0.051 [<0.050]	<0.051 [<0.050]	ND [ND]
1	04-Jun-08	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	ND
1	24-Sep-08	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	ND [ND]
	11-Dec-08	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	ND

Table 4-18 Polychlorinated Biphenyls Detected in Groundwater Monitoring Well Samples

	Sample Date / Analyte	PCB #8	PCB #128	PCB #138	PCB #153	PCB #170	PCB #180	PCB #187	PCB #195	Total PCB Congeners ⁶
Location ID	Units	µg/L	μg/L							
	PSL					-	-			0.5
	WQO	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
MW-4.6	10-Oct-07	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	ND
	11-Dec-07	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	ND
	25-Mar-08	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	ND
	04-Jun-08	<0.049 [<0.050]	<0.049 [<0.050]	<0.049 [<0.050]	<0.049 [<0.050]	<0.049 [<0.050]	<0.049 [<0.050]	<0.049 [<0.050]	<0.049 [<0.050]	ND [ND]
	24-Sep-08	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	ND
	11-Dec-08	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	ND
MW-5.7	11-May-05	<0.012	<0.01	<0.01	<0.014	<0.014	<0.01	< 0.0097	<0.012	ND
	17-Aug-05	<0.012	<0.011	<0.011	<0.015	<0.015	<0.011	<0.01	<0.013	ND
	09-Nov-05	<0.01	<0.0081	< 0.0096	<0.011	<0.008	<0.0073	<0.008	<0.0091	ND
	07-Mar-06	<0.01	<0.008	< 0.0095	<0.01	<0.0079	<0.0072	<0.008	< 0.009	ND
	22-May-06	<0.011	<0.0083	< 0.0099	<0.011	<0.0082	<0.0075	< 0.0083	< 0.0093	ND
	06-Sep-06	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	ND
	05-Dec-06	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	ND
	06-Mar-07	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	ND
	13-Jun-07	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	< 0.049	ND
MW-5.8	11-May-05	< 0.0096	<0.01	<0.018	<0.011	<0.012	<0.018	<0.0098	<0.015	ND
	17-Aug-05	<0.012	<0.01	<0.011	<0.014	<0.014	<0.011	<0.0098	<0.012	ND
	09-Nov-05	<0.01	<0.0081	< 0.0096	<0.011	<0.008	<0.0073	<0.008	<0.0091	ND
	07-Mar-06	<0.01	<0.008	<0.0095	<0.01	<0.0079	< 0.0072	<0.008	< 0.009	ND
	22-May-06	<0.011	<0.0084	<0.01	<0.011	<0.0083	<0.0075	< 0.0084	< 0.0094	ND
	06-Sep-06	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	ND
	05-Dec-06	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	ND
	07-Mar-07	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	ND
	13-Jun-07	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	<0.047	ND
MW-5.9	12-May-05	<0.012	<0.01	<0.01	<0.014	<0.014	<0.01	<0.0097	<0.012	ND
	18-Aug-05	<0.012	<0.011	<0.011	<0.014	<0.014	<0.011	<0.0099	<0.013	ND
	10-Nov-05	<0.01	<0.0083	<0.0098	<0.011	<0.0081	<0.0074	<0.0082	< 0.0093	ND
	07-Mar-06	0.01 J	<0.0081	< 0.0096	<0.011	<0.008	< 0.0073	<0.008	< 0.0091	0.020 J
	22-May-06	<0.011	0.015 J	0.12 [WQO]	0.11 [WQO]	0.12 [WQO]	0.2 [WQO]	0.061	0.022 J	1.3 J [PSL,WQO]
	06-Sep-06	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	ND
	05-Dec-06	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	ND
	06-Mar-07	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	ND
	13-Jun-07	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048	ND
	06-Sep-07	<0.050 [<0.047]	<0.050 [<0.047]	<0.050 [<0.047]	<0.050 [<0.047]	<0.050 [<0.047]	<0.050 [<0.047]	<0.050 [<0.047]	<0.050 [<0.047]	ND [ND]
	12-Dec-07	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	<0.050 [<0.050]	ND [ND]

	Sample Date / Analyte	Benzoic acid	bis(2-Ethylhexyl)Phthalate
Location ID	Units	µg/L	μg/L
	PSL	150000	4
	WQO	28000	4
MW-4.1	23-Sep-04	<48	<9.6
	08-Dec-04	<48	<9.6
	30-Mar-05	<48	<9.5
	12-May-05	<0.082	<2.8
	18-Aug-05	<20	1.3 J
	10-Nov-05	<20 [<20]	<0.51 [<0.51]
	07-Mar-06	<20	<0.51
	22-May-06	<11	<0.88
	06-Sep-06	<47 UJ/UJ	<9.4
	05-Dec-06	<50	<9.9
	06-Mar-07	<47	<9.4
	13-Jun-07	<49	<9.8
MW-4.2	23-Sep-04	<48	<9.5
	08-Dec-04	<48	<9.5
	12-May-05	<0.082	<2.8
	18-Aug-05	<20	<0.51
	10-Nov-05	<20	<0.51
	07-Mar-06	<10	<0.86
	22-May-06	<11	<0.89
	06-Sep-06	<50	<9.9 UJ/UJ
	05-Dec-06	<49	<9.7
	06-Mar-07	<48	<9.6
	13-Jun-07	<50	<10
MW-4.3	30-Mar-05	<47	<9.4
	12-May-05	<0.081	<2.8
	17-Aug-05	<13	1.2 J
	10-Nov-05	<20	<0.51
	07-Mar-06	<10	<0.86
	22-May-06	<11	<0.89
	06-Sep-06	<47 UJ/UJ	<9.4
	05-Dec-06	<50	<9.9
	06-Mar-07	<63 [<49]	7.7 J [<9.7]

	Sample Date / Analyte	Benzoic acid	bis(2-Ethylhexyl)Phthalate
Location ID	Units	µg/L	µg/L
	PSL	150000	4
	WQO	28000	4
MW-4.4	23-Sep-04	<48	<9.5
	08-Dec-04	<48	<9.6
	30-Mar-05	<50	<10
	12-May-05	<0.081	<2.8
	17-Aug-05	<20	1.9 J
	10-Nov-05	<13	<0.52
	07-Mar-06	<10	<0.87
	22-May-06	<11 [<11]	<0.89 [<0.89]
	06-Sep-06	<48	<9.6 UJ/UJ
	05-Dec-06	<49 [<49]	<9.7 [<9.7]
	06-Mar-07	<63	<13
	13-Jun-07	<48 [<49]	<9.5 [<9.7]
MW-4.5	10-Oct-07	<49	<9.8
	11-Dec-07	<49	<9.7
	25-Mar-08	<49 [<50]	5.3 J [1.7 J]
	04-Jun-08	<50	<9.9
	24-Sep-08	<50 [<49]	4.4 J [<9.7]
	11-Dec-08	<47	<9.4
MW-4.6	10-Oct-07	<50	1.7 J
	11-Dec-07	<50	<10
	25-Mar-08	<50	<10
	04-Jun-08	<49 [<50]	<9.8 [<10]
	24-Sep-08	<47	<9.4
	11-Dec-08	<47	<9.4
MW-5.7	23-Sep-04	<48	<9.5
	09-Dec-04	<48	<9.5
	30-Mar-05	<50	<10
	11-May-05	<0.081	<2.8
	17-Aug-05	0.93 J	1.3 J
	09-Nov-05	<13	<0.51
	07-Mar-06	<10	<0.86
	22-May-06	<11	1.1 J
	06-Sep-06	<47 UJ/UJ	<9.4
	05-Dec-06	<50	<10
	06-Mar-07	<49	<9.7
	13-Jun-07	<49	<9.8
	12-Dec-07	<50	<9.9

	Sample Date /	Benzoic acid	bis(2-Ethylhexyl)Phthalate
Location ID	Units	ua/L	ua/L
	PSL	150000	4
	WQO	28000	4
MW-5.8	23-Sep-04	<48	<9.5
	09-Dec-04	<47	<9.4
	30-Mar-05	<50	<10
	11-May-05	<0.13	<1.1
	17-Aug-05	<20	<0.51
	09-Nov-05	<13	0.78 J
	07-Mar-06	<10	<0.86
	22-May-06	<11	<0.89
	06-Sep-06	<49	<9.8 UJ/UJ
	05-Dec-06	<50	<9.9
	07-Mar-07	<49	<9.7
	13-Jun-07	<48	<9.6
	12-Dec-07	<50	<9.9
MW-5.9	23-Sep-04	<47	<9.4
	08-Dec-04	<48	<9.6
	30-Mar-05	<47	<9.4
	12-May-05	<0.081	<2.8
	18-Aug-05	<20	0.72 J
	10-Nov-05	<13	<0.52
	07-Mar-06	<10	<0.86
	22-May-06	<11	<0.89
	06-Sep-06	<47 UJ/UJ	<9.4 UJ/UJ
	05-Dec-06	<49	<9.7
	06-Mar-07	<49	<9.8
	13-Jun-07	<49	<9.8
	06-Sep-07	<48 [<50]	<9.6 [<10]
	12-Dec-07	<49 [<50]	<9.8 [<10]

Table 4-20
Polycyclic Aromatic Hydrocarbons Detected in Groundwater Monitoring Well Samples

Remedial Investigation Report Operable Unit E
Former Georgia-Pacific Wood Products Facility
Fort Bragg, California

	Sample Date / Analyte	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	e Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene
Location ID	Units	µg/L	µg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	µg/L	µg/L
	PSL	370		1800	0.029	0.2	0.029		0.56	0.0029	1500	240
	WQO	20	-	2100	0.04	0.007	0.04	-	0.4	0.0085	280	280
MW-4.1	23-Sep-04	<0.96	<1.9	<0.1	<0.1	<0.1	<0.19	<0.19	<0.1	<0.19	<0.19	<0.19
	08-Dec-04	<1	<1	<1	<1	<0.2	<1	<1	<1	<1	<1	<1
	30-Mar-05	<0.94	<1.9	<0.09	<0.09	<0.09	<0.19	<0.19	<0.09	<0.19	<0.19	<0.19
	12-May-05	<0.34	<0.35	<0.007	< 0.004	< 0.004	<0.008	<0.01	<0.006	<0.02	<0.01	<0.05
	18-Aug-05	<0.06	<0.09	<0.008	< 0.005	<0.007	<0.009	<0.009	<0.006	<0.008	<0.01	<0.01
	10-Nov-05	<0.06 [<0.06]	<0.09 [<0.09]	<0.008 [<0.008]	<0.005 [<0.005]	<0.007 [<0.007]	<0.009 [<0.009]	<0.009 [<0.009]	<0.006 [<0.006]	<0.008 [<0.008]	<0.01 [<0.01]	<0.01 [<0.01]
	07-Mar-06	<0.06	<0.09	<0.008	< 0.005	<0.007	<0.009	<0.009	<0.006	<0.008	<0.01	<0.01
	22-May-06	< 0.32	<0.24	<0.02	<0.01	<0.02	<0.01	<0.02	<0.009	<0.02	<0.01	< 0.03
	06-Sep-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Dec-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	06-Mar-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	13-Jun-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Sep-07	0.01 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.007 J
	11-Dec-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MW-4.2	23-Sep-04	<0.95	<1.9	<0.1	<0.1	<0.1	<0.19	<0.19	<0.1	<0.19	<0.19	<0.19
	08-Dec-04	<1	<1	<1	<1	<0.2	<1	<1	<1	<1	<1	<1
	30-Mar-05	<0.95	<1.9	<0.1	<0.1	<0.1	<0.19	<0.19	<0.1	<0.19	<0.19	<0.19
	12-May-05	< 0.34	< 0.35	<0.007	< 0.004	< 0.004	<0.008	<0.01	<0.006	<0.02	<0.01	<0.05
	18-Aug-05	< 0.06	<0.09	<0.008	< 0.005	<0.01	<0.009	<0.009	<0.006	<0.008	<0.01	<0.01
	10-Nov-05	< 0.06	<0.09	<0.008	< 0.005	< 0.007	<0.009	<0.009	<0.006	<0.008	<0.01	<0.01
	07-Mar-06	<0.06	<0.09	<0.008	< 0.005	<0.007	<0.009	<0.009	<0.006	<0.008	<0.01	<0.01
	22-May-06	<0.32	<0.24	<0.02	<0.01	<0.02	<0.01	<0.02	<0.009	<0.02	<0.01	<0.03
	06-Sep-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Dec-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	06-Mar-07	< 0.09	<0.09	< 0.09	<0.09	<0.09	<0.09	<0.09	< 0.09	< 0.09	<0.09	<0.09
	13-Jun-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Sep-07	0.01 J	0.01 J	<0.1	0.02 J	<0.1	0.01 J	0.01 J	<0.1	0.01 J [PSL,WQO]	0.01 J	0.02 J
	11-Dec-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MW-4.3	30-Mar-05	<1	<2	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2
	12-May-05	< 0.34	< 0.35	< 0.007	< 0.004	< 0.004	< 0.008	<0.01	< 0.006	<0.02	<0.01	< 0.05
	17-Aug-05	< 0.06	< 0.09	<0.008	< 0.005	<0.01	< 0.009	< 0.009	< 0.006	<0.008	<0.01	<0.01
	10-Nov-05	< 0.06	< 0.09	<0.008	< 0.005	< 0.008	< 0.009	<0.01	< 0.006	<0.009	<0.01	<0.01
	07-Mar-06	< 0.06	< 0.09	<0.008	< 0.005	< 0.007	< 0.009	< 0.009	< 0.006	<0.008	<0.01	<0.01
	22-May-06	< 0.32	<0.24	< 0.02	<0.01	< 0.02	<0.01	<0.02	< 0.009	<0.02	<0.01	< 0.03
	06-Sep-06	0.01 J/J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Dec-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	06-Mar-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
MW-4.3R	10-Oct-07	0.04 J [0.04 J]	<0.1 [<0.1]	<0.1 [0.01 J]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	0.03 J [0.03 J]
	11-Dec-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	26-Mar-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	04-Jun-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	23-Sep-08	<0.09	<0.09	< 0.09	< 0.09	<0.09	<0.09	<0.09	< 0.09	<0.09	<0.09	<0.09
	11-Dec-08	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09

	Sample Date / Analyte	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	e Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	e Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	PSL	370		1800	0.029	0.2	0.029		0.56	0.0029	1500	240
	WQO	20		2100	0.04	0.007	0.04		0.4	0.0085	280	280
MW-4.4	23-Sep-04	<0.96	<1.9	<0.1	<0.1	<0.1	<0.19	<0.19	<0.1	<0.19	<0.19	<0.19
	08-Dec-04	<1	<1	<1	<1	<0.2	<1	<1	<1	<1	<1	<1
	30-Mar-05	<0.95	<1.9	<0.1	<0.1	<0.1	<0.19	<0.19	<0.1	<0.19	<0.19	<0.19
	12-May-05	< 0.34	< 0.35	<0.007	<0.004	< 0.004	<0.008	<0.01	< 0.006	<0.02	<0.01	< 0.05
	17-Aug-05	< 0.06	<0.09	<0.008	<0.005	<0.01	<0.009	< 0.009	< 0.006	<0.008	<0.01	<0.01
	10-Nov-05	< 0.06	<0.09	<0.008	<0.005	<0.008	<0.009	<0.01	< 0.006	<0.009	<0.01	<0.01
	07-Mar-06	< 0.06	<0.09	<0.008	<0.005	< 0.007	<0.009	< 0.009	< 0.006	<0.008	<0.01	<0.01
	22-May-06	<0.33 [<0.32]	<0.24 [<0.24]	<0.02 [<0.02]	<0.01 [<0.01]	<0.02 [<0.02]	<0.01 [<0.01]	<0.02 [<0.02]	<0.009 [<0.009]	<0.02 [<0.02]	<0.01 [<0.01]	<0.03 [<0.03]
	07-Sep-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Dec-06	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	06-Mar-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	13-Jun-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	05-Sep-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	11-Dec-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MW-4.5	10-Oct-07	<0.1	<0.1	<0.1	0.01 J	0.01 J [WQO]	<0.1	0.02 J	0.01 J	<0.1	0.01 J	<0.1
	11-Dec-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	25-Mar-08	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]
	04-Jun-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	24-Sep-08	<0.1 [<0.09]	<0.1 [<0.09]	<0.1 [<0.09]	<0.1 [<0.09]	<0.1 [<0.09]	<0.1 [<0.09]	0.04 J [<0.09]	<0.1 [<0.09]	<0.1 [<0.09]	<0.1 [<0.09]	<0.1 [<0.09]
	11-Dec-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Mar-09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	17-Sep-09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	18-Mar-10	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	< 0.09	<0.09
	22-Sep-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MW-4.6	10-Oct-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	11-Dec-07	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	< 0.09	<0.09
	25-Mar-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	04-Jun-08	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	24-Sep-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	11-Dec-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Mar-09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	17-Sep-09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	< 0.09	<0.09
	18-Mar-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	22-Sep-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MW-5.7	23-Sep-04	<0.95	<1.9	<0.1	<0.1	<0.1	<0.19	<0.19	<0.1	<0.19	<0.19	<0.19
	09-Dec-04	<1	<1	<1	<1	<0.2	<1	<1	<1	<1	<1	<1
	30-Mar-05	<0.95	<1.9	<0.1	<0.1	<0.1	<0.19	<0.19	<0.1	<0.19	<0.19	<0.19
	11-May-05	< 0.34	< 0.35	<0.007	< 0.004	< 0.004	<0.008	<0.01	<0.006	<0.02	<0.01	< 0.05
	17-Aug-05	<0.06	<0.09	<0.008	< 0.005	<0.008	<0.009	<0.01	<0.006	<0.009	0.03 J	<0.01
	09-Nov-05	<0.06	<0.09	<0.008	< 0.005	< 0.007	<0.009	<0.009	<0.006	<0.008	0.05 J	0.05 J
	07-Mar-06	< 0.06	<0.09	<0.008	< 0.005	<0.007	<0.009	<0.009	<0.006	<0.008	<0.01	< 0.01
1	22-May-06	< 0.33	<0.24	<0.02	<0.01	<0.02	<0.01	<0.02	<0.009	<0.02	0.05 J	< 0.03
	06-Sep-06	0.01 J/J	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	< 0.09	0.04 J/J
	05-Dec-06	0.02 J	0.01 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.05 J

Table 4-20
Polycyclic Aromatic Hydrocarbons Detected in Groundwater Monitoring Well Samples

Remedial Investigation Report Operable Unit E
Former Georgia-Pacific Wood Products Facility
Fort Bragg, California

	Sample Date / Analyte	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L
	PSL	370		1800	0.029	0.2	0.029	-	0.56	0.0029	1500	240
	WQO	20		2100	0.04	0.007	0.04		0.4	0.0085	280	280
MW-5.7	06-Mar-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(cont'd)	13-Jun-07	0.02 J	<0.09	<0.09	< 0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	0.04 J
	05-Sep-07	0.01 J	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.04 J
	12-Dec-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.06 J
MW-5.8	23-Sep-04	<0.95	<1.9	<0.1	<0.1	<0.1	<0.19	<0.19	<0.1	<0.19	<0.19	<0.19
	09-Dec-04	<1	<1	<1	<1	<0.2	<1	<1	<1	<1	<1	<1
	30-Mar-05	<0.95	<1.9	<0.1	<0.1	<0.1	<0.19	<0.19	<0.1	<0.19	<0.19	<0.19
	11-May-05	< 0.34	< 0.35	<0.007	< 0.004	< 0.004	<0.008	<0.01	<0.006	<0.02	<0.01	< 0.05
	17-Aug-05	< 0.06	<0.09	<0.008	< 0.005	<0.01	<0.009	<0.009	<0.006	<0.008	<0.01	<0.01
	09-Nov-05	< 0.06	<0.09	<0.008	<0.005	<0.007	<0.009	<0.009	<0.006	<0.008	<0.01	<0.01
	07-Mar-06	< 0.06	<0.09	<0.008	<0.005	<0.007	<0.009	<0.009	<0.006	<0.008	<0.01	<0.01
	22-May-06	<0.35	<0.26	<0.02	<0.01	< 0.03	<0.01	<0.02	<0.01	<0.03	<0.01	<0.03
	07-Sep-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Dec-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	07-Mar-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	13-Jun-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Sep-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	12-Dec-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MW-5.9	23-Sep-04	<0.94	<1.9	<0.09	<0.09	<0.09	<0.19	<0.19	<0.09	<0.19	<0.19	<0.19
	08-Dec-04	<1	<1	<1	<1	<0.2	<1	<1	<1	<1	<1	<1
	30-Mar-05	<0.96	<1.9	<0.1	<0.1	<0.1	<0.19	<0.19	<0.1	<0.19	<0.19	<0.19
	12-May-05	<0.34	<0.35	<0.007	<0.004	< 0.004	<0.008	<0.01	<0.006	<0.02	<0.01	<0.05
	18-Aug-05	< 0.06	<0.09	<0.008	<0.005	<0.01	<0.009	<0.009	<0.006	<0.008	<0.01	<0.01
	10-Nov-05	< 0.06	<0.09	<0.008	<0.005	<0.008	<0.009	<0.01	<0.006	<0.009	<0.01	<0.01
	07-Mar-06	< 0.06	<0.09	<0.008	<0.005	< 0.007	<0.009	<0.009	<0.006	<0.008	<0.01	<0.01
	22-May-06	< 0.33	<0.24	<0.02	<0.01	<0.02	<0.01	<0.02	<0.009	<0.02	<0.01	< 0.03
	06-Sep-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	05-Dec-06	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	06-Mar-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	13-Jun-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	06-Sep-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	12-Dec-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
MW-5.16	11-Dec-09	<0.09	<0.09	< 0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	< 0.09
	18-Mar-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	16-Jun-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	22-Sep-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	14-Dec-10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

	Sample Date / Analyte	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	PSL	0.029	0.14		180		0.2
	WQO	0.04	17		210		0.007
MW-4.1	23-Sep-04	<0.1	<0.96	<0.1	<0.1	ND	ND
	08-Dec-04	<1	<1	<1	<1	ND	ND
	30-Mar-05	<0.09	<0.94	<0.09	<0.09	ND	ND
	12-May-05	<0.01	<0.15	<0.008	< 0.005	ND	ND
	18-Aug-05	<0.006	<0.07	<0.008	<0.007	ND	ND
	10-Nov-05	<0.006 [<0.006]	<0.07 [<0.07]	<0.008 [<0.008]	<0.007 [<0.007]	ND [ND]	ND [ND]
	07-Mar-06	<0.006	<0.07	<0.008	<0.007	ND	ND
	22-May-06	<0.009	<0.1	< 0.008	<0.01	ND	ND
	06-Sep-06	<0.1	<0.1	<0.1	<0.1	ND	ND
	05-Dec-06	<0.1	<0.1 J/UB	<0.1	<0.1	ND	ND
	06-Mar-07	<0.1	0.02 J	<0.1	<0.1	ND	ND
	13-Jun-07	<0.1	0.02 J	<0.1	<0.1	ND	ND
	05-Sep-07	<0.1	0.03 J	0.01 J	<0.1	0.017	ND
	11-Dec-07	<0.1	<0.1	<0.1	<0.1	ND	ND
MW-4.2	23-Sep-04	<0.1	<0.95	<0.1	<0.1	ND	ND
	08-Dec-04	<1	<1	<1	<1	ND	ND
	30-Mar-05	<0.1	<0.95	<0.1	<0.1	ND	ND
	12-May-05	<0.01	<0.15	< 0.008	< 0.005	ND	ND
	18-Aug-05	<0.006	< 0.07	< 0.008	< 0.007	ND	ND
	10-Nov-05	<0.006	< 0.07	< 0.008	< 0.007	ND	ND
	07-Mar-06	<0.006	< 0.07	<0.008	< 0.007	ND	ND
	22-May-06	<0.009	<0.1	<0.008	<0.01	ND	ND
	06-Sep-06	<0.1	<0.1	<0.1	<0.1	ND	ND
	05-Dec-06	<0.1	<0.1 J/UB	<0.1	<0.1	ND	ND
	06-Mar-07	<0.09	< 0.09	<0.09	< 0.09	ND	ND
	13-Jun-07	<0.1	<0.1	<0.1	<0.1	ND	ND
	05-Sep-07	0.01 J	0.03 J	0.02 J	<0.1	0.11	0.014 [WQO]
	11-Dec-07	<0.1	<0.1	<0.1	<0.1	ND	ND
MW-4.3	30-Mar-05	<0.1	<1	<0.1	<0.1	ND	ND
	12-May-05	<0.01	<0.15	<0.008	< 0.005	ND	ND
	17-Aug-05	<0.006	<0.07	<0.008	< 0.007	ND	ND
	10-Nov-05	<0.006	<0.07	< 0.009	< 0.007	ND	ND
	07-Mar-06	<0.006	<0.07	<0.008	< 0.007	ND	ND
	22-May-06	<0.009	<0.1	<0.008	<0.01	ND	ND
	06-Sep-06	<0.1	<0.1	<0.1	<0.1	ND	ND
	05-Dec-06	<0.1	<0.1	<0.1	<0.1	ND	ND
	06-Mar-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
MW-4.3R	10-Oct-07	<0.1 [<0.1]	0.06 J [0.05 J]	0.03 J [0.03 J]	<0.1 [<0.1]	0.06 [0.07]	ND [ND]
	11-Dec-07	<0.1 [<0.1]	0.02 J [0.02 J]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
	26-Mar-08	<0.1	<0.1	<0.1	<0.1	ND	ND
	04-Jun-08	<0.1	<0.1	<0.1	<0.1	ND	ND
	23-Sep-08	<0.09	<0.09	<0.09	<0.09	ND	ND
	11-Dec-08	<0.09	< 0.09	< 0.09	< 0.09	ND	ND

	Sample Date /	Indeno(1.2.3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH ³	USEPA B(a)P
	Analyte	· · · · · · · · · · · · · · · · · · ·					TEQ*
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	PSL	0.029	0.14		180		0.2
	WQO	0.04	17		210		0.007
MW-4.4	23-Sep-04	<0.1	<0.96	<0.1	<0.1	ND	ND
	08-Dec-04	<1	<1	<1	<1	ND	ND
	30-Mar-05	<0.1	<0.95	<0.1	<0.1	ND	ND
	12-May-05	<0.01	<0.15	<0.008	<0.005	ND	ND
	17-Aug-05	<0.006	<0.07	<0.008	<0.007	ND	ND
	10-Nov-05	<0.006	<0.07	<0.009	<0.007	ND	ND
	07-Mar-06	<0.006	<0.07	<0.008	<0.007	ND	ND
	22-May-06	<0.009 [<0.009]	<0.1 [<0.1]	<0.008 [<0.008]	<0.01 [<0.01]	ND [ND]	ND [ND]
	07-Sep-06	<0.1	<0.1	<0.1	<0.1	ND	ND
	05-Dec-06	<0.1 [<0.1]	<0.1 J/UB [<0.1 J/UB]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
	06-Mar-07	<0.1	0.01 J	<0.1	<0.1	ND	ND
	13-Jun-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
	05-Sep-07	<0.1 [<0.1]	0.02 J [0.02 J]	0.01 J [0.01 J]	<0.1 [<0.1]	0.01 [0.01]	ND [ND]
	11-Dec-07	<0.1	0.03 J	<0.1	<0.1	ND	ND
MW-4.5	10-Oct-07	0.01 J	0.02 J	0.01 J	0.02 J	0.09	0.012 [WQO]
	11-Dec-07	<0.1	<0.1	<0.1	<0.1	ND	ND
	25-Mar-08	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	<0.09 [<0.1]	ND [ND]	ND [ND]
	04-Jun-08	<0.1	<0.1	<0.1	<0.1	ND	ND
	24-Sep-08	<0.1 [<0.09]	<0.1 [<0.09]	<0.1 [<0.09]	<0.1 [<0.09]	0.04 [ND]	ND [ND]
	11-Dec-08	<0.1	<0.1	<0.1	<0.1	ND	ND
	05-Mar-09	<0.1	<0.1	<0.1	<0.1	ND	ND
	17-Sep-09	<0.1	<0.1	<0.1	<0.1	ND	ND
	18-Mar-10	<0.09	<0.09	<0.09	< 0.09	ND	ND
	22-Sep-10	<0.1	<0.1	<0.1	<0.1	ND	ND
MW-4.6	10-Oct-07	<0.1	<0.1	0.009 J	<0.1	0.009	ND
	11-Dec-07	<0.09	<0.09	<0.09	< 0.09	ND	ND
	25-Mar-08	<0.1	<0.1	<0.1	<0.1	ND	ND
	04-Jun-08	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
	24-Sep-08	<0.1	<0.1	<0.1	<0.1	ND	ND
	11-Dec-08	<0.1	<0.1	<0.1	<0.1	ND	ND
	05-Mar-09	<0.1	<0.1	<0.1	<0.1	ND	ND
	17-Sep-09	<0.09	<0.09	< 0.09	< 0.09	ND	ND
	18-Mar-10	<0.1	<0.1	<0.1	<0.1	ND	ND
	22-Sep-10	<0.1	<0.1	<0.1	<0.1	ND	ND
MW-5.7	23-Sep-04	<0.1	<0.95	0.26	<0.1	0.26	ND
	09-Dec-04	<1	<1	<1	<1	ND	ND
	30-Mar-05	<0.1	<0.95	<0.1	<0.1	ND	ND
	11-May-05	<0.01	<0.15	0.08 J	<0.005	0.08	ND
	17-Aug-05	< 0.006	<0.07	< 0.009	< 0.007	ND	ND
	09-Nov-05	<0.006	<0.07	0.06 J	< 0.007	0.11	ND
	07-Mar-06	< 0.006	<0.07	<0.008	< 0.007	ND	ND
	22-May-06	< 0.009	<0.1	0.04 J	0.01 J	0.05	ND
	06-Sep-06	<0.09	0.05 J/J	0.05 J/J	< 0.09	0.09	ND
	05-Dec-06	<0.1	<0.1 J/UB	0.05 J	<0.1	0.11	ND

	Sample Date /	Indeno(1 2 3-cd)Pyrene	Nanhthalene	Phenanthrene	Pyrene		USEPA B(a)P
	Analyte	indenio(1,2,0 od)i yrene	Naphinalone	T nonuntil ono	i yrene	Total PAI	TEQ⁴
Location ID	Units	µg/L	μg/L	μg/L	µg/L	µg/L	μg/L
	PSL	0.029	0.14		180		0.2
	WQO	0.04	17		210		0.007
MW-5.7	06-Mar-07	<0.1	0.03 J	0.07 J	<0.1	0.07	ND
(cont'd)	13-Jun-07	<0.09	0.04 J	0.05 J	<0.09	0.09	ND
	05-Sep-07	<0.1	0.04 J	0.05 J	<0.1	0.09	ND
	12-Dec-07	<0.1	0.04 J	0.07 J	<0.1	0.13	ND
MW-5.8	23-Sep-04	<0.1	<0.95	<0.1	<0.1	ND	ND
	09-Dec-04	<1	<1	<1	<1	ND	ND
	30-Mar-05	<0.1	<0.95	<0.1	<0.1	ND	ND
	11-May-05	<0.01	<0.15	<0.008	<0.005	ND	ND
	17-Aug-05	<0.006	<0.07	<0.008	<0.007	ND	ND
	09-Nov-05	<0.006	<0.07	<0.008	<0.007	ND	ND
	07-Mar-06	<0.006	<0.07	<0.008	<0.007	ND	ND
	22-May-06	<0.01	<0.1	<0.008	<0.01	ND	ND
	07-Sep-06	<0.1	<0.1	<0.1	<0.1	ND	ND
	05-Dec-06	<0.1	<0.1	<0.1	<0.1	ND	ND
	07-Mar-07	<0.1	<0.1	<0.1	<0.1	ND	ND
	13-Jun-07	<0.1	<0.1	<0.1	<0.1	ND	ND
	05-Sep-07	<0.1	0.01 J	0.01 J	<0.1	0.01	ND
	12-Dec-07	<0.1	<0.1	<0.1	<0.1	ND	ND
MW-5.9	23-Sep-04	<0.09	<0.94	<0.09	< 0.09	ND	ND
	08-Dec-04	<1	<1	<1	<1	ND	ND
	30-Mar-05	<0.1	<0.96	<0.1	<0.1	ND	ND
	12-May-05	<0.01	<0.15	<0.008	<0.005	ND	ND
	18-Aug-05	<0.006	<0.07	<0.008	<0.007	ND	ND
	10-Nov-05	<0.006	<0.07	<0.009	<0.007	ND	ND
	07-Mar-06	<0.006	<0.07	<0.008	<0.007	ND	ND
	22-May-06	<0.009	<0.1	<0.008	<0.01	ND	ND
	06-Sep-06	<0.1	<0.1	<0.1	<0.1	ND	ND
	05-Dec-06	<0.1	<0.1	<0.1	<0.1	ND	ND
	06-Mar-07	<0.1	0.01 J	<0.1	<0.1	ND	ND
	13-Jun-07	<0.1	<0.1	<0.1	<0.1	ND	ND
	06-Sep-07	<0.1 [<0.1]	0.009 J [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
	12-Dec-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
MW-5.16	11-Dec-09	<0.09	<0.09	<0.09	<0.09	ND	ND
	18-Mar-10	<0.1	<0.1	<0.1	<0.1	ND	ND
	16-Jun-10	<0.1	<0.1	<0.1	<0.1	ND	ND
l	22-Sep-10	<0.1	<0.1	<0.1	<0.1	ND	ND
l	14-Dec-10	<0.1	<0.1	<0.1	<0.1	ND	ND

	Sample Date /								0 Dutanana	0 Oblassialus	A Oblassiahum
	Analyte	1,1,1-Irichioroethane	1,1,2-1 richloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-1 richlorobenzene	1,2-Dichloroethane	1,4-Dichlorobenzene	2-Butanone	2-Chiorotoluene	4-Chiorotoluene
Location ID	Units	µg/l	µg/l	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	PSL	200	5	5	6	5	0.5	5	7100	120	2600
	WQO	200	0.3	3	6	5	0.4	5	4200	6.9	140
MW-3.14	11-Oct-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	13-Dec-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	26-Mar-08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	04-Jun-08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	23-Sep-08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	11-Dec-08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	05-Mar-09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	10-Jun-09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	17-Sep-09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	17-Mar-10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	22-Sep-10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
MW-4.1	28-Jan-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	23-Jun-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	08-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	30-Mar-05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	12-May-05	<0.05	<0.09	<0.06	<0.09	<0.2	<0.06	<0.09	<0.2	< 0.05	< 0.03
	18-Aug-05	<0.04	<0.06	<0.06	<0.09	<0.2	<0.06	<0.2	<0.3	<0.1	<0.07
	10-Nov-05	<0.1 [<0.1]	<0.1 [<0.1]	<0.05 [<0.05]	<0.06 [<0.06]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.2 [<0.2]	<0.07 [<0.07]	<0.04 [<0.04]
	07-Mar-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	<0.07
	22-May-06	<0.1	<0.1	<0.05	<0.06	<0.1	<0.1	<0.1	<0.2	<0.07	<0.04
	06-Sep-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	05-Dec-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	06-Mar-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	13-Jun-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
MW-4.2	28-Jan-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	23-Jun-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	08-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	30-Mar-05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	12-May-05	<0.05	< 0.09	< 0.06	< 0.09	<0.2	< 0.06	<0.09	<0.2	< 0.05	< 0.03
	18-Aug-05	<0.04	< 0.06	< 0.06	< 0.09	<0.2	< 0.06	<0.2	<0.3	<0.1	<0.07
	10-Nov-05	<0.04	<0.1	< 0.06	<0.1	<0.2	<0.1	<0.07	<0.4	<0.1	<0.06
1	07-Mar-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	<0.07
1	22-May-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	<0.07
	06-Sep-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
1	05-Dec-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
1	06-Mar-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
1	13-Jun-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5

	Sample Date / Analyte	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trichlorobenzene	1,2-Dichloroethane	1,4-Dichlorobenzene	2-Butanone	2-Chlorotoluene	4-Chlorotoluene
Location ID	Units	µg/l	µq/l	µg/L	µg/L	µq/L	µq/L	µq/L	µg/L	µg/L	µg/L
	PSL	200	5	5	6	5	0.5	5	7100	120	2600
	WQO	200	0.3	3	6	5	0.4	5	4200	6.9	140
MW-4.3	28-Jan-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	24-Jun-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	30-Mar-05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	12-May-05	<0.05	< 0.09	<0.06	<0.09	<0.2	<0.06	<0.09	<0.2	<0.05	<0.03
	17-Aug-05	<0.04	< 0.06	<0.06	<0.09	<0.2	<0.06	<0.2	<0.3	<0.1	< 0.07
	10-Nov-05	<0.04	<0.1	<0.06	<0.1	<0.2	<0.1	<0.07	<0.4	<0.1	<0.06
	07-Mar-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	< 0.07
	22-May-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	< 0.07
	06-Sep-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	05-Dec-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	06-Mar-07	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [0.05 J]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]
MW-4.4	28-Jan-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	24-Jun-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	08-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	30-Mar-05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	12-May-05	<0.05	<0.09	<0.06	<0.09	<0.2	<0.06	<0.09	<0.2	<0.05	< 0.03
	17-Aug-05	<0.04	<0.06	<0.06	<0.09	<0.2	<0.06	<0.2	<0.3	<0.1	<0.07
	10-Nov-05	<0.04	<0.1	<0.06	<0.1	<0.2	<0.1	<0.07	<0.4	<0.1	<0.06
	07-Mar-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	<0.07
	22-May-06	<0.07 [<0.07]	<0.1 [<0.1]	<0.06 [<0.06]	<0.2 [<0.2]	<0.2 [<0.2]	<0.09 [<0.09]	<0.1 [<0.1]	<0.2 [<0.2]	<0.1 [<0.1]	<0.07 [<0.07]
	06-Sep-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	05-Dec-06	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [0.07 J]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]
	06-Mar-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	13-Jun-07	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]
MW-4.5	10-Oct-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	11-Dec-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	25-Mar-08	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]
	04-Jun-08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	24-Sep-08	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]
	11-Dec-08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
MW-4.6	10-Oct-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	11-Dec-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
1	25-Mar-08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
1	04-Jun-08	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]
1	24-Sep-08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	11-Dec-08	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5

	Sample Date / Analyte	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trichlorobenzene	1,2-Dichloroethane	1,4-Dichlorobenzene	2-Butanone	2-Chlorotoluene	4-Chlorotoluene
Location ID	Units	μg/l	µg/l	µg/L	μg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L
	PSL	200	5	5	6	5	0.5	5	7100	120	2600
	WQO	200	0.3	3	6	5	0.4	5	4200	6.9	140
MW-5.7	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	09-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	30-Mar-05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	11-May-05	<0.05	<0.09	<0.06	<0.09	<0.2	<0.06	<0.09	<0.2	<0.05	< 0.03
	17-Aug-05	< 0.04	<0.06	<0.06	<0.09	<0.2	<0.06	<0.2	<0.3	<0.1	<0.07
	09-Nov-05	<0.1	<0.1	<0.05	<0.06	<0.1	<0.1	<0.1	<0.2	<0.07	<0.04
	07-Mar-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	<0.07
	22-May-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	<0.07
	06-Sep-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	05-Dec-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.2 J	<0.5	<0.5
	06-Mar-07	<0.5	<0.5	<0.5	<0.5	0.1 J	<0.5	<0.5	<10	<0.5	<0.5
	13-Jun-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	05-Sep-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	12-Dec-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
MW-5.8	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	09-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	30-Mar-05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	11-May-05	<0.05	<0.09	<0.06	<0.09	<0.2	<0.06	<0.09	<0.2	<0.05	<0.03
	17-Aug-05	<0.04	<0.06	<0.06	<0.09	<0.2	<0.06	<0.2	<0.3	<0.1	<0.07
	09-Nov-05	<0.1	<0.1	<0.05	<0.06	<0.1	<0.1	<0.1	<0.2	<0.07	<0.04
	07-Mar-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	<0.07
	22-May-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	<0.07
	06-Sep-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	05-Dec-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	07-Mar-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	13-Jun-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	05-Sep-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	12-Dec-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
MW-5.9	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	08-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	30-Mar-05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	12-May-05	<0.05	<0.09	<0.06	<0.09	<0.2	< 0.06	<0.09	<0.2	<0.05	<0.03
	18-Aug-05	< 0.04	<0.06	<0.06	<0.09	<0.2	< 0.06	<0.2	<0.3	<0.1	<0.07
	10-Nov-05	< 0.04	<0.1	<0.06	<0.1	<0.2	<0.1	<0.07	<0.4	<0.1	<0.06
	07-Mar-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	<0.07
	22-May-06	<0.07	<0.1	<0.06	<0.2	<0.2	<0.09	<0.1	<0.2	<0.1	<0.07
	06-Sep-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	05-Dec-06	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	06-Mar-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	13-Jun-07	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	06-Sep-07	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	0.05 J [<0.5]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]
	12-Dec-07	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]

	Sample Date / Analyte	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trichlorobenzene	1,2-Dichloroethane	1,4-Dichlorobenzene	2-Butanone	2-Chlorotoluene	4-Chlorotoluene
Location ID	Units	μg/l	µg/l	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	PSL	200	5	5	6	5	0.5	5	7100	120	2600
	WQO	200	0.3	3	6	5	0.4	5	4200	6.9	140
MW-5.16	11-Dec-09	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	18-Mar-10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	16-Jun-10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	22-Sep-10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5
	14-Dec-10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5

	Sample Date / Analyte	4-Methyl-2-Pentanone	Acetone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Chloroethane	Chloroform	Chloromethane	Isopropyl Alcoho	Methylene Chloride	MTBE
Location ID	Units	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L
	PSL	2000	22000	1	80	80	1000	4.6	80	190		5	13
	WQO	120	6300	0.15	0.27	4	0.39	16	1.1	3	160000	4	5
MW-3.14	11-Oct-07	<10	1.2 J	<0.5	<0.5	<1.0	<0.5	<1.0	0.3 J	<1.0	<100	<10	<0.5
	13-Dec-07	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	26-Mar-08	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	04-Jun-08	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	23-Sep-08	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	11-Dec-08	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	05-Mar-09	<10	1.2 J	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	10-Jun-09	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	17-Sep-09	<10	<25 /UB	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	17-Mar-10	<10	<10 J/UB	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	22-Sep-10	<10	<100 /UB	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0		<10	<0.5
MW-4.1	28-Jan-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	23-Jun-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	23-Sep-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	08-Dec-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	30-Mar-05	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	12-May-05	<0.09	<0.3	<0.04	<0.08	<0.08	<0.06	<0.2	<0.03	<0.2	<1.4	<0.1	<0.05
	18-Aug-05	<0.3	<0.5	< 0.03	<0.07	<0.1	<0.04	<0.1	<0.04	<0.09	<1.1	<0.2	<0.05
	10-Nov-05	<0.06 [<0.06]	<0.2 [<0.2]	<0.06 [<0.06]	<0.07 [<0.07]	<0.1 [<0.1]	<0.09 [<0.09]	<0.1 [<0.1]	<0.09 [<0.09]	<0.1 [<0.1]	<1.6 [<1.6]	<0.1 [<0.1]	<0.06 [<0.06]
	07-Mar-06	<0.08	3.5 J	<0.04	<0.04	<0.09	<0.03	<0.3	<0.05	<0.2	<2.7	<0.2	<0.07
	22-May-06	<0.06	0.9 J	<0.06	<0.07	<0.1	<0.09	<0.1	<0.09	<0.1	<1.6	0.2 J	<0.06
	06-Sep-06	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1	<100	<10	<0.5
	05-Dec-06	<10	<10 J/UB	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10 J/UB	<0.5
	06-Mar-07	<10	<10	<0.5	<0.5	0.1 J	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	13-Jun-07	<10	0.8 J	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10 J/UB	<0.5
MW-4.2	28-Jan-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	23-Jun-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	23-Sep-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	08-Dec-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	30-Mar-05	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	12-May-05	<0.09	<0.3	< 0.04	<0.08	<0.08	<0.06	<0.2	< 0.03	<0.2	<1.4	<0.1	< 0.05
	18-Aug-05	<0.3	<0.5	< 0.03	<0.07	<0.1	< 0.04	<0.1	< 0.04	<0.09	<1.1	<0.2	< 0.05
	10-Nov-05	<0.07	<0.6	< 0.04	<0.07	< 0.07	< 0.04	<0.4	< 0.04	<0.07	<7.3	<0.3	<0.2
	07-Mar-06	<0.08	1.8 J	<0.04	<0.04	<0.09	< 0.03	<0.3	<0.05	<0.2	<2.7	<0.2	0.1 J
	22-May-06	<0.08	<0.9	0.09 J	<0.04	0.1 J	0.05 J	<0.3	< 0.05	<0.2	<2.7	0.3 J	< 0.07
	06-Sep-06	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	0.3 J/J	<100	<10	<0.5
	05-Dec-06	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10 J/UB	<0.5
	06-Mar-07	<10	<10	<0.5	<0.5	0.1 J	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	13-Jun-07	<10	1.4 J	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10 J/UB	<0.5

	Sample Date / Analyte	4-Methyl-2-Pentanone	Acetone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Chloroethane	Chloroform	Chloromethane	Isopropyl Alcoho	I Methylene Chloride	MTBE
Location ID	Units	μg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
	PSL	2000	22000	1	80	80	1000	4.6	80	190		5	13
	WQO	120	6300	0.15	0.27	4	0.39	16	1.1	3	160000	4	5
MW-4.3	28-Jan-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	24-Jun-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	30-Mar-05	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	12-May-05	<0.09	<0.3	< 0.04	<0.08	<0.08	< 0.06	<0.2	< 0.03	<0.2	<1.4	<0.1	< 0.05
	17-Aug-05	<0.3	<0.5	< 0.03	<0.07	<0.1	< 0.04	<0.1	< 0.04	< 0.09	<1.1	<0.2	< 0.05
	10-Nov-05	<0.07	<0.6	< 0.04	<0.07	<0.07	< 0.04	<0.4	< 0.04	<0.07	<7.3	<0.3	<0.2
	07-Mar-06	<0.08	2.9 J	< 0.04	<0.04	<0.09	0.3 J	<0.3	< 0.05	<0.2	<2.7	<0.2	<0.07
	22-May-06	<0.08	<0.9	< 0.04	<0.04	0.1 J	0.1 J	<0.3	< 0.05	<0.2	<2.7	0.3 J	<0.07
	06-Sep-06	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1	<100	<10	<0.5
	05-Dec-06	<10	<10 J/UB	<0.5	<0.5	0.1 J	<0.5	<1.0	<0.5	<1.0	<100	<10 J/UB	<0.5
	06-Mar-07	<10 [<10]	<10 [0.9 J]	<0.5 [<0.5]	<0.5 [<0.5]	0.1 J [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<100 [<100]	<10 [<10]	<0.5 [<0.5]
MW-4.4	28-Jan-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	24-Jun-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	23-Sep-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	08-Dec-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	30-Mar-05	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	12-May-05	<0.09	<0.3	< 0.04	<0.08	<0.08	< 0.06	<0.2	< 0.03	<0.2	<1.4	<0.1	< 0.05
	17-Aug-05	<0.3	<0.5	< 0.03	<0.07	<0.1	<0.04	<0.1	< 0.04	<0.09	<1.1	<0.2	< 0.05
	10-Nov-05	<0.07	<0.6	< 0.04	<0.07	<0.07	<0.04	<0.4	< 0.04	<0.07	<7.3	<0.3	<0.2
	07-Mar-06	<0.08	4 J	< 0.04	<0.04	<0.09	< 0.03	<0.3	< 0.05	<0.2	<2.7	<0.2	<0.07
	22-May-06	<0.08 [<0.08]	<0.9 [<0.9]	<0.04 [<0.04]	<0.04 [<0.04]	<0.09 [<0.09]	0.06 J [0.04 J]	<0.3 [<0.3]	<0.05 [<0.05]	<0.2 [<0.2]	<2.7 [<2.7]	0.3 J [0.3 J]	<0.07 [<0.07]
	06-Sep-06	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1	<100	<10	<0.5
	05-Dec-06	<10 [<10]	<10 J/UB [<10 J/UB]	<0.5 [<0.5]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	19 J [9.2 J]	<10 J/UB [<10 J/UB]	<0.5 [<0.5]
	06-Mar-07	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	13-Jun-07	<10 [<10]	21 /J [9.9 J/J]	<0.5 [<0.5]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<100 [3.4 J]	<10 J/UB [<10 J/UB]	<0.5 [<0.5]
MW-4.5	10-Oct-07	<10	0.5 J	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	11-Dec-07	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	25-Mar-08	<10 [<10]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<100 [<100]	<10 [<10]	<0.5 [<0.5]
	04-Jun-08	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	24-Sep-08	<10 [<10]	1.4 J [2.0 J]	<0.5 [<0.5]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<100 [<100]	<10 [<10]	<0.5 [<0.5]
	11-Dec-08	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
MW-4.6	10-Oct-07	<10	0.5 J	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	11-Dec-07	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	25-Mar-08	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	04-Jun-08	<10 [<10]	<10 J/UB [<10 J/UB]	<0.5 [<0.5]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<100 [<100]	<10 [<10]	<0.5 [<0.5]
	24-Sep-08	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	11-Dec-08	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5

	Sample Date / Analyte	4-Methyl-2-Pentanone	Acetone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Chloroethane	Chloroform	Chloromethane	Isopropyl Alcoho	Methylene Chloride	MTBE
Location ID	Units	µg/L	µg/L	µg/L	μg/L	μg/L	μg/L	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L
	PSL	2000	22000	1	80	80	1000	4.6	80	190		5	13
	WQO	120	6300	0.15	0.27	4	0.39	16	1.1	3	160000	4	5
MW-5.7	23-Sep-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	2.2
	09-Dec-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	0.9
	30-Mar-05	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	1.8
	11-May-05	<0.09	<0.3	< 0.04	<0.08	<0.08	<0.06	<0.2	< 0.03	<0.2	<1.4	<0.1	1.6
	17-Aug-05	<0.3	<0.5	< 0.03	<0.07	<0.1	<0.04	<0.1	< 0.04	<0.09	<1.1	<0.2	1.5
	09-Nov-05	<0.06	<0.2	< 0.06	<0.07	<0.1	<0.09	<0.1	< 0.09	<0.1	<1.6	<0.1	1.4
	07-Mar-06	<0.08	1 J	< 0.04	<0.04	< 0.09	< 0.03	<0.3	< 0.05	<0.2	<2.7	<0.2	<0.07
	22-May-06	<0.08	1.7 J	< 0.04	<0.04	0.09 J	0.03 J	< 0.3	< 0.05	<0.2	<2.7	<0.2	1.1
	06-Sep-06	0.2 J/J	4.5 J/J	<0.5	<0.5	<1	<0.5	<1	<0.5	<1	<100	0.3 J/J	1
	05-Dec-06	<10	<10 J/UB	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	4.3 J	<10 J/UB	1.2
	06-Mar-07	<10	1.0 J	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	0.8
	13-Jun-07	<10	0.8 J	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	3.6 J	0.8
	05-Sep-07	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	1.1
	12-Dec-07	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	1.2
MW-5.8	23-Sep-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	09-Dec-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	30-Mar-05	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1		<10	<0.5
	11-May-05	<0.09	<0.3	< 0.04	<0.08	<0.08	< 0.06	<0.2	< 0.03	<0.2	<1.4	<0.1	< 0.05
	17-Aug-05	<0.3	<0.5	< 0.03	<0.07	<0.1	< 0.04	<0.1	< 0.04	< 0.09	<1.1	<0.2	< 0.05
	09-Nov-05	<0.06	<0.2	< 0.06	<0.07	<0.1	< 0.09	<0.1	< 0.09	<0.1	<1.6	<0.1	< 0.06
	07-Mar-06	<0.08	<0.9	< 0.04	<0.04	< 0.09	< 0.03	<0.3	< 0.05	<0.2	<2.7	0.2 J	<0.07
	22-May-06	<0.08	<0.9	< 0.04	<0.04	< 0.09	0.03 J	<0.3	< 0.05	<0.2	<2.7	<0.2	<0.07
	06-Sep-06	<10	<10	<0.5	<0.5	<1	0.2 J/J	<1	<0.5	0.6 J/J	<100	<10	<0.5
	05-Dec-06	<10	<10 J/UB	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	45 J	<10 J/UB	<0.5
	07-Mar-07	<10	<10	<0.5	<0.5	<1.0 J/UB	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	13-Jun-07	<10	1.2 J	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	3.7 J	<0.5
	05-Sep-07	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	12-Dec-07	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	< 0.5	<1.0	<100	<10	<0.5
MW-5.9	23-Sep-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	< 0.5	<1		<10	<0.5
	08-Dec-04	<10	<10	<0.5	<0.5	<1	<0.5	<1	< 0.5	<1		<10	<0.5
	30-Mar-05	<10	<10	<0.5	<0.5	<1	<0.5	<1	< 0.5	<1		<10	<0.5
	12-May-05	<0.09	<0.3	< 0.04	<0.08	<0.08	< 0.06	<0.2	< 0.03	<0.2	<1.4	<0.1	< 0.05
	18-Aug-05	<0.3	<0.5	< 0.03	<0.07	<0.1	< 0.04	<0.1	< 0.04	< 0.09	<1.1	<0.2	< 0.05
	10-Nov-05	<0.07	<0.6	< 0.04	<0.07	< 0.07	< 0.04	<0.4	< 0.04	<0.07	<7.3	<0.3	<0.2
	07-Mar-06	<0.08	3.1 J	< 0.04	<0.04	< 0.09	< 0.03	<0.3	< 0.05	<0.2	<2.7	0.2 J	<0.07
	22-May-06	<0.08	0.9 J	< 0.04	<0.04	< 0.09	0.04 J	< 0.3	< 0.05	<0.2	<2.7	0.4 J	< 0.07
	06-Sep-06	<10	<10	<0.5	<0.5	<1	<0.5	<1	<0.5	<1	<100	<10	0.07 J/J
	05-Dec-06	<10	<10 J/UB	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	6.3 J	<10 J/UB	0.09 J
	06-Mar-07	<10	<10	<0.5	<0.5	0.1 J	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	13-Jun-07	<10	1.6 J	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	3.7 J	<0.5
	06-Sep-07	<10 [<10]	0.5 J [0.6 J]	<0.5 [<0.5]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	<100 [<100]	0.2 J [<10]	0.1 J [0.1 J]
	12-Dec-07	<10 [<10]	<10 J/UB [<10]	<0.5 [<0.5]	<0.5 [<0.5]	<1.0 [<1.0]	<0.5 [<0.5]	<1.0 [<1.0]	< 0.5 [< 0.5]	<1.0 [<1.0]	<100 [<100]	<10 [<10]	0.1 J [0.1 J]

	Sample Date / Analyte	4-Methyl-2-Pentanone	Acetone	Benzene	Bromodichloromethane	Bromoform	Carbon Disulfide	Chloroethane	Chloroform	Chloromethane	Isopropyl Alcoho	Methylene Chloride	MTBE
Location ID	Units	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L
	PSL	2000	22000	1	80	80	1000	4.6	80	190		5	13
	WQO	120	6300	0.15	0.27	4	0.39	16	1.1	3	160000	4	5
MW-5.16	11-Dec-09	<10	<10 J/UB	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	18-Mar-10	<10	180	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0	<100	<10	<0.5
	16-Jun-10	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0		<10 J/UB	<0.5
	22-Sep-10	<10	<10	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0		<10 J/UB	<0.5
	14-Dec-10	<10	<50 /UB	<0.5	<0.5	<1.0	<0.5	<1.0	<0.5	<1.0		<10 J/UB	<0.5

	Sample Date /			-		-		× 1	Xylenes,
	Analyte	Naphthalene	p-isopropyi Toluene	Tetrachioroethene	Ioluene	Trichloroethene	Vinyi Chioride	xylenes, m,p-	Total ⁵
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	PSL	0.14		5	150	5	0.5	1750	1750
	WQO	17		0.06	42	1.7	0.05	17	17
MW-3.14	11-Oct-07	<2.0	<0.5	<0.5	0.1 J	<0.5	<0.5	<0.5	ND
	13-Dec-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	26-Mar-08	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	04-Jun-08	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	23-Sep-08	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	11-Dec-08	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	05-Mar-09	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	10-Jun-09	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	17-Sep-09	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	17-Mar-10	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	22-Sep-10	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
MW-4.1	28-Jan-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	23-Jun-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	08-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	30-Mar-05	<2	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	ND
	12-May-05	<0.2	<0.06	<0.09	<0.06	<0.07	<0.2	<0.1	ND
	18-Aug-05	<0.2	<0.04	<0.09	< 0.05	<0.09	<0.2	<0.2	ND
	10-Nov-05	<0.06 [<0.06]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.2 [<0.2]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]
	07-Mar-06	<0.1	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	22-May-06	<0.06	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	ND
	06-Sep-06	<2	<0.5 UJ/UJ	<0.5 UJ/UJ	<0.5	<0.5	<0.5	<0.5	ND
	05-Dec-06	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5		ND
	06-Mar-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	13-Jun-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
MW-4.2	28-Jan-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	23-Jun-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	08-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	30-Mar-05	<2	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	ND
	12-May-05	<0.2	<0.06	<0.09	<0.06	<0.07	<0.2	<0.1	ND
	18-Aug-05	<0.2	<0.04	<0.09	<0.05	<0.09	<0.2	<0.2	ND
	10-Nov-05	<0.05	<0.07	<0.1	<0.08	<0.1	<0.1	<0.2	ND
	07-Mar-06	<0.1	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	22-May-06	0.2 Jb [PSL]	<0.1	<0.1	0.1 J	<0.08	<0.2	<0.2	ND
1	06-Sep-06	<2	<0.5 UJ/UJ	<0.5 UJ/UJ	<0.5	<0.5	<0.5	<0.5	ND
1	05-Dec-06	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5		ND
1	06-Mar-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
1	13-Jun-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND

	Sample Date / Analyte	Naphthalene	p-Isopropyl Toluene	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride	Xylenes, m,p-	Xylenes, Total ⁵
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	PSL	0.14		5	150	5	0.5	1750	1750
	WQO	17		0.06	42	1.7	0.05	17	17
MW-4.3	28-Jan-04	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	ND
	24-Jun-04	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	ND
	30-Mar-05	<2	<0.5	<0.5	0.7	<0.5	<0.5	<0.5	ND
	12-May-05	<0.2	<0.06	<0.09	0.2 J	<0.07	<0.2	0.1 J	0.1
	17-Aug-05	<0.2	<0.04	<0.09	< 0.05	<0.09	<0.2	<0.2	ND
	10-Nov-05	< 0.05	<0.07	<0.1	<0.08	<0.1	<0.1	<0.2	ND
	07-Mar-06	<0.1	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	22-May-06	0.1 Jb	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	06-Sep-06	<2	<0.5 UJ/UJ	<0.5 UJ/UJ	<0.5	<0.5	<0.5	<0.5	ND
	05-Dec-06	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5		ND
	06-Mar-07	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
MW-4.4	28-Jan-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	24-Jun-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	08-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	30-Mar-05	<2	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	ND
	12-May-05	<0.2	<0.06	<0.09	<0.06	<0.07	<0.2	<0.1	ND
	17-Aug-05	<0.2	<0.04	<0.09	<0.05	<0.09	<0.2	<0.2	ND
	10-Nov-05	< 0.05	<0.07	<0.1	<0.08	<0.1	<0.1	<0.2	ND
	07-Mar-06	<0.1	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	22-May-06	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.08 [<0.08]	<0.08 [<0.08]	<0.2 [<0.2]	<0.2 [<0.2]	ND [ND]
	06-Sep-06	<2	<0.5 UJ/UJ	<0.5 UJ/UJ	<0.5	<0.5	<0.5	<0.5	ND
	05-Dec-06	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]		ND [ND]
	06-Mar-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	13-Jun-07	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
MW-4.5	10-Oct-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	11-Dec-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	25-Mar-08	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
	04-Jun-08	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	24-Sep-08	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
	11-Dec-08	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
MW-4.6	10-Oct-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	11-Dec-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	25-Mar-08	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	04-Jun-08	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
	24-Sep-08	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
1	11-Dec-08	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND

	Sample Date /	Nanhthalana	n Isopropyl Tolyono	Totrachloroothono	Toluono	Trichloroothono	Vinyl Chlorida	Vulonos m n	Xylenes,
	Analyte	Naphthalene	p-isopropyr roluene	Tetrachioroethene	Toluelle	Inchioroethene	villyr Chloride	Aylenes, m,p-	Total⁵
Location ID	Units	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	µg/L	µg/L
	PSL	0.14	-	5	150	5	0.5	1750	1750
	WQO	17		0.06	42	1.7	0.05	17	17
MW-5.7	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	09-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	30-Mar-05	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	11-May-05	<0.2	<0.06	<0.09	0.1 J	<0.07	<0.2	<0.1	ND
	17-Aug-05	<0.2	<0.04	<0.09	<0.05	<0.09	<0.2	<0.2	ND
	09-Nov-05	<0.06	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	ND
	07-Mar-06	<0.1	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	22-May-06	<0.1	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	06-Sep-06	<2	<0.5 UJ/UJ	<0.5 UJ/UJ	<0.5	0.1 J/J	<0.5	<0.5	ND
	05-Dec-06	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5		ND
	06-Mar-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	13-Jun-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	05-Sep-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	12-Dec-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
MW-5.8	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	09-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	30-Mar-05	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	11-May-05	<0.2	<0.06	<0.09	<0.06	<0.07	<0.2	<0.1	ND
	17-Aug-05	<0.2	<0.04	<0.09	< 0.05	<0.09	<0.2	<0.2	ND
	09-Nov-05	< 0.06	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	ND
	07-Mar-06	<0.1	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	22-May-06	<0.1	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	06-Sep-06	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	05-Dec-06	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5		ND
	07-Mar-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	13-Jun-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	05-Sep-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	12-Dec-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
MW-5.9	23-Sep-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	08-Dec-04	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	30-Mar-05	<2	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	ND
	12-May-05	<0.2	<0.06	<0.09	<0.06	<0.07	<0.2	<0.1	ND
	18-Aug-05	<0.2	<0.04	<0.09	< 0.05	<0.09	<0.2	<0.2	ND
	10-Nov-05	<0.05	<0.07	<0.1	<0.08	<0.1	<0.1	<0.2	ND
	07-Mar-06	<0.1	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	22-May-06	<0.1	<0.1	<0.1	<0.08	<0.08	<0.2	<0.2	ND
	06-Sep-06	<2	<0.5 UJ/UJ	<0.5 UJ/UJ	<0.5	<0.5	<0.5	<0.5	ND
	05-Dec-06	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5		ND
1	06-Mar-07	<2.0	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	ND
1	13-Jun-07	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
1	06-Sep-07	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
	12-Dec-07	<2.0 [<2.0]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]

	Sample Date / Analyte	Naphthalene	p-Isopropyl Toluene	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride	Xylenes, m,p-	Xylenes, Total ⁵
Location ID	Units	μg/L	μg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L
	PSL	0.14		5	150	5	0.5	1750	1750
	WQO	17		0.06	42	1.7	0.05	17	17
MW-5.16	11-Dec-09	<2.0	<0.5	<0.5	<0.5 J/UB	<0.5	<0.5	<0.5 J/UB	ND /UB
	18-Mar-10	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	16-Jun-10	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	22-Sep-10	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	14-Dec-10	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND

Table 4-22 PCDDs/PCDFs Detected in Groundwater Monitoring Well Samples

	Sample Date / Analyte	2,3,7,8 TCDD TEQ (Human/Mammal) ⁷	2,3,7,8 TCDD TEQ (Bird) ⁸	2,3,7,8 TCDD TEQ (Fish) ⁹	1,2,3,6,7,8- HxCDD	1,2,3,4,6,7,8- HpCDD	OCDD	1,2,3,7,8,9- HxCDF	1,2,3,4,6,7,8- HpCDF	OCDF	Total TCDD	Total PeCDD
Location ID	Units	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L
	PSL	30			11	11						
	WQO	0.05	0.05	0.05	2.7	27	2700	2.7	27	2700		
MW-4.1	06-Mar-07	ND	ND	ND	<0.689	<0.714	<2.15	<0.276	<0.373	<1.01	ND	ND
	13-Jun-07	ND	ND	ND	<1.74	<1.68	<4.74	<0.52	<0.742	<4.72	<1.16	<1.24
	05-Sep-07	ND	ND	ND	<2.7	<2.9	<4.74	<1.21	<0.832	<4.93	<0.854	<0.886
	11-Dec-07	ND	ND	ND	<1.77	<0.98	<2.75	< 0.398	<0.424	<1.27	<0.547	<0.46
MW-4.2	05-Sep-07	ND	ND	ND	<2.68	<2.29	<3.89	<1.05	<0.788	<4.28	<0.788	<0.775
	11-Dec-07	ND	ND	ND	<1.62	<0.993	<2.82	<0.437	< 0.364	<2.12	<0.55	<0.469
MW-4.3	06-Mar-07	ND	ND	ND	<0.689	<0.714	<2.15	<0.276	<0.373	<1.01	ND	ND
MW-4.3R	10-Oct-07	0.17 [1.7] [WQO]	0.025 [0.62]	0.025 [0.62]	<6.04 [4.65 J] [WQO]	13.9 J [58.1] [PSL,WQO]	112 [518]	<1.54 [3.84 J] [WQO]	<1.98 [7.2 J]	<9.97 [31 J]	9.3 [47.2]	2.51 J,M [22.6 J,M]
	11-Dec-07	0.0020 [0.0020]	0.0010 [0.0010]	0.0010 [0.0010]	<1.39 [<2.27]	<1.39 [<1.47]	7.95 J [7.91 J]	<0.346 [<0.577]	<0.364 [<0.563]	<1.35 [<2.17]	<0.527 [<0.609]	<0.438 [<0.654]
MW-4.4	05-Sep-07	ND [ND]	ND [ND]	ND [ND]	<2.75 [<2.85]	<2.76 [<2.24]	<6.68 [<3.32]	<0.983 [<0.646]	<0.916 [<0.711]	<4.58 [<4.79]	<0.8 [<0.624]	<1.02 [<0.918]
	11-Dec-07	0.0020	0.0010	0.0010	<1.74	<1.4	5.28 J	<0.544	<0.418	<1.61	<0.552	<0.532
MW-4.5	10-Oct-07	ND	ND	ND	<4.74	<5.46	<8.47	<1.81	<1.54	<8.84	<2.21	<0.946
	11-Dec-07	ND	ND	ND	<1.54	<1.12	<3.9	<0.381	<0.371	<1.49	<0.553	<0.418
MW-4.6	10-Oct-07	ND	ND	ND	<4.81	<5.14	<7.38	<1.87	<1.56	<9.42	<2.18	<1.35
	11-Dec-07	0.0010	0.00040	ND	<1.3	<0.765	4.02 J	<0.569	<0.358	<1.38	<0.51	<0.44
MW-5.9	06-Mar-07	ND	ND	ND	<0.689	<0.714	<2.15	<0.276	< 0.373	<1.01	ND	ND

Table 4-22 PCDDs/PCDFs Detected in Groundwater Monitoring Well Samples

	Sample Date / Analyte	Total HxCDD	Total HpCDD	Total TCDF	Total PeCDF	Total HxCDF	Total HpCD
Location ID	Units	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L
	PSL						
	WQO						
MW-4.1	06-Mar-07	ND	ND	ND	ND	ND	ND
	13-Jun-07	<1.85	<1.68	<0.523	<1.37	<0.52	<1.26
	05-Sep-07	<3.12	<2.9	<0.72	<0.696	<1.21	<1.59
	11-Dec-07	<1.83	<0.98	<0.404	<0.469	<0.398	<0.7
MW-4.2	05-Sep-07	<3	<2.29	<0.526	<0.741	<1.05	<1.51
	11-Dec-07	<1.67	<0.993	<0.484	<0.602	<0.437	<0.566
MW-4.3	06-Mar-07	ND	ND	ND	ND	ND	ND
MW-4.3R	10-Oct-07	<6.4 [62.8]	41.2 [175]	3.47 J [20]	<2.35 [8.21 J,M]	<1.54 [14.7 J]	4.62 J [23 J]
	11-Dec-07	<1.46 [<2.35]	1.92 J [1.94 J]	<0.675 [<0.895]	<0.633 [<1.1]	<0.346 [<0.577]	<0.596 [<0.888]
MW-4.4	05-Sep-07	<3.11 [<3.25]	<2.76 [<2.24]	<0.708 [<0.66]	<0.646 [<0.767]	<0.983 [<0.646]	<1.69 [<1.34]
	11-Dec-07	<1.79	<1.4	<0.774	<0.745	<0.544	<0.683
MW-4.5	10-Oct-07	<4.94	<5.46	<2.53	<3.91	<1.81	<2.43
	11-Dec-07	<1.6	<1.12	<0.664	<0.73	<0.381	<0.594
MW-4.6	10-Oct-07	<5.13	<5.14	<1.74	<3.45	<1.87	<2.54
	11-Dec-07	<1.33	<0.765	<0.586	<0.694	<0.569	<0.557
MW-5.9	06-Mar-07	ND	ND	ND	ND	ND	ND

				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
Location ID	Depth	Litholoay	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
Water Treatme	nt and Truck	Dump AOI									
HA-4.149	0 to 0.5 ft	Fill	Not Excavated	07-Aug-06	<0.27	5.8	75	<0.25	<0.27	13	
HA-4.150	0 to 0.5 ft	Fill	Not Excavated	07-Aug-06	<0.25 [<0.26]	2.2 [1.3]	110 [98]	<0.25 [<0.25]	<0.25 [<0.26]	9.9 [7]	
HA-4.160	2.7 to 3.2 ft	Fill	Not Excavated	08-Aug-06	<0.25	7	40	0.59	<0.25	47 [PSL-Eco]	
HSA-4.1	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	0.36 [0.67]	4.2 [6.1]	150 [170]	<0.24 [0.22]	<0.24 [<0.22]	10 [17]	
	4 to 4.5 ft	Fill	Not Excavated	23-Jan-06	0.64	4.1	170	<0.19	<0.19	9.8	
HA-4.137	2.3 to 2.8 ft	Fill	Not Excavated	08-Aug-06	<0.25 [<0.25]	6.4 [6]	170 [150]	0.45 [0.5]	<0.25 [0.25]	36 [40]	
HA-4.138	7.3 to 7.8 ft	Fill	Not Excavated	08-Aug-06	<0.25	6.3	18	<0.25	<0.25	19	
HA-4.139	6.2 to 6.7 ft	Fill	Not Excavated	08-Aug-06	0.33 [0.62]	1.2 [1.5]	610 [400] [PSL-Eco]	<0.25 [<0.25]	0.33 [<0.25]	8.5 [11]	
HA-4.140	1 to 1.5 ft	Fill	Not Excavated	08-Aug-06	<0.25	5.4	25	0.61	<0.25	45 [PSL-Eco]	
HA-4.141	1.1 to 1.6 ft	Fill	Not Excavated	08-Aug-06	0.35	5.6	23	0.5	<0.25	40	
HA-4.142	1.7 to 2.2 ft	Fill	Not Excavated	08-Aug-06	<0.27	5.2	110	0.52	0.45	42	
OUA-TP-028	0 to 0.4 ft	Fill	Not Excavated	18-Apr-07	0.19 J	7	130	0.43	<0.51	24	
OUE-DP-003	0 to 1 ft	MSB	Not Excavated	24-Jun-10	4 [PSL-Eco]	5.2	190 /J	0.4	<0.29	69 [PSL-Eco]	
	1 to 2 ft	MSB	Not Excavated	24-Jun-10	<0.27	2.6	40 /J	<0.27	<0.27	11	
	4 to 5 ft	MSB	Not Excavated	24-Jun-10	<0.27	2.4	26 /J	<0.27	<0.27	12	
OUE-DP-005	6.5 to 7 ft	MSB	Not Excavated	29-Jun-10							
OUE-DP-006	5 to 5.5 ft	MSB	Not Excavated	29-Jun-10							
OUE-DP-007	0.5 to 1 ft	MSB	Not Excavated	29-Jun-10							
OUE-DP-009	6 to 6.5 ft	MSB	Not Excavated	29-Jun-10	<0.29	1.6	36	<0.29	<0.29	9.9	
	6.5 to 7.5 ft	MSB	Not Excavated	29-Jun-10	<0.30	1.1	34	<0.30	<0.30	8.8	
OUE-DP-010	6 to 6.5 ft	MSB	Not Excavated	29-Jun-10	<0.29	0.92	37	<0.29	<0.29	10	
	6.5 to 7.5 ft	MSB	Not Excavated	29-Jun-10	<0.29	0.45	33	<0.29	<0.29	7.6	
OUE-DP-011	5 to 5.5 ft	MSB	Not Excavated	29-Jun-10	<0.28	0.92	39	<0.28	<0.28	14	
	5.6 to 6.5 ft	MSB	Not Excavated	29-Jun-10	<0.29	0.65	34	<0.29	<0.29	10	
OUE-DP-058	1 to 2 ft	Fill	Not Excavated	06-Nov-10							
	5 to 6 ft	Fill	Not Excavated	06-Nov-10							
	6 to 7 ft	MSB	Not Excavated	06-Nov-10							
OUE-DP-061	0 to 0.5 ft	MSB	Not Excavated	27-Oct-10							
	0.5 to 1.5 ft	MSB	Not Excavated	27-Oct-10							
OUE-DP-062	0 to 0.5 ft	Fill	Not Excavated	27-Oct-10							
	0.5 to 1.5 ft	Fill	Not Excavated	27-Oct-10							

				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
Location ID	Depth	Litholoav	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
OUE-DP-063	0 to 0.5 ft	MSB	Not Excavated	27-Oct-10							
	0.5 to 1 ft	MSB	Not Excavated	27-Oct-10							
OUE-HA- 001ABCD	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	<0.26	7.5	57	0.28	<0.26	18	
OUE-HA- 002ABCD	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	<0.26	6.7	89	0.56	<0.26	34	
P4-11	0 to 0.5 ft	MSB	Not Excavated	28-Mar-03					1.5	19	
P4-12	0 to 0.5 ft	MSB	Not Excavated	28-Mar-03					2.1	26	
P4-13	0 to 0.5 ft	Fill	Not Excavated	20-Mar-03	<2.6	5.9	78	0.4	1.6	22	
P4-14	0 to 0.5 ft	MSB	Not Excavated	20-Mar-03	<2.1	3.9	93	0.43	1.8	23	
P4-15	1.2 to 1.7 ft	MSB	Not Excavated	19-Mar-03	<2.2	2	33	0.5	2.4	54 [PSL-Eco]	
P4-16	2.3 to 2.8 ft	MSB	Not Excavated	20-Mar-03	<2.7	4.8	42	0.61	2.5	27	
OUE-DP-001	0 to 1 ft	Fill	Not Excavated	24-Jun-10	0.3	13 [PSL-HH]	160 /J	0.48	<0.27	25	
	1 to 2 ft	Fill	Not Excavated	24-Jun-10	0.59	9.1	80 /J	<0.28	<0.28	15	
	4 to 5 ft	Fill	Not Excavated	24-Jun-10	2.5 [PSL-Eco]	8.6	54 /J	< 0.32	0.44	7.5	
OUE-DP-002	0 to 1 ft	Fill	Not Excavated	24-Jun-10	<0.27	6.4	51 /J	<0.27	<0.27	15	
	1 to 2 ft	Fill	Not Excavated	24-Jun-10	<0.32	5.6	48 /J	< 0.32	<0.32	14	
	4 to 5 ft	MSB	Not Excavated	24-Jun-10	<0.31	4	36 /J	<0.31	<0.31	11	
OUE-DP-004	0 to 1 ft	Fill	Not Excavated	23-Jun-10	<0.56	4	120 /J	<0.56	<0.56	21	
	1 to 2 ft	Fill	Not Excavated	23-Jun-10	1.3 [PSL-Eco]	6.2	150 /J	<0.61	<0.61	16	
	3 to 4 ft	Fill	Not Excavated	23-Jun-10	<0.49	4.6	66 /J	<0.49	<0.49	5.2	
OUE-DP-008	5.5 to 6 ft	MSB	Not Excavated	29-Jun-10							
OUE-DP-012	9 to 9.5 ft	Fill	Not Excavated	22-Jun-10							
OUE-DP-013	5 to 6 ft	Fill	Not Excavated	22-Jun-10							
OUE-DP-059	2 to 3 ft	MSB	Not Excavated	06-Nov-10							
	5 to 6 ft	MSB	Not Excavated	06-Nov-10							
	6.5 to 7.5 ft	MSB	Not Excavated	06-Nov-10							
OUE-DP-060	2 to 3 ft	Fill	Not Excavated	06-Nov-10							
	5 to 6 ft	MSB	Not Excavated	06-Nov-10							
	7 to 8 ft	MSB	Not Excavated	06-Nov-10							
DP-ROAD-4.3	1 to 1.5 ft	Fill	EXCAVATED	24-Oct-05	0.71	4.7	81	0.47	1.1	32	
Sawmill #1 AO											
OUE-DP-014	1.5 to 2 ft	MSB	Not Excavated	29-Jun-10							

				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
DP-5.54	1 to 1.5 ft	Fill	Not Excavated	05-Oct-05	1.1 [PSL-Eco]	15 [PSL-HH]	470 [PSL-Eco]	<0.27	0.78	45 [PSL-Eco]	
	5 to 5.5 ft	Fill	Not Excavated	05-Oct-05	0.78	2.9	58	<0.24	0.46	11	
	10 to 10.5 ft	Fill	Not Excavated	05-Oct-05	<0.25	4.5	120	0.32	0.61	20	
DP-5.55	1 to 1.5 ft	Fill	Not Excavated	05-Oct-05	<0.24	6	24	0.5	1.4	46 [PSL-Eco]	
DP-5.56	1 to 1.5 ft	Fill	Not Excavated	05-Oct-05	<0.23	4.1	65	0.59	1.1	51 [PSL-Eco]	
	1.5 to 2 ft	Fill	Not Excavated	05-Oct-05	<0.24	6.7	70	0.56	1.2	28	
DP-5.57	0.5 to 1 ft	Fill	Not Excavated	20-Oct-05	3.1 [PSL-Eco]	1.8	83	<0.27	0.41	4.3	
DP-ROAD-4.1	1 to 1.5 ft	Fill	Not Excavated	24-Oct-05	0.39	3.6	430 [PSL-Eco]	0.31	0.67	24	
DP-ROAD-4.2	1 to 1.5 ft	Fill	Not Excavated	24-Oct-05	<0.25	7.5	57	0.56	1.4	46 [PSL-Eco]	
OUE-DP-015	7.5 to 8 ft	MSB	Not Excavated	29-Jun-10							
OUE-DP-016	2 to 2.5 ft	Fill	Not Excavated	29-Jun-10							
OUE-DP-017	1 to 1.5 ft	Fill	Not Excavated	29-Jun-10							
OUE-DP-018	5 to 6 ft	Fill	Not Excavated	22-Jun-10							
	6 to 7 ft	Fill	Not Excavated	22-Jun-10							
	8 to 9 ft	MSB	Not Excavated	22-Jun-10							
OUE-DP-019	2 to 2.5 ft	Fill	Not Excavated	21-Jun-10							
	5 to 6 ft	MSB	Not Excavated	21-Jun-10							
OUE-DP-020	5 to 5.5 ft	MSB	Not Excavated	21-Jun-10							
	5.5 to 6.5 ft	MSB	Not Excavated	21-Jun-10							
OUE-DP-021	3 to 4 ft	MSB	Not Excavated	22-Jun-10							
OUE-DP-022	3.5 to 4 ft	MSB	Not Excavated	29-Jun-10	<0.30	2.8	53	0.36	<0.30	25	
	4 to 5 ft	MSB	Not Excavated	29-Jun-10	<0.30	2	53	<0.30	<0.30	18	
OUE-DP-023	1.5 to 2 ft	Fill	Not Excavated	29-Jun-10	0.69	4.5	85	<0.30	< 0.30	20	
	2 to 2.7 ft	Fill	Not Excavated	29-Jun-10	0.7	3.9	84	<0.29	<0.29	17	
OUE-DP-024	2 to 2.5 ft	Fill	Not Excavated	22-Jun-10	6.3 [PSL-Eco]	7.3	93	<0.42	<0.42	17	
	5 to 6 ft	MSB	Not Excavated	22-Jun-10							
OUE-DP-025	3.2 to 3.7 ft	MSB	Not Excavated	04-Nov-10							
	4 to 5 ft	MSB	Not Excavated	22-Jun-10							
OUE-DP-026	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	<0.30	5.9	94	0.53	<0.30	36	
	0.5 to 2 ft	Fill	Not Excavated	25-Jun-10	<0.30	6.1	91	0.53	<0.30	35	
	2 to 3.5 ft	Fill	Not Excavated	25-Jun-10	0.5	8.2	200	0.36	<0.32	25	
OUE-DP-028	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10	<0.26	6.9	95	0.64	<0.26	35	
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10	<0.26	4.8	120	0.47	<0.26	94 [PSL-Eco]	

				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
OUE-DP-030	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10	0.82	9.8	370 [PSL-Eco]	0.28	<0.26	28	
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10	1.4 [PSL-Eco]	6.3	270	0.34	<0.27	29	
OUE-DP-031	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10	0.86	5.1	250	0.27	<0.26	40	
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10	<0.27	4.3	140	0.34	<0.27	33	
OUE-DP-068	3 to 3.5 ft	Fill	Not Excavated	12-Dec-10							
	3.5 to 4.5 ft	Fill	Not Excavated	12-Dec-10							
OUE-DP-069	4 to 4.5 ft	Fill	Not Excavated	12-Dec-10							
	4.5 to 5.5 ft	Fill	Not Excavated	12-Dec-10							
OUE-DP-070	1.2 to 1.7 ft	Fill	Not Excavated	21-Dec-10							
	2.5 to 3 ft	Fill	Not Excavated	12-Dec-10							
	3 to 4 ft	Fill	Not Excavated	12-Dec-10							
OUE-DP-071	2.2 to 2.7 ft	Fill	Not Excavated	04-Nov-10							
	3 to 3.5 ft	MSB	Not Excavated	03-Nov-10							
	5.5 to 6.5 ft	MSB	Not Excavated	03-Nov-10							
OUE-DP-072	2.5 to 3 ft	MSB	Not Excavated	04-Nov-10							
	3.5 to 4 ft	MSB	Not Excavated	04-Nov-10							
OUE-HA-003	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10							
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10							
OUE-HA-027	0 to 0.5 ft	Fill	Not Excavated	22-Jun-10							
	0.5 to 1.5 ft	Fill	Not Excavated	22-Jun-10							
OUE-HA-028	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10							
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10							
SAWMILL	0 to 0.5 ft	Fill	Not Excavated	17-Dec-03	<2.1	3.8	34	0.17	<0.18	12	
Compressor H	ouse and Lat	h Building A	DI				•				
MW-3.14	0 to 0.5 ft	Fill	Not Excavated	29-Sep-07	0.14 J	6.1	82	0.53	0.073 J	29	
	5.5 to 6 ft	MSB	Not Excavated	29-Sep-07	0.030 J	0.87	41	0.23 J	<0.32	4.5	
OUC-HA-020	0 to 0.5 ft	Fill	Not Excavated	05-May-08							
OUE-DP-032	0 to 0.5 ft	MSB	Not Excavated	25-Jun-10	0.55	9.5	120	0.41	<0.27	33	
	0.5 to 1.7 ft	MSB	Not Excavated	25-Jun-10	<0.29	12 [PSL-HH]	65	<0.29	<0.29	19	
	2 to 3.5 ft	MSB	Not Excavated	25-Jun-10	<0.30	13 [PSL-HH]	43	<0.30	< 0.30	22	
OUE-DP-033	0 to 0.5 ft	MSB	Not Excavated	29-Jun-10	1.1 [PSL-Eco]	3	43	<0.35	<0.35	11	
	0.5 to 1.5 ft	MSB	Not Excavated	29-Jun-10	<0.36	2.7	50	<0.36	<0.36	4.2	
	4 to 5 ft	MSB	Not Excavated	29-Jun-10	<0.33	8.1	42	<0.33	<0.33	16	
OUE-DP-034	0 to 1 ft	Fill	Not Excavated	25-Jun-10	<0.29	7.8	130	0.77	<0.29	48 [PSL-Eco]	

				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
	1 to 2 ft	MSB	Not Excavated	25-Jun-10	<0.33	1.2	80	<0.33	<0.33	4.6	
	3 to 4.5 ft	MSB	Not Excavated	25-Jun-10	<0.29	0.56	29	<0.29	<0.29	7.5	
OUE-DP-035	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	<0.29	4.6	380 [PSL-Eco]	0.48	<0.29	28	
	0.5 to 1.5 ft	MSB	Not Excavated	25-Jun-10	<0.27	7.4	170	0.63	<0.27	37	
	3 to 4.5 ft	MSB	Not Excavated	25-Jun-10	<0.30	2.6	58	<0.30	<0.30	8.6	
OUC-HA-001	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	0.23 J	9.6	65	0.28 J	0.39	16	
	3.5 to 4 ft	NA	EXCAVATED	18-Apr-08	0.085 J	6.4	19	0.26 J	0.13 J	18	
OUC-HA-002	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	1.8 [PSL-Eco]	12 [PSL-HH]	120	0.22 J	1.1	19	
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08							
	1.5 to 2.5 ft	NA	EXCAVATED	02-May-08							
	3.5 to 4 ft	NA	EXCAVATED	16-Apr-08	0.15 J	9.7	45	0.27 J	0.056 J	17	
OUC-HA-003	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	0.9	12 [PSL-HH]	75	0.26 J	0.45	16	
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08							
	1.5 to 2.5 ft	NA	EXCAVATED	02-May-08							
	3.5 to 4 ft	NA	EXCAVATED	16-Apr-08	0.048 J	8.8	17	0.4	0.037 J	21	
OUC-HA-004	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	0.48	8.2	110	0.21 J	1	14	
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08							
	2.5 to 3 ft	NA	EXCAVATED	18-Apr-08	0.075 J	10	26	0.24 J	0.081 J	13	
OUC-HA-005	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	0.11 J	3.4	89	0.28 J	0.88	18	
	1 to 1.5 ft	NA	EXCAVATED	18-Apr-08	0.44	5.8	100	0.23 J	0.066 J	12	
OUC-HA-006	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	0.21 J	7.5	93	0.67	0.42	34	
	2 to 2.5 ft	NA	EXCAVATED	18-Apr-08	0.047 J	6.4	24	0.14 J	0.084 J	12	
OUC-HA-007	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	0.35	6.4	49	0.47	0.34	32	
	4 to 4.5 ft	NA	EXCAVATED	17-Apr-08	0.068 J	8.6	31	0.49	0.044 J	22	
OUC-HA-008	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	0.19 J	6.6	67	0.58	0.13 J	30	
	3.5 to 4 ft	NA	EXCAVATED	17-Apr-08	0.10 J	6.2	80	0.52	0.26 J	35	
OUC-HA-009	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	0.23 J	8.1	87	0.42	0.32	31	
	1.5 to 2 ft	NA	EXCAVATED	18-Apr-08	0.061 J	11 [PSL-HH]	30	0.36	0.040 J	22	
OUC-HA-010	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	0.23 J	7.5	84	0.7	0.21 J	31	
	2.5 to 3 ft	NA	EXCAVATED	18-Apr-08	0.068 J	13 [PSL-HH]	61	0.29 J	0.043 J	21	
OUC-HA-011	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	0.25 J	7.9	75	0.74	0.24 J	33	
	3.5 to 4 ft	NA	EXCAVATED	17-Apr-08	0.11 J	13 [PSL-HH]	37	0.48	0.13 J	23	
OUC-HA-012	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	0.22 J	8.7	78	0.73	0.18 J	34	
	3.5 to 4 ft	NA	EXCAVATED	17-Apr-08	0.28 J	9.2	71	0.30 J	0.21 J	19	
OUC-HA-013	0 to 0.5 ft	NA	EXCAVATED	02-May-08							

				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(n bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
OUC-HA-014	0 to 0.5 ft	NA	EXCAVATED	02-May-08							
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08							
OUC-HA-015	0 to 0.5 ft	NA	EXCAVATED	02-May-08							
OUC-HA-016	0 to 0.5 ft	NA	EXCAVATED	02-May-08							
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08							
OUC-HA-017	0 to 0.5 ft	NA	EXCAVATED	02-May-08							
OUC-HA-018	0 to 0.5 ft	NA	EXCAVATED	05-May-08							
OUC-HA-019	0 to 0.5 ft	NA	EXCAVATED	05-May-08							
OUC-HA-021	0 to 0.5 ft	NA	EXCAVATED	05-May-08							
R37-CS-003	2.5 to 3 ft	NA	EXCAVATED	16-Jun-08							
R37-CS-004	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08							
R37-CS-005	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08							
R37-CS-006	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08							
R37-CS-007	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08							
Power House a	nd Fuel Barr	n AOI		-							
HA-4.95	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	3	53	0.36	<0.25	23	<0.05
HA-4.96	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	1.9	39	0.29	<0.25	16	<0.05
HA-4.97	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	2.4	43	0.29	<0.25	16	<0.05
HA-4.98	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	3	58	0.33	<0.25	19	<0.05
HA-4.100	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.26	3.9	78	0.51	<0.26	25	<0.05
HA-4.101	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	3.1	56	0.3	<0.25	18	<0.05
HA-4.102	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	5.2	40	0.26	<0.25	17	<0.05
HA-4.103	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	2.1	42	0.28	<0.25	15	<0.05
HA-4.105	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	3.8	93	0.44	<0.25	22	<0.05
HA-4.106	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	2.8	50	0.28	<0.25	17	<0.05
HA-4.156	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	2.9	56	0.3	<0.25	17	<0.05
HA-4.157	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	4.1	98	0.41	<0.25	22	<0.05
MW-4.6	0 to 0.5 ft	Fill	Not Excavated	28-Sep-07	0.94	5.9	630 [PSL-Eco]	0.65	0.22 J	32	
	4 to 4.5 ft	Fill	Not Excavated	28-Sep-07	0.28 J	1.8	240	0.13 J	0.051 J	8.7	

				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
Location ID	Depth	Litholoay	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
OUE-DP-041	0 to 0.5 ft	Fill	Not Excavated	27-Sep-10	0.5	8.3	240	0.54	<0.28	29	
	0.5 to 1 ft	Fill	Not Excavated	27-Sep-10	0.43	9	310	0.65	0.3	65 [PSL-Eco]	
OUE-DP-042	1 to 1.5 ft	Fill	Not Excavated	24-Sep-10	2.2 [PSL-Eco]	6.7	610 [PSL-Eco]	0.36	<0.29	37	
	1.5 to 3 ft	Fill	Not Excavated	24-Sep-10	2.2 [PSL-Eco]	6.3	1400 [PSL-Eco]	0.39	<0.30	28	
	4 to 4.5 ft	Fill	Not Excavated	24-Sep-10	3.2 [PSL-Eco]	6.7	3200 [PSL-Eco]	0.53	0.31	33	
OUE-HA-013	0 to 0.5 ft	Fill	Not Excavated	24-Jun-10							
OUE-HA-029	0 to 1 ft	Fill	Not Excavated	28-Jun-10	0.99 [PSL-Eco]	7.9	5500 [PSL-HH,PSL-Eco]	0.41	<0.28	61 [PSL-Eco]	
OUE-HA-030	0 to 1 ft	Fill	Not Excavated	28-Jun-10	0.78	5.8	4200 [PSL-Eco]	0.38	<0.26	44 [PSL-Eco]	
OUE-HA-031	0 to 1 ft	Fill	Not Excavated	28-Jun-10	0.53	4.7	4200 [PSL-Eco]	0.4	0.48	41	
OUE-HA-032	0 to 1 ft	Fill	Not Excavated	28-Jun-10	0.32	2.7	2000 [PSL-Eco]	0.28	<0.27	24	
P4-36	0.5 to 2 ft	MSB	Not Excavated	18-Dec-03						15	<0.05
	4 to 5.5 ft	MSB	Not Excavated	18-Dec-03						8.6	<0.05
P4-37	0.9 to 1.4 ft	Fill	Not Excavated	18-Dec-03						23	<0.05
	5.4 to 5.9 ft	Fill	Not Excavated	18-Dec-03						16	<0.05
DP-4.16	1 to 1.5 ft	Fill	Not Excavated	05-Jun-06	4.4 [PSL-Eco]	5	89	1.1	<0.25	24	
DP-4.17	2.1 to 2.6 ft	MSB	Not Excavated	05-Jun-06	4.6 [PSL-Eco]	3.5	660 [PSL-Eco]	0.51	<0.25	21	
	2.6 to 3.1 ft	MSB	Not Excavated	05-Jun-06	3.4 [PSL-Eco]	7.9	99	0.36	<0.25	22	
DP-4.18	1.6 to 2.1 ft	MSB	Not Excavated	05-Jun-06	3.6 [PSL-Eco]	4.3	690 [PSL-Eco]	0.38	<0.25	20	
DP-4.19	1 to 1.5 ft	Fill	Not Excavated	05-Jun-06	3.6 [PSL-Eco]	6.4	300	0.61	<0.25	25	
DP-4.22	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	4.2 [PSL-Eco]	3.6	89	0.67	<0.27	33	
DP-4.23	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	6.6 [PSL-Eco]	3.1	130	0.57	<0.25	21	
DP-4.24	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	3.6 [PSL-Eco]	2.7	71	0.58	<0.25	30	
DP-5.59	0.5 to 1 ft	Fill	Not Excavated	20-Oct-05	1.3 [PSL-Eco]	3.6	37	0.46	1.2	42	
DP-5.71	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	1.8 [PSL-Eco]	2.1	95	0.26	<0.26	14	
DP-5.72	0 to 0.5 ft	MSB	Not Excavated	06-Jun-06	2.8 [PSL-Eco]	0.94	120	0.73	<0.25	30	
HA-4.57	1.7 to 2.2 ft	Fill	Not Excavated	01-Aug-06	5.7 [PSL-Eco]	6.9	170	0.9	<0	24	
HA-4.58	1 to 1.5 ft	Fill	Not Excavated	01-Aug-06	5.8 [5.8] [PSL-Eco]	3.6 [3]	30 [31]	0.93 [0.99]	<0 [<0]	27 [23]	
HA-4.59	4 to 4.5 ft	Fill	Not Excavated	01-Aug-06	1.7 [PSL-Eco]	3.4	31	<0.019	<0.036	8	
HA-4.60	3 to 3.5 ft	Fill	Not Excavated	01-Aug-06	6.6 [PSL-Eco]	3.7	33	1.1	<0	27	
HA-4.61	4 to 4.5 ft	Fill	Not Excavated	01-Aug-06	7.2 [PSL-Eco]	3.6	85	0.66	<0	45 [PSL-Eco]	
HA-4.62	1 to 1.5 ft	Fill	Not Excavated	01-Aug-06	3.1 [PSL-Eco]	1.8	49	0.31	<0	18	
HA-4.63	1 to 1.5 ft	Fill	Not Excavated	23-Aug-06	<0.27	4.4	67	0.57	<0.27	43 [PSL-Eco]	
HA-4.66	6 to 6.5 ft	Fill	Not Excavated	09-Aug-06	0.71	4.8	310	0.28	1.4	38	
HA-4.67	6 to 6.5 ft	Fill	Not Excavated	09-Aug-06	<0.25	4	290	0.34	0.7	48 [PSL-Eco]	
HA-4.68	5 to 5.5 ft	Fill	Not Excavated	08-Aug-06	0.71	5.5	570 [PSL-Eco]	0.28	4.1 [PSL-Eco]	20	

				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
HA-4.70	3.5 to 4 ft	Fill	Not Excavated	13-Sep-06	<0.32	2.9	250	<0.32	<0.32	20	
HA-4.71	6 to 6.5 ft	Fill	Not Excavated	13-Sep-06	2.1 [PSL-Eco]	2.2	70	<0.33	<0.37	11	
HA-4.72	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	<0.38	3.8	180	<0.37	<0.38	35	
HA-4.73	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	6.2 [PSL-Eco]	4.7	250	<0.3	<0.3	16	
HA-4.74	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	<0.37	1.4	59	<0.37	<0.37	7.8	
HA-4.76	3.5 to 4 ft	Fill	Not Excavated	13-Sep-06	1.8 [PSL-Eco]	9.5	310	0.78	2	58 [PSL-Eco]	
HA-4.77	6 to 6.5 ft	Fill	Not Excavated	07-Aug-06	<0.25	3.6	130	0.39	<0.25	27	
HA-4.78	8 to 8.5 ft	Fill	Not Excavated	14-Sep-06	<0.32	2.5	72	<0.31	<0.32	11	
HA-4.79	8 to 8.5 ft	Fill	Not Excavated	08-Aug-06	<0.25	6.7	77	0.69	0.35	36	
HA-4.80	6 to 6.5 ft	Fill	Not Excavated	13-Sep-06	0.81	2	73	<0.29	<0.29	9.7	
HA-4.81	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	<0.32	3.8	2600 [PSL-Eco]	0.42	1.5	26	
HA-4.82	6.5 to 7 ft	Fill	Not Excavated	07-Aug-06	1.9 [PSL-Eco]	3.7	430 [PSL-Eco]	0.36	0.42	28	
HA-4.83	4 to 4.5 ft	Fill	Not Excavated	13-Sep-06	<0.53	6.6	310	<0.48	0.99	55 [PSL-Eco]	
HA-4.84	6 to 6.5 ft	Fill	Not Excavated	13-Sep-06	3.3 [PSL-Eco]	9.7	880 [PSL-Eco]	<0.42	<0.42	20	
HA-4.85	7 to 7.5 ft	Fill	Not Excavated	13-Sep-06	4.9 [PSL-Eco]	9.5	870 [PSL-Eco]	<0.3	<0.3	13	
HA-4.86	7 to 7.5 ft	Fill	Not Excavated	13-Sep-06	<0.33	6.9	240	<0.33	<0.33	22	
HA-4.87	4.5 to 5 ft	Fill	Not Excavated	07-Aug-06	3.1 [PSL-Eco]	4.7	2800 [PSL-Eco]	0.3	0.58	20	
HA-4.88	4.5 to 5 ft	Fill	Not Excavated	07-Aug-06	0.98 [PSL-Eco]	5.8	1000 [PSL-Eco]	0.36	0.44	29	
HA-4.90	2 to 2.5 ft	Fill	Not Excavated	08-Aug-06	1.1 [1.5] [PSL-Eco]	47 [57] [PSL- HH,PSL-Eco]	3000 [3300] [PSL-Eco]	0.47 [0.45]	3.3 [2.7] [PSL- Eco]	57 [56] [PSL-Eco]	
HA-4.145	0.9 to 1.4 ft	Fill	Not Excavated	27-Jun-06	3.7 [4.2] [PSL-Eco]	4 [4.1]	43 [67]	0.72 [0.84]	<0.25 [<0.25]	25 [28]	
HA-4.146	2.1 to 2.6 ft	Fill	Not Excavated	27-Jun-06	2.7 [PSL-Eco]	4.1	210	0.41	<0.25	20	
HA-4.147	1.2 to 1.7 ft	Fill	Not Excavated	27-Jun-06	4.1 [PSL-Eco]	5.8	250	0.51	<0.25	31	
HA-4.148	0.7 to 1.2 ft	Fill	Not Excavated	27-Jun-06	3.4 [PSL-Eco]	2.9	110	0.4	<0.27	32	
HSA-4.4	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	0.46	3.9	87	0.38	<0.19	25	
	6 to 6.5 ft	Fill	Not Excavated	23-Jan-06	1.9 [PSL-Eco]	2	430 [PSL-Eco]	<0.25	<0.25	16	
	11 to 11.5 ft	Fill	Not Excavated	23-Jan-06	<0.23	0.84	62	<0.23	<0.23	10	<0.05
	16 to 16.5 ft	Fill	Not Excavated	24-Jan-06	<0.23	1.2	59	<0.23	<0.23	13	
	21 to 21.5 ft	Fill	Not Excavated	24-Jan-06	<0.24	1.4	63	<0.24	<0.24	16	
	26 to 26.5 ft	Fill	Not Excavated	24-Jan-06	<0.21	1.6	61	0.23	<0.21	18	

				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
HSA-4.5	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	0.78	3.4	130	0.19	0.55	16	
	6 to 6.5 ft	Fill	Not Excavated	23-Jan-06	0.87	4.9	120	0.22	0.3	18	
	11 to 11.5 ft	Fill	Not Excavated	23-Jan-06	0.42	5	100	0.24	0.52	22	<0.05
	16 to 16.5 ft	Fill	Not Excavated	24-Jan-06	<0.22	1.6	38	<0.22	<0.22	7.9	<0.05
	21 to 21.5 ft	MSB	Not Excavated	24-Jan-06	<0.23	1.8	62	0.24	<0.23	24	
	26 to 26.5 ft	MSB	Not Excavated	24-Jan-06	0.36	1.9	67	0.28	0.48	21	
	31 to 31.5 ft	MSB	Not Excavated	24-Jan-06	<0.18	3.3	80	0.51	0.25	29	
HSA-4.6	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	0.79	2.9	720 [PSL-Eco]	<0.25	<0.25	16	
	11 to 11.5 ft	Fill	Not Excavated	23-Jan-06	<0.24	0.97	59	<0.24	<0.24	5.7	<0.05
	16 to 16.5 ft	Fill	Not Excavated	24-Jan-06	0.22	2.1	100	<0.21	<0.21	9	<0.05
	21 to 21.5 ft	Fill	Not Excavated	24-Jan-06	<0.25	0.47	26	<0.25	<0.25	4.5	<0.05
	26 to 26.5 ft	MSB	Not Excavated	24-Jan-06	<0.22	5.6	65	0.36	<0.22	27	
	31 to 31.5 ft	MSB	Not Excavated	24-Jan-06	<0.27	3.2	49	<0.27	<0.27	13	
MW-4.5	0 to 0.5 ft	Fill	Not Excavated	28-Sep-07	0.35	6.1	260	0.51	0.16 J	23	
	8.5 to 9 ft	MSB	Not Excavated	28-Sep-07	0.16 J	11 [PSL-HH]	66	0.51	<0.33	35	
OUE-DP-036	1 to 2 ft	Fill	Not Excavated	22-Jun-10	2 [PSL-Eco]	6.8	270 /J	<0.32	<0.32	19	
	3 to 4 ft	Fill	Not Excavated	22-Jun-10	0.36	3.3	74 /J	<0.35	0.4	13	
	5 to 7 ft	MSB	Not Excavated	22-Jun-10	<0.32	11 [PSL-HH]	25 /J	<0.32	<0.32	8.4	
OUE-DP-037	0 to 2.8 ft	Fill	Not Excavated	22-Jun-10	0.67	8	450 /J [PSL-Eco]	0.43	<0.32	20	
	3 to 4 ft	Fill	Not Excavated	22-Jun-10	0.49	6.8	160 /J	<0.32	<0.32	23	
	5 to 7 ft	MSB	Not Excavated	22-Jun-10	<0.33	2.2	57 /J	<0.33	<0.33	7.1	
OUE-DP-040	0.2 to 0.7 ft	Fill	Not Excavated	22-Jun-10	<0.29	3.1	65	<0.29	<0.29	8.9	
	0.7 to 1.7 ft	Fill	Not Excavated	22-Jun-10	<0.28	2.4	47	<0.28	<0.28	8.8	
	1.7 to 2.7 ft	Fill	Not Excavated	22-Jun-10	<0.31	3.3	98	<0.31	<0.31	10	
OUE-DP-045	5 to 5.5 ft	Fill	Not Excavated	22-Jun-10							
	5.5 to 6.5 ft	Fill	Not Excavated	22-Jun-10							
OUE-DP-046	3.5 to 4 ft	Fill	Not Excavated	22-Jun-10							
	5 to 6 ft	Fill	Not Excavated	22-Jun-10							
OUE-DP-047	5.5 to 6.5 ft	Fill	Not Excavated	22-Jun-10							
OUE-DP-048	6 to 6.5 ft	MSB	Not Excavated	26-Jun-10							
	8 to 9 ft	MSB	Not Excavated	26-Jun-10							

Location ID	Depth	Lithology	Excavation Status	Sample Date / Analyte Units	Antimony mg/kg	Arsenic mg/kg	Barium mg/kg	Beryllium mg/kg	Cadmium mg/kg	Chromium mg/kg	Chromium (Hexavalent) mg/kg
				PSL-Eco	0.97	18	330	10	2.8	42	130
OUE-DP-049	13 to 13.5 ft	MSB	Not Excavated	23-Jun-10							
	13.5 to 15 ft	MSB	Not Excavated	23-Jun-10							
OUE-DP-050	8 to 9 ft	MSB	Not Excavated	26-Jun-10							
	9 to 10 ft	MSB	Not Excavated	26-Jun-10							
OUE-DP-076	5 to 6 ft	Fill	Not Excavated	02-Nov-10							
	6 to 7 ft	Fill	Not Excavated	02-Nov-10							
	8 to 9 ft	Fill	Not Excavated	02-Nov-10							
	10 to 11 ft	Fill	Not Excavated	05-Nov-10							
OUE-DP-077	12.5 to 13 ft	Fill	Not Excavated	02-Nov-10							
	15 to 16 ft	Fill	Not Excavated	02-Nov-10							
OUE-DP-078	2.2 to 2.7 ft	Fill	Not Excavated	04-Nov-10							
	5 to 5.5 ft	Fill	Not Excavated	04-Nov-10							
	10 to 10.5 ft	Fill	Not Excavated	04-Nov-10							
OUE-DP-079	0.5 to 1.5 ft	Fill	Not Excavated	05-Nov-10							
	2.5 to 3 ft	Fill	Not Excavated	05-Nov-10							
	3.5 to 4 ft	Fill	Not Excavated	05-Nov-10							
OUE-DP-080	5 to 5.5 ft	Fill	Not Excavated	05-Nov-10							
	5.5 to 6.5 ft	Fill	Not Excavated	05-Nov-10							
	5.5 to 6.5 ft	Fill	Not Excavated	05-Nov-10							
OUE-DP-081	2.5 to 3 ft	Fill	Not Excavated	05-Nov-10							
	5 to 5.5 ft	MSB	Not Excavated	05-Nov-10							
OUE-DP-086	0 to 0.5 ft	Fill	Not Excavated	04-Nov-10							
	0.5 to 1.5 ft	Fill	Not Excavated	04-Nov-10							
	3 to 3.5 ft	MSB	Not Excavated	04-Nov-10							
	5 to 6 ft	MSB	Not Excavated	04-Nov-10							
OUE-DP-087	0 to 0.5 ft	Fill	Not Excavated	04-Nov-10							
	0.5 to 1.5 ft	Fill	Not Excavated	04-Nov-10							
	3.5 to 4.5 ft	Fill	Not Excavated	04-Nov-10							
	5 to 6 ft	MSB	Not Excavated	04-Nov-10							
OUE-DP-088	0 to 0.5 ft	Fill	Not Excavated	04-Nov-10							
	0.5 to 1.5 ft	Fill	Not Excavated	04-Nov-10							
	3 to 4 ft	Fill	Not Excavated	04-Nov-10							
	6 to 7 ft	Fill	Not Excavated	05-Nov-10							
OUE-DP-089	5.4 to 5.9 ft	Fill	Not Excavated	02-Nov-10							
	5.9 to 6.8 ft	Fill	Not Excavated	02-Nov-10							
				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
-------------	--------------------	-----------	-------------------	--------------------------	----------	---------	--------	-----------	---------	----------	--------------------------
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(n bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
	10 to 10.5 ft	Fill	Not Excavated	02-Nov-10							
OUE-DP-090	1 to 1.5 ft	Fill	Not Excavated	05-Nov-10							
	2 to 2.5 ft	Fill	Not Excavated	05-Nov-10							
	3 to 3.5 ft	Fill	Not Excavated	05-Nov-10							
	5.5 to 6 ft	Fill	Not Excavated	05-Nov-10							
OUE-DP-093	6.8 to 7.3 ft	Fill	Not Excavated	03-Nov-10							
	11.2 to 11.7 ft	MSB	Not Excavated	03-Nov-10							
OUE-DP-094	2.5 to 3 ft	Fill	Not Excavated	12-Dec-10							
	3.5 to 4 ft	Fill	Not Excavated	12-Dec-10							
	5.5 to 6 ft	Fill	Not Excavated	12-Dec-10							
	7 to 7.5 ft	Fill	Not Excavated	12-Dec-10							
OUE-DP-095	0 to 0.5 ft	Fill	Not Excavated	14-Dec-10							
	2.5 to 3 ft	Fill	Not Excavated	14-Dec-10							
	5.5 to 6 ft	Fill	Not Excavated	14-Dec-10							
	7.5 to 8.5 ft	Fill	Not Excavated	14-Dec-10							
OUE-DP-101	1.2 to 1.7 ft	Fill	Not Excavated	14-Dec-10							
	2 to 2.5 ft	Fill	Not Excavated	14-Dec-10							
	3.5 to 4 ft	Fill	Not Excavated	14-Dec-10							
	4.5 to 5 ft	Fill	Not Excavated	14-Dec-10							
OUE-HA-012	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10							
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10							
OUE-HA-014	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10							
	0.5 to 0.8 ft	Fill	Not Excavated	21-Jun-10							
OUE-HA-015	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10							
	0.5 to 1.3 ft	Fill	Not Excavated	21-Jun-10							
OUE-HA-016	0 to 0.5 ft	Fill	Not Excavated	24-Jun-10							
	0.5 to 1.5 ft	Fill	Not Excavated	24-Jun-10							
OUE-HA-019	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10							
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10							

				Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (Hexavalent)
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)			PSL-HH	30	10	5200	16	39	100000	17
				PSL-Eco	0.97	18	330	10	2.8	42	130
OUE-HA-020	0 to 0.5 ft	Fill	Not Excavated	24-Jun-10							
	0.5 to 1.5 ft	Fill	Not Excavated	24-Jun-10							
OUE-HA-023A	11 to 12 ft	MSB	Not Excavated	26-Jun-10	<0.38	4	180	0.46	<0.38	32	
	13 to 14 ft	MSB	Not Excavated	26-Jun-10	<0.30	2.1	62	0.47	<0.30	38	
OUE-HA-023B	5 to 6.5 ft	Fill	Not Excavated	25-Jun-10	5.4 [PSL-Eco]	7.5	8200 [PSL-HH,PSL-Eco]	0.4	<0.36	26	
	6.5 to 8 ft	Fill	Not Excavated	25-Jun-10	33 [PSL-HH,PSL-Eco]	12 [PSL-HH]	5300 [PSL-HH,PSL-Eco]	<0.42	0.49	21	
OUE-HA-024	10 to 11 ft	MSB	Not Excavated	26-Jun-10	3 [PSL-Eco]	5.5	3100 [PSL-Eco]	0.42	<0.31	17	
	11 to 12 ft	MSB	Not Excavated	26-Jun-10	0.7	7.2	290	0.45	0.76	75 [PSL-Eco]	
P4-38	10 to 10.5 ft	Fill	Not Excavated	20-Jul-04	<3.3	7.5	140	0.53	2.5	41	
	12 to 12.5 ft	Fill	Not Excavated	20-Jul-04	<2.8	5.1	95	0.6	0.79	26	
P4-39	4 to 4.5 ft	Fill	Not Excavated	20-Jul-04	<2.1	2.8	820 [PSL-Eco]	0.26	1.3	21	
P4-40	6.5 to 7 ft	Fill	Not Excavated	20-Jul-04	4.9 [PSL-Eco]	4.7	3400 [PSL-Eco]	0.22	2.8	17	
P4-41	5.5 to 6 ft	Fill	Not Excavated	20-Jul-04	<2.5	2.4	51	0.1	<0.2	9	
Pond 8 Fill Are	a AOI								-		
HSA-6.29	2 to 2.5 ft	Fill	Not Excavated	18-Jan-06	0.49	8	100	0.31	<0.23	28	
	6 to 6.5 ft	Fill	Not Excavated	18-Jan-06	<0.25	7.6	73	0.25	<0.25	19	
	11 to 11.5 ft	Fill	Not Excavated	18-Jan-06	0.58	6.4	180	0.45	0.26	25	
	16 to 16.5 ft	Fill	Not Excavated	18-Jan-06	<0.19	1.6	40	0.2	<0.19	13	
	20.5 to 21 ft	MSB	Not Excavated	19-Jan-06	<0.23	7.3	69	0.23	<0.23	17	
HSA-6.30	2 to 2.5 ft	Fill	Not Excavated	19-Jan-06	<0.21	8.2	31	<0.21	<0.21	19	
	5.5 to 6 ft	Fill	Not Excavated	19-Jan-06	0.25	6.7	48	0.28	<0.23	19	
	6 to 6.5 ft	Fill	Not Excavated	19-Jan-06	<0.26	6.4	69	0.35	<0.26	26	
	11 to 11.5 ft	Fill	Not Excavated	19-Jan-06	0.25	6.6	71	0.3	<0.23	19	
	16 to 16.5 ft	Fill	Not Excavated	19-Jan-06	0.35	1.6	84	0.3	<0.24	17	
P6-18	0.5 to 2 ft	MSB	Not Excavated	19-Dec-03						13	<0.05
	4 to 5.5 ft	MSB	Not Excavated	19-Dec-03						15	<0.05
P6-19	0.5 to 2 ft	MSB	Not Excavated	19-Dec-03						14	
	4 to 5.5 ft	MSB	Not Excavated	19-Dec-03						14	
P6-TP3	4 to 4.5 ft	Fill	Not Excavated	18-Dec-03	<2.8	4.4	79	0.36	<0.23	22	
P6-TP6	10 to 10.5 ft	Fill	Not Excavated	19-Dec-03	<2.2	7.2	52	0.33	<0.18	26	
P6-TP8	8 to 8.5 ft	Fill	Not Excavated	19-Dec-03	<2.5	5.9	80	0.37	<0.21	27	

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
Water Treatme	nt and Truck	Dump AOI									
HA-4.149	0 to 0.5 ft	Fill	Not Excavated	07-Aug-06	2.4	5.6	7.5	0.047	2.8 b [PSL-Eco]	9.1	<0.27
HA-4.150	0 to 0.5 ft	Fill	Not Excavated	07-Aug-06	2.7 [2.6]	9.8 [8.8]	6.1 [3.5]	0.026 [0.026]	2.4 b [3.1 b] [PSL-Eco]	8.3 [6.9]	<0.25 [<0.26]
HA-4.160	2.7 to 3.2 ft	Fill	Not Excavated	08-Aug-06	18	20	8.9	0.032	0.56	28	<0.25
HSA-4.1	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	2.3 [4.2]	9.7 [13]	11 [13]	0.024 [0.025]	0.4 [0.49]	9.6 [13]	<0.24 [<0.22]
	4 to 4.5 ft	Fill	Not Excavated	23-Jan-06	2.7	14	16	0.023	0.41	9.9	<0.19
HA-4.137	2.3 to 2.8 ft	Fill	Not Excavated	08-Aug-06	13 [14]	26 [25]	14 [15]	0.04 [0.064]	0.6 [0.75]	24 [26]	<0.25 [<0.25]
HA-4.138	7.3 to 7.8 ft	Fill	Not Excavated	08-Aug-06	4.2	5.3	3.6	<0.02	<0.25	15	<0.25
HA-4.139	6.2 to 6.7 ft	Fill	Not Excavated	08-Aug-06	2.4 [2.9]	43 [35] [PSL-Eco]	13 [18]	0.025 [0.027]	0.34 [0.42]	6.9 [9.3]	<0.26 [<0.25]
HA-4.140	1 to 1.5 ft	Fill	Not Excavated	08-Aug-06	18	20	8.4	0.048	0.5	26	<0.25
HA-4.141	1.1 to 1.6 ft	Fill	Not Excavated	08-Aug-06	16	17	8.1	0.037	0.42	23	<0.25
HA-4.142	1.7 to 2.2 ft	Fill	Not Excavated	08-Aug-06	16	22	11	0.046	0.42	25	<0.27
OUA-TP-028	0 to 0.4 ft	Fill	Not Excavated	18-Apr-07	10	42 [PSL-Eco]	17	0.043	<0.56	26	0.14 J
OUE-DP-003	0 to 1 ft	MSB	Not Excavated	24-Jun-10	8.5 /J	26	230 [PSL-HH,PSL-Eco]	0.045	1.2	27	<0.29
	1 to 2 ft	MSB	Not Excavated	24-Jun-10	2.6 /J	2.8	4.3	0.025	<0.27	12	<0.27
	4 to 5 ft	MSB	Not Excavated	24-Jun-10	3.0 /J	10	2.6	0.015 J	<0.27	15	<0.27
OUE-DP-005	6.5 to 7 ft	MSB	Not Excavated	29-Jun-10			2.7				
OUE-DP-006	5 to 5.5 ft	MSB	Not Excavated	29-Jun-10			2.9				
OUE-DP-007	0.5 to 1 ft	MSB	Not Excavated	29-Jun-10			2.9				
OUE-DP-009	6 to 6.5 ft	MSB	Not Excavated	29-Jun-10	2.1	2.7 /J	4.5	<0.024	<0.29	7.6 /J	<0.29
	6.5 to 7.5 ft	MSB	Not Excavated	29-Jun-10	1.5	0.96 /J	3.6	<0.026	<0.30		<0.30
OUE-DP-010	6 to 6.5 ft	MSB	Not Excavated	29-Jun-10	2	<0.29 /UJ	3.3	<0.024	<0.29	8.2 /J	<0.29
	6.5 to 7.5 ft	MSB	Not Excavated	29-Jun-10	1.6	3.3 /J	2	<0.026	<0.29	5.6 /J	<0.29
OUE-DP-011	5 to 5.5 ft	MSB	Not Excavated	29-Jun-10	2.3	3.3 /J	3.1	<0.022	<0.28	8.1 /J	0.74
	5.6 to 6.5 ft	MSB	Not Excavated	29-Jun-10	2.2	2.3 /J	2.4	<0.023	<0.29	6.1 /J	<0.29
OUE-DP-058	1 to 2 ft	Fill	Not Excavated	06-Nov-10			44 [PSL-Eco]				
	5 to 6 ft	Fill	Not Excavated	06-Nov-10			35 [PSL-Eco]				
	6 to 7 ft	MSB	Not Excavated	06-Nov-10			18				
OUE-DP-061	0 to 0.5 ft	MSB	Not Excavated	27-Oct-10			33 [PSL-Eco]				
	0.5 to 1.5 ft	MSB	Not Excavated	27-Oct-10			7.8				
OUE-DP-062	0 to 0.5 ft	Fill	Not Excavated	27-Oct-10			15				
	0.5 to 1.5 ft	Fill	Not Excavated	27-Oct-10			13				

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
OUE-DP-063	0 to 0.5 ft	MSB	Not Excavated	27-Oct-10			25 [PSL-Eco]				
	0.5 to 1 ft	MSB	Not Excavated	27-Oct-10			17				
OUE-HA- 001ABCD	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	5.2	12	6.7	0.032	<0.39	15	<0.26
OUE-HA- 002ABCD	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	14	32	18	0.037	0.88	34	<0.26
P4-11	0 to 0.5 ft	MSB	Not Excavated	28-Mar-03			8.6			18	
P4-12	0 to 0.5 ft	MSB	Not Excavated	28-Mar-03			14			22	
P4-13	0 to 0.5 ft	Fill	Not Excavated	20-Mar-03	7.2	15	12	0.04	<0.87	22	<0.22
P4-14	0 to 0.5 ft	MSB	Not Excavated	20-Mar-03	8.8	17	13	0.042	<0.71	23	<0.18
P4-15	1.2 to 1.7 ft	MSB	Not Excavated	19-Mar-03	9.7	7.8	12	<0.017	<0.73	29	<0.18
P4-16	2.3 to 2.8 ft	MSB	Not Excavated	20-Mar-03	10	18	12	0.045	<0.9	28	<0.22
OUE-DP-001	0 to 1 ft	Fill	Not Excavated	24-Jun-10	9.8 /J	29	14	0.051	0.37	24	<0.27
	1 to 2 ft	Fill	Not Excavated	24-Jun-10	4.7 /J	17	20	0.069	<0.28	14	0.29
	4 to 5 ft	Fill	Not Excavated	24-Jun-10	1.9 /J	5.8	150 [PSL-HH,PSL-Eco]	0.035	<0.32	6.3	<0.32
OUE-DP-002	0 to 1 ft	Fill	Not Excavated	24-Jun-10	4.3 /J	20	10	0.099	<0.27	15	<0.27
	1 to 2 ft	Fill	Not Excavated	24-Jun-10	3.1 /J	3.9	6.5	0.027	<0.32	11	<0.32
	4 to 5 ft	MSB	Not Excavated	24-Jun-10	2.4 /J	<0.31	3.3	0.013 J	<0.31	8.5	0.69
OUE-DP-004	0 to 1 ft	Fill	Not Excavated	23-Jun-10	5.8 /J	18	20	0.029 J	1.2	14	<0.56
	1 to 2 ft	Fill	Not Excavated	23-Jun-10	6.3 /J	26	59 [PSL-Eco]	0.27 [PSL-Eco]	<0.61	16	<0.61
	3 to 4 ft	Fill	Not Excavated	23-Jun-10	0.97 /J	14	10	0.019 J	<0.49	2.8	<0.49
OUE-DP-008	5.5 to 6 ft	MSB	Not Excavated	29-Jun-10			3.6				
OUE-DP-012	9 to 9.5 ft	Fill	Not Excavated	22-Jun-10			25 [PSL-Eco]				
OUE-DP-013	5 to 6 ft	Fill	Not Excavated	22-Jun-10			9.1				
OUE-DP-059	2 to 3 ft	MSB	Not Excavated	06-Nov-10			8.1				
	5 to 6 ft	MSB	Not Excavated	06-Nov-10			8.3				
	6.5 to 7.5 ft	MSB	Not Excavated	06-Nov-10			1.9				
OUE-DP-060	2 to 3 ft	Fill	Not Excavated	06-Nov-10			7.9				
	5 to 6 ft	MSB	Not Excavated	06-Nov-10			2.3				
	7 to 8 ft	MSB	Not Excavated	06-Nov-10			2.2				
DP-ROAD-4.3	1 to 1.5 ft	Fill	EXCAVATED	24-Oct-05	13	22	9	<0.019	0.62	22	<0.24
Sawmill #1 AO	1										
OUE-DP-014	1.5 to 2 ft	MSB	Not Excavated	29-Jun-10			43 [PSL-Eco]				

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
DP-5.54	1 to 1.5 ft	Fill	Not Excavated	05-Oct-05	6.1	92 [PSL-Eco]	93 [PSL-HH,PSL-Eco]	<0.017	0.87	31	<0.27
	5 to 5.5 ft	Fill	Not Excavated	05-Oct-05	2.2	2.1	4.6	0.046	0.46	7	<0.24
	10 to 10.5 ft	Fill	Not Excavated	05-Oct-05	5.8	5.1	4.7	0.019	0.33	19	<0.25
DP-5.55	1 to 1.5 ft	Fill	Not Excavated	05-Oct-05	18	18	8.6	0.03	0.95	27	<0.24
DP-5.56	1 to 1.5 ft	Fill	Not Excavated	05-Oct-05	13	15	9.1	0.026	0.55	23	<0.23
	1.5 to 2 ft	Fill	Not Excavated	05-Oct-05	9.3	31	12	0.022	0.9	24	<0.24
DP-5.57	0.5 to 1 ft	Fill	Not Excavated	20-Oct-05	0.84	79 [PSL-Eco]	360 [PSL-HH,PSL-Eco]	0.067	0.46	4	<0.27
DP-ROAD-4.1	1 to 1.5 ft	Fill	Not Excavated	24-Oct-05	6.4	28	11	0.18 [PSL-Eco]	1.3	18	<0.22
DP-ROAD-4.2	1 to 1.5 ft	Fill	Not Excavated	24-Oct-05	19	25	10	0.02	1	28	0.73
OUE-DP-015	7.5 to 8 ft	MSB	Not Excavated	29-Jun-10			3.5				
OUE-DP-016	2 to 2.5 ft	Fill	Not Excavated	29-Jun-10			88 [PSL-HH,PSL-Eco]				
OUE-DP-017	1 to 1.5 ft	Fill	Not Excavated	29-Jun-10			160 [PSL-HH,PSL-Eco]				
OUE-DP-018	5 to 6 ft	Fill	Not Excavated	22-Jun-10			18				
	6 to 7 ft	Fill	Not Excavated	22-Jun-10			11				
-	8 to 9 ft	MSB	Not Excavated	22-Jun-10			13				
OUE-DP-019	2 to 2.5 ft	Fill	Not Excavated	21-Jun-10			21				
	5 to 6 ft	MSB	Not Excavated	21-Jun-10			5.6				
OUE-DP-020	5 to 5.5 ft	MSB	Not Excavated	21-Jun-10			9.6				
	5.5 to 6.5 ft	MSB	Not Excavated	21-Jun-10			3.2				
OUE-DP-021	3 to 4 ft	MSB	Not Excavated	22-Jun-10			63 [PSL-Eco]				
OUE-DP-022	3.5 to 4 ft	MSB	Not Excavated	29-Jun-10	4.5	26	9.5	0.19 [PSL-Eco]	<0.30	9.7	<0.30
	4 to 5 ft	MSB	Not Excavated	29-Jun-10	4	11	4.3	<0.024	<0.30	9.4	<0.30
OUE-DP-023	1.5 to 2 ft	Fill	Not Excavated	29-Jun-10	6.1	18 /J	33 [PSL-Eco]	0.052	0.36	20 /J	<0.30
	2 to 2.7 ft	Fill	Not Excavated	29-Jun-10	4.7	11 /J	27 [PSL-Eco]	<0.024	<0.29	15 /J	<0.29
OUE-DP-024	2 to 2.5 ft	Fill	Not Excavated	22-Jun-10	3.6	40 [PSL-Eco]	190 [PSL-HH,PSL-Eco]	0.13 [PSL-Eco]	1.9	16	<0.42
	5 to 6 ft	MSB	Not Excavated	22-Jun-10			5.1				
OUE-DP-025	3.2 to 3.7 ft	MSB	Not Excavated	04-Nov-10			58 [PSL-Eco]				
	4 to 5 ft	MSB	Not Excavated	22-Jun-10			5.4				
OUE-DP-026	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	13	32	12	0.084	1.1	39	<0.30
	0.5 to 2 ft	Fill	Not Excavated	25-Jun-10	12	29	12	0.35 [PSL-Eco]	1.4	36	<0.30
	2 to 3.5 ft	Fill	Not Excavated	25-Jun-10	8.2	53 [PSL-Eco]	55 [PSL-Eco]	0.15 [PSL-Eco]	0.77	23	<0.32
OUE-DP-028	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10	13	28	14	0.063	0.57	28	<0.26
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10	12	33	6.7	0.048	<0.26	78 [PSL-Eco]	<0.26

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth	Litholoav	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
OUE-DP-030	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10	6.8	93 [PSL-Eco]	54 [PSL-Eco]	<0.020	2.5 [PSL-Eco]	26	<0.26
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10	7.9	64 [PSL-Eco]	22	<0.021	1.4	28	<0.27
OUE-DP-031	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10	6.3	110 [PSL-Eco]	20	<0.021	0.59	30	<0.26
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10	7.4	33	14	<0.022	5.2 [PSL-Eco]	22	<0.27
OUE-DP-068	3 to 3.5 ft	Fill	Not Excavated	12-Dec-10			7.9				
	3.5 to 4.5 ft	Fill	Not Excavated	12-Dec-10			9.5				
OUE-DP-069	4 to 4.5 ft	Fill	Not Excavated	12-Dec-10			14				
	4.5 to 5.5 ft	Fill	Not Excavated	12-Dec-10			76 [PSL-Eco]				
OUE-DP-070	1.2 to 1.7 ft	Fill	Not Excavated	21-Dec-10			54 [PSL-Eco]				
	2.5 to 3 ft	Fill	Not Excavated	12-Dec-10			300 [PSL-HH,PSL-Eco]				
	3 to 4 ft	Fill	Not Excavated	12-Dec-10			3800 [PSL-HH,PSL-Eco]				
OUE-DP-071	2.2 to 2.7 ft	Fill	Not Excavated	04-Nov-10			11				
	3 to 3.5 ft	MSB	Not Excavated	03-Nov-10			5				
	5.5 to 6.5 ft	MSB	Not Excavated	03-Nov-10			3.1				
OUE-DP-072	2.5 to 3 ft	MSB	Not Excavated	04-Nov-10			17				
	3.5 to 4 ft	MSB	Not Excavated	04-Nov-10			4.2				
OUE-HA-003	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10			24				
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10			25				
OUE-HA-027	0 to 0.5 ft	Fill	Not Excavated	22-Jun-10			10				
	0.5 to 1.5 ft	Fill	Not Excavated	22-Jun-10			14				
OUE-HA-028	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10			11				
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10			10				
SAWMILL	0 to 0.5 ft	Fill	Not Excavated	17-Dec-03	4.8	8.7	130 [PSL-HH,PSL-Eco]	<0.019	<0.71	12	<0.18
Compressor H	ouse and Lat	h Building AC) I								
MW-3.14	0 to 0.5 ft	Fill	Not Excavated	29-Sep-07	11	31	13	0.051	0.45	28	0.15 J
	5.5 to 6 ft	MSB	Not Excavated	29-Sep-07	0.35	1	2.3	0.013 J	<0.32 J/UB	1.9	0.11 J
OUC-HA-020	0 to 0.5 ft	Fill	Not Excavated	05-May-08			72 [PSL-Eco]				
OUE-DP-032	0 to 0.5 ft	MSB	Not Excavated	25-Jun-10	9	34	34 [PSL-Eco]	0.054	1.3	27	<0.27
	0.5 to 1.7 ft	MSB	Not Excavated	25-Jun-10	3.7	5.8	6.2	0.037	0.51	14	0.41
	2 to 3.5 ft	MSB	Not Excavated	25-Jun-10	4.3	4.3	3.7	<0.026	0.63	15	0.41
OUE-DP-033	0 to 0.5 ft	MSB	Not Excavated	29-Jun-10	2.2	17 /J	43 [PSL-Eco]	0.032	<0.35	8.4 /J	<0.35
	0.5 to 1.5 ft	MSB	Not Excavated	29-Jun-10	0.69	14 /J	3.5	<0.029	<0.36	2.3 /J	<0.36
	4 to 5 ft	MSB	Not Excavated	29-Jun-10	3.4	<0.33 /UJ	3.8	<0.027	<0.33	13 /J	0.42
OUE-DP-034	0 to 1 ft	Fill	Not Excavated	25-Jun-10	17	41 [PSL-Eco]	19	0.052	1.2	46 [PSL-Eco]	<0.29

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
	1 to 2 ft	MSB	Not Excavated	25-Jun-10	0.6	3.1	7.4	0.035	<0.51	2.6	<0.33
	3 to 4.5 ft	MSB	Not Excavated	25-Jun-10	1.3	<0.32	2.8	<0.023	<0.47	5.1	<0.29
OUE-DP-035	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	11	33	17	0.033	0.9	27	<0.29
	0.5 to 1.5 ft	MSB	Not Excavated	25-Jun-10	18	71 [PSL-Eco]	10	0.061	0.78	46 [PSL-Eco]	<0.27
	3 to 4.5 ft	MSB	Not Excavated	25-Jun-10	2	7.3	15	0.025	<0.49	8.4	<0.30
OUC-HA-001	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	4.1	19	28 [PSL-Eco]	0.052	0.52	13	0.24 J
	3.5 to 4 ft	NA	EXCAVATED	18-Apr-08	4.3	6.2	6	0.047	<0.30 J/UB	17	0.4
OUC-HA-002	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	5	350 [PSL-Eco]	730 [PSL-HH,PSL-Eco]	0.1	1.3	19	0.22 J
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08		6100 [PSL-HH,PSL-Eco]	290 [PSL-HH,PSL-Eco]				
	1.5 to 2.5 ft	NA	EXCAVATED	02-May-08		49 [PSL-Eco]	540 [PSL-HH,PSL-Eco]				
	3.5 to 4 ft	NA	EXCAVATED	16-Apr-08	3	13	37 [PSL-Eco]	0.052	0.33	13	0.38
OUC-HA-003	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	3.4	37 [PSL-Eco]	110 [PSL-HH,PSL-Eco]	0.19 [PSL-Eco]	0.5	10	0.27 J
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08			540 [PSL-HH,PSL-Eco]				
	1.5 to 2.5 ft	NA	EXCAVATED	02-May-08			370 [PSL-HH,PSL-Eco]				
	3.5 to 4 ft	NA	EXCAVATED	16-Apr-08	3.4	4.8	3.6	0.047	0.31	15	0.55
OUC-HA-004	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	4.2	67 [PSL-Eco]	190 [PSL-HH,PSL-Eco]	0.15 [PSL-Eco]	0.41	14	0.14 J
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08			85 [PSL-HH,PSL-Eco]				
	2.5 to 3 ft	NA	EXCAVATED	18-Apr-08	2.1	6.4	6.5	0.042	0.47	9	0.57
OUC-HA-005	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	14	34	38 [PSL-Eco]	0.044	0.3	18	0.095 J
	1 to 1.5 ft	NA	EXCAVATED	18-Apr-08	2.5	21	26 [PSL-Eco]	0.037	<0.34 J/UB	8.4	0.18 J
OUC-HA-006	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	18	42 [PSL-Eco]	17	0.052	0.54	27	0.20 J
	2 to 2.5 ft	NA	EXCAVATED	18-Apr-08	2.3	5.7	4.5	0.0077 J	<0.29 J/UB	12	<0.29
OUC-HA-007	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	10	42 [PSL-Eco]	33 [PSL-Eco]	0.057	0.71	25	0.19 J
	4 to 4.5 ft	NA	EXCAVATED	17-Apr-08	3	6.6	5.9	0.06	0.46	13	0.74
OUC-HA-008	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	16	29	9	0.081	0.63	24	0.16 J
	3.5 to 4 ft	NA	EXCAVATED	17-Apr-08	11	33	11	0.062	1.3	36	0.28 J
OUC-HA-009	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	9.7	28	21	0.067	0.4	34	0.26 J
	1.5 to 2 ft	NA	EXCAVATED	18-Apr-08	4	7.4	4.7	0.07	0.32	14	0.68
OUC-HA-010	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	27 [PSL-Eco]	36	13	0.069	0.98	29	0.13 J
	2.5 to 3 ft	NA	EXCAVATED	18-Apr-08	1.8	4.1	8.2	0.018 J	0.49	7.7	0.72
OUC-HA-011	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	18	33	10	0.041	0.59	25	0.24 J
	3.5 to 4 ft	NA	EXCAVATED	17-Apr-08	3	5.9	4.5	0.041	0.62	13	1.1 [PSL-Eco]
OUC-HA-012	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	20	34	11	0.098	0.62	26	0.23 J
	3.5 to 4 ft	NA	EXCAVATED	17-Apr-08	6.1	29	82 [PSL-HH,PSL-Eco]	0.1	0.56	22	0.32
OUC-HA-013	0 to 0.5 ft	NA	EXCAVATED	02-May-08		140 [PSL-Eco]	140 [PSL-HH,PSL-Eco]				

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth ((t h ma)	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)			PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
OUC-HA-014	0 to 0.5 ft	NA	EXCAVATED	02-May-08		230 [PSL-Eco]	1000 [PSL-HH,PSL-Eco]				
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08		38 [PSL-Eco]	73 [PSL-Eco]				
OUC-HA-015	0 to 0.5 ft	NA	EXCAVATED	02-May-08		62 [PSL-Eco]	120 [PSL-HH,PSL-Eco]				
OUC-HA-016	0 to 0.5 ft	NA	EXCAVATED	02-May-08			1100 [PSL-HH,PSL-Eco]				
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08			10				
OUC-HA-017	0 to 0.5 ft	NA	EXCAVATED	02-May-08			11				
OUC-HA-018	0 to 0.5 ft	NA	EXCAVATED	05-May-08			120 [PSL-HH,PSL-Eco]				
OUC-HA-019	0 to 0.5 ft	NA	EXCAVATED	05-May-08			68 [PSL-Eco]				
OUC-HA-021	0 to 0.5 ft	NA	EXCAVATED	05-May-08			19				
R37-CS-003	2.5 to 3 ft	NA	EXCAVATED	16-Jun-08		3.6	4.8				
R37-CS-004	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08		3.9	3.8				
R37-CS-005	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08		3.2	6.2				
R37-CS-006	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08		7.5	5.1				
R37-CS-007	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08		4	5.2				
Power House a	nd Fuel Barn	AOI									
HA-4.95	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	7.6	14	5.7	0.036	0.42	22	<0.25
HA-4.96	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	5.8	9.6	5.8	0.028	<0.25	16	<0.25
HA-4.97	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	5.5	10	4.8	0.021	<0.25	15	<0.25
HA-4.98	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	6.7	12	5.4	0.034	0.87	17	<0.25
HA-4.100	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	9.9	21	7.5	0.045	0.82	24	<0.26
HA-4.101	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	6.2	11	5	0.029	0.3	17	<0.25
HA-4.102	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	6	11	4.2	0.045	0.38	15	<0.25
HA-4.103	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	5.4	9.2	4.5	0.027	0.91	15	<0.25
HA-4.105	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	9	19	6.3	0.047	0.6	23	<0.25
HA-4.106	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	5.8	12	7.9	0.026	1.3	17	<0.25
HA-4.156	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	6.2	12	5.1	0.024	0.38	16	<0.25
HA-4.157	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	8	17	7.3	0.038	1.3	21	<0.25
MW-4.6	0 to 0.5 ft	Fill	Not Excavated	28-Sep-07	13	35	23	0.11	0.85	25	0.18 J
	4 to 4.5 ft	Fill	Not Excavated	28-Sep-07	2.4	16	13	0.035	0.35	7.3	0.051 J

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
OUE-DP-041	0 to 0.5 ft	Fill	Not Excavated	27-Sep-10	15	36	31 [PSL-Eco]	0.055	0.77	26	<0.30
	0.5 to 1 ft	Fill	Not Excavated	27-Sep-10	21 [PSL-Eco]	39 [PSL-Eco]	16	0.041	1.4	28	0.34
OUE-DP-042	1 to 1.5 ft	Fill	Not Excavated	24-Sep-10	13	49 [PSL-Eco]	62 [PSL-Eco]	0.024	0.94	33	<0.30
	1.5 to 3 ft	Fill	Not Excavated	24-Sep-10	13	66 [PSL-Eco]	54 [PSL-Eco]	0.083	0.68	31	<0.30
	4 to 4.5 ft	Fill	Not Excavated	24-Sep-10	11	120 [PSL-Eco]	64 [PSL-Eco]	0.027	1.1	34	<0.33
OUE-HA-013	0 to 0.5 ft	Fill	Not Excavated	24-Jun-10			22				
OUE-HA-029	0 to 1 ft	Fill	Not Excavated	28-Jun-10	12	110 [PSL-Eco]	75 [PSL-Eco]	0.027	1.7	41	<0.28
OUE-HA-030	0 to 1 ft	Fill	Not Excavated	28-Jun-10	9.2	95 [PSL-Eco]	18	0.034	1.3	30	<0.26
OUE-HA-031	0 to 1 ft	Fill	Not Excavated	28-Jun-10	9.1	100 [PSL-Eco]	15	0.037	1.4	31	<0.27
OUE-HA-032	0 to 1 ft	Fill	Not Excavated	28-Jun-10	5.6	44 [PSL-Eco]	9.1	0.056	1.4	19	<0.27
P4-36	0.5 to 2 ft	MSB	Not Excavated	18-Dec-03							
	4 to 5.5 ft	MSB	Not Excavated	18-Dec-03							
P4-37	0.9 to 1.4 ft	Fill	Not Excavated	18-Dec-03							
	5.4 to 5.9 ft	Fill	Not Excavated	18-Dec-03							
DP-4.16	1 to 1.5 ft	Fill	Not Excavated	05-Jun-06	13	12	8.8	0.023	0.86	17	<0.25
DP-4.17	2.1 to 2.6 ft	MSB	Not Excavated	05-Jun-06	9.1	30	12	0.16 [PSL-Eco]	1	17	<0.25
	2.6 to 3.1 ft	MSB	Not Excavated	05-Jun-06	4.2	35	42 [PSL-Eco]	0.095	0.59	16	0.67
DP-4.18	1.6 to 2.1 ft	MSB	Not Excavated	05-Jun-06	6.6	35	13	0.094	1.4	17	<0.25
DP-4.19	1 to 1.5 ft	Fill	Not Excavated	05-Jun-06	9.2	25	180 [PSL-HH,PSL-Eco]	0.063	0.92	21	<0.25
DP-4.22	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	9.1	19	5.3	0.052	0.65	22	<0.27
DP-4.23	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	22 [PSL-Eco]	33	0.93	0.096	1.6	29	1.3 [PSL-Eco]
DP-4.24	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	9	15	4.8	0.037	0.52	22	<0.25
DP-5.59	0.5 to 1 ft	Fill	Not Excavated	20-Oct-05	16	21	7.6	<0.018	0.84	29	<0.25
DP-5.71	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	4.8	17	24	0.047	1.6	10	<0.26
DP-5.72	0 to 0.5 ft	MSB	Not Excavated	06-Jun-06	6.9	6.9	3.9	0.022	0.37	16	<0.25
HA-4.57	1.7 to 2.2 ft	Fill	Not Excavated	01-Aug-06	13	32	8.9	0.07	1.6	27	<0
HA-4.58	1 to 1.5 ft	Fill	Not Excavated	01-Aug-06	12 [12]	12 [11]	8.5 [7.5]	<0 [0.029]	0.69 [0.57]	17 [18]	<0 [<0]
HA-4.59	4 to 4.5 ft	Fill	Not Excavated	01-Aug-06	1.8	4.7	13	<0.0084	0.51	6.2	<0.11
HA-4.60	3 to 3.5 ft	Fill	Not Excavated	01-Aug-06	11	12	7.8	0.027	0.77	19	<0
HA-4.61	4 to 4.5 ft	Fill	Not Excavated	01-Aug-06	12	23	5.7	<0	1.3	30	<0
HA-4.62	1 to 1.5 ft	Fill	Not Excavated	01-Aug-06	6.1	9.7	3.6	<0	0.51	16	<0
HA-4.63	1 to 1.5 ft	Fill	Not Excavated	23-Aug-06	15	21	8.2	0.032	1.8	26	<0.27
HA-4.66	6 to 6.5 ft	Fill	Not Excavated	09-Aug-06	8.9	49 [PSL-Eco]	200 [PSL-HH,PSL-Eco]	0.57 [PSL-Eco]	7.8 [PSL-Eco]	52 [PSL-Eco]	<0.25
HA-4.67	6 to 6.5 ft	Fill	Not Excavated	09-Aug-06	9.3	65 [PSL-Eco]	150 [PSL-HH,PSL-Eco]	0.29 [PSL-Eco]	70 [PSL-Eco]	78 [PSL-Eco]	<0.25
HA-4.68	5 to 5.5 ft	Fill	Not Excavated	08-Aug-06	6.5	70 [PSL-Eco]	140 [PSL-HH,PSL-Eco]	0.11	0.87	16	<0.25

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	•		PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
HA-4.70	3.5 to 4 ft	Fill	Not Excavated	13-Sep-06	5.7	14	5.6	0.035	0.68	16	<0.32
HA-4.71	6 to 6.5 ft	Fill	Not Excavated	13-Sep-06	2	3.9	11	0.32 [PSL-Eco]	4.1 [PSL-Eco]	6.7	<0.37
HA-4.72	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	5.1	31	30 [PSL-Eco]	<0.03	2.2 [PSL-Eco]	15	<0.38
HA-4.73	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	5.2	17	120 [PSL-HH,PSL-Eco]	0.054	60 [PSL-Eco]	14	<0.3
HA-4.74	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	1.8	4.2	10	0.034	1	6.5	<0.37
HA-4.76	3.5 to 4 ft	Fill	Not Excavated	13-Sep-06	17	79 [PSL-Eco]	150 [PSL-HH,PSL-Eco]	0.097	4.6 [PSL-Eco]	38	<0.35
HA-4.77	6 to 6.5 ft	Fill	Not Excavated	07-Aug-06	6.8	9.7	7.8	<0.02	1.3	20	<0.25
HA-4.78	8 to 8.5 ft	Fill	Not Excavated	14-Sep-06	2.5	5.8	11	0.049	1.5	8.1	<0.32
HA-4.79	8 to 8.5 ft	Fill	Not Excavated	08-Aug-06	16	29	12	0.026	2.1 [PSL-Eco]	25	<0.25
HA-4.80	6 to 6.5 ft	Fill	Not Excavated	13-Sep-06	2.2	4	12	0.032	4.8 [PSL-Eco]	6.7	<0.29
HA-4.81	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	7.7	45 [PSL-Eco]	19	0.099	1	25	<0.28
HA-4.82	6.5 to 7 ft	Fill	Not Excavated	07-Aug-06	9.8	33	31 [PSL-Eco]	0.38 [PSL-Eco]	4 [PSL-Eco]	23	<0.25
HA-4.83	4 to 4.5 ft	Fill	Not Excavated	13-Sep-06	9.9	91 [PSL-Eco]	75 [PSL-Eco]	0.87 [PSL-Eco]	5.8 [PSL-Eco]	35	<0.53
HA-4.84	6 to 6.5 ft	Fill	Not Excavated	13-Sep-06	8.1	37 [PSL-Eco]	53 [PSL-Eco]	0.06	3.5 [PSL-Eco]	16	<0.42
HA-4.85	7 to 7.5 ft	Fill	Not Excavated	13-Sep-06	4.9	32	70 [PSL-Eco]	<0.024	0.38	11	<0.3
HA-4.86	7 to 7.5 ft	Fill	Not Excavated	13-Sep-06	4.6	19	9.5	<0.026	0.63	21	<0.33
HA-4.87	4.5 to 5 ft	Fill	Not Excavated	07-Aug-06	7	54 [PSL-Eco]	68 [PSL-Eco]	0.048	<0.27	19	<0.27
HA-4.88	4.5 to 5 ft	Fill	Not Excavated	07-Aug-06	9.3	75 [PSL-Eco]	48 [PSL-Eco]	0.23 [PSL-Eco]	12 [PSL-Eco]	27	<0.25
HA-4.90	2 to 2.5 ft	Fill	Not Excavated	08-Aug-06	19 [12]	140 [130] [PSL-Eco]	74 [93] [PSL-HH,PSL-Eco]	0.13 [0.16] [PSL- Eco]	4.7 [4] [PSL-Eco]	40 [31]	2.1 [1.7] [PSL- Eco]
HA-4.145	0.9 to 1.4 ft	Fill	Not Excavated	27-Jun-06	10 [13]	14 [20]	4.9 [5.3]	0.031 [0.027]	0.45 [0.55]	20 [26]	<0.25 [<0.25]
HA-4.146	2.1 to 2.6 ft	Fill	Not Excavated	27-Jun-06	7.2	21	11	0.33 [PSL-Eco]	1.3	18	<0.25
HA-4.147	1.2 to 1.7 ft	Fill	Not Excavated	27-Jun-06	9.7	32	13	0.1	0.78	31	<0.25
HA-4.148	0.7 to 1.2 ft	Fill	Not Excavated	27-Jun-06	7.8	15	2.7	0.047	0.61	29	<0.27
HSA-4.4	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	6.6	8.9	6.2	<0.019	0.38	17	<0.19
	6 to 6.5 ft	Fill	Not Excavated	23-Jan-06	3.7	15	56 [PSL-Eco]	<0.02	0.59	12	<0.25
	11 to 11.5 ft	Fill	Not Excavated	23-Jan-06	1.6	1.9	1.9	<0.018	<0.23	7.5	<0.23
	16 to 16.5 ft	Fill	Not Excavated	24-Jan-06	2.1	2.1	2.6	<0.018	<0.23	7.2	<0.23
	21 to 21.5 ft	Fill	Not Excavated	24-Jan-06	3.2	3.8	4.9	0.039	<0.24	11	<0.24
	26 to 26.5 ft	Fill	Not Excavated	24-Jan-06	3.8	2.8	3.5	<0.017	0.25	12	<0.21

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)	0,		PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
HSA-4.5	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	4	17	33 [PSL-Eco]	0.12	0.48	16	<0.19
	6 to 6.5 ft	Fill	Not Excavated	23-Jan-06	3.7	17	19	0.094	0.64	17	<0.18
	11 to 11.5 ft	Fill	Not Excavated	23-Jan-06	4.1	14	14	0.061	0.52	17	<0.18
	16 to 16.5 ft	Fill	Not Excavated	24-Jan-06	1.3	0.73	1.9	0.024	<0.22	5.4	<0.22
	21 to 21.5 ft	MSB	Not Excavated	24-Jan-06	3.8	5.3	3.4	<0.018	0.37	16	<0.23
	26 to 26.5 ft	MSB	Not Excavated	24-Jan-06	4.8	16	8.2	<0.02	0.62	16	<0.2
	31 to 31.5 ft	MSB	Not Excavated	24-Jan-06	7.6	21	7	0.044	0.37	28	<0.18
HSA-4.6	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	3.7	19	11	0.041	0.87	12	<0.25
	11 to 11.5 ft	Fill	Not Excavated	23-Jan-06	0.67	1.9	1.4	0.03	0.27	3.4	<0.24
	16 to 16.5 ft	Fill	Not Excavated	24-Jan-06	2.1	5.3	4	<0.02	0.34	6.8	<0.21
	21 to 21.5 ft	Fill	Not Excavated	24-Jan-06	0.77	0.61	1.6	<0.018	<0.25	3.3	<0.25
	26 to 26.5 ft	MSB	Not Excavated	24-Jan-06	7.9	17	4.5	0.023	0.39	33	<0.22
	31 to 31.5 ft	MSB	Not Excavated	24-Jan-06	5	5.1	2.5	0.023	0.27	21	<0.27
MW-4.5	0 to 0.5 ft	Fill	Not Excavated	28-Sep-07	9.1	28	16	0.055	0.95	21	0.21 J
	8.5 to 9 ft	MSB	Not Excavated	28-Sep-07	15	10	3.6	0.082	0.73	60 [PSL-Eco]	0.36
OUE-DP-036	1 to 2 ft	Fill	Not Excavated	22-Jun-10	7.2 /J	32	74 [PSL-Eco]	0.068	0.51	18	<0.32
	3 to 4 ft	Fill	Not Excavated	22-Jun-10	1.5 /J	8.7	17	0.3 [PSL-Eco]	1.8	5.8	<0.35
	5 to 7 ft	MSB	Not Excavated	22-Jun-10	0.78 /J	2.4	3.4	0.015 J	<0.32	3.9	<0.32
OUE-DP-037	0 to 2.8 ft	Fill	Not Excavated	22-Jun-10	9.3 /J	59 [PSL-Eco]	35 [PSL-Eco]	0.052	<0.32	26	<0.32
	3 to 4 ft	Fill	Not Excavated	22-Jun-10	4.0 /J	52 [PSL-Eco]	52 [PSL-Eco]	0.045	<0.32	17	0.33
	5 to 7 ft	MSB	Not Excavated	22-Jun-10	1.7 /J	3.4	2.6	0.04	<0.33	6.3	<0.33
OUE-DP-040	0.2 to 0.7 ft	Fill	Not Excavated	22-Jun-10	3.3	10	11	0.034	<0.29	10	<0.29
	0.7 to 1.7 ft	Fill	Not Excavated	22-Jun-10	2.7	6.2	10	<0.023	<0.28	8.6	<0.28
	1.7 to 2.7 ft	Fill	Not Excavated	22-Jun-10	2.9	7.9	15	0.034	<0.31	9.4	<0.31
OUE-DP-045	5 to 5.5 ft	Fill	Not Excavated	22-Jun-10			41 [PSL-Eco]				
	5.5 to 6.5 ft	Fill	Not Excavated	22-Jun-10			39 [PSL-Eco]				
OUE-DP-046	3.5 to 4 ft	Fill	Not Excavated	22-Jun-10			170 [PSL-HH,PSL-Eco]				
	5 to 6 ft	Fill	Not Excavated	22-Jun-10			130[PSL-HH,PSL-Eco]				
OUE-DP-047	5.5 to 6.5 ft	Fill	Not Excavated	22-Jun-10			70 [PSL-Eco]				
OUE-DP-048	6 to 6.5 ft	MSB	Not Excavated	26-Jun-10			46 [PSL-Eco]				
	8 to 9 ft	MSB	Not Excavated	26-Jun-10			69 [PSL-Eco]				

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth	Litholoav	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
OUE-DP-049	13 to 13.5 ft	MSB	Not Excavated	23-Jun-10			6.9				
	13.5 to 15 ft	MSB	Not Excavated	23-Jun-10			2.9				
OUE-DP-050	8 to 9 ft	MSB	Not Excavated	26-Jun-10			20				
	9 to 10 ft	MSB	Not Excavated	26-Jun-10			19				
OUE-DP-076	5 to 6 ft	Fill	Not Excavated	02-Nov-10			130 [PSL-HH,PSL-Eco]				
	6 to 7 ft	Fill	Not Excavated	02-Nov-10			530 [PSL-HH,PSL-Eco]				
	8 to 9 ft	Fill	Not Excavated	02-Nov-10			1200 [PSL-HH,PSL-Eco]				
	10 to 11 ft	Fill	Not Excavated	05-Nov-10			280 [PSL-HH,PSL-Eco]				
OUE-DP-077	12.5 to 13 ft	Fill	Not Excavated	02-Nov-10			66 [PSL-Eco]				
	15 to 16 ft	Fill	Not Excavated	02-Nov-10			2.7				
OUE-DP-078	2.2 to 2.7 ft	Fill	Not Excavated	04-Nov-10			70 [PSL-Eco]				
	5 to 5.5 ft	Fill	Not Excavated	04-Nov-10			290 [PSL-HH,PSL-Eco]				
	10 to 10.5 ft	Fill	Not Excavated	04-Nov-10			8.4				
OUE-DP-079	0.5 to 1.5 ft	Fill	Not Excavated	05-Nov-10			9				
	2.5 to 3 ft	Fill	Not Excavated	05-Nov-10			11				
	3.5 to 4 ft	Fill	Not Excavated	05-Nov-10			22				
OUE-DP-080	5 to 5.5 ft	Fill	Not Excavated	05-Nov-10			70 /J [PSL-Eco]				
	5.5 to 6.5 ft	Fill	Not Excavated	05-Nov-10			110 /J [PSL-HH,PSL-Eco]				
	5.5 to 6.5 ft	Fill	Not Excavated	05-Nov-10			6.5 /J				
OUE-DP-081	2.5 to 3 ft	Fill	Not Excavated	05-Nov-10			49 [PSL-Eco]				
	5 to 5.5 ft	MSB	Not Excavated	05-Nov-10			9.2				
OUE-DP-086	0 to 0.5 ft	Fill	Not Excavated	04-Nov-10			8.1				
	0.5 to 1.5 ft	Fill	Not Excavated	04-Nov-10			93 [PSL-HH,PSL-Eco]				
	3 to 3.5 ft	MSB	Not Excavated	04-Nov-10			4.2				
	5 to 6 ft	MSB	Not Excavated	04-Nov-10			24 [PSL-Eco]				
OUE-DP-087	0 to 0.5 ft	Fill	Not Excavated	04-Nov-10			10				
	0.5 to 1.5 ft	Fill	Not Excavated	04-Nov-10			27 [PSL-Eco]				
	3.5 to 4.5 ft	Fill	Not Excavated	04-Nov-10			260 [PSL-HH,PSL-Eco]				
	5 to 6 ft	MSB	Not Excavated	04-Nov-10			160 [PSL-HH,PSL-Eco]				
OUE-DP-088	0 to 0.5 ft	Fill	Not Excavated	04-Nov-10			12				
	0.5 to 1.5 ft	Fill	Not Excavated	04-Nov-10			13				
	3 to 4 ft	Fill	Not Excavated	04-Nov-10			4.2				
	6 to 7 ft	Fill	Not Excavated	05-Nov-10			380 [PSL-HH,PSL-Eco]				
OUE-DP-089	5.4 to 5.9 ft	Fill	Not Excavated	02-Nov-10			110 [PSL-HH,PSL-Eco]				
	5.9 to 6.8 ft	Fill	Not Excavated	02-Nov-10			110 [PSL-HH,PSL-Eco]				

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)	•••		PSL-HH	660	3000	80	18	380	1600	380
				PSL-Eco	20	36	22	0.12	2	41	0.82
	10 to 10.5 ft	Fill	Not Excavated	02-Nov-10			500 [PSL-HH,PSL-Eco]				
OUE-DP-090	1 to 1.5 ft	Fill	Not Excavated	05-Nov-10			11				
	2 to 2.5 ft	Fill	Not Excavated	05-Nov-10			37 [PSL-Eco]				
	3 to 3.5 ft	Fill	Not Excavated	05-Nov-10			13				
	5.5 to 6 ft	Fill	Not Excavated	05-Nov-10			1500 [PSL-HH,PSL-Eco]				
OUE-DP-093	6.8 to 7.3 ft	Fill	Not Excavated	03-Nov-10			19				
	11.2 to 11.7 ft	MSB	Not Excavated	03-Nov-10			10				
OUE-DP-094	2.5 to 3 ft	Fill	Not Excavated	12-Dec-10			4.4				
	3.5 to 4 ft	Fill	Not Excavated	12-Dec-10			4.9				
	5.5 to 6 ft	Fill	Not Excavated	12-Dec-10			2100 [PSL-HH,PSL-Eco]				
	7 to 7.5 ft	Fill	Not Excavated	12-Dec-10			22				
OUE-DP-095	0 to 0.5 ft	Fill	Not Excavated	14-Dec-10			9.3				
	2.5 to 3 ft	Fill	Not Excavated	14-Dec-10			50 [PSL-Eco]				
	5.5 to 6 ft	Fill	Not Excavated	14-Dec-10			130 [PSL-HH,PSL-Eco]				
	7.5 to 8.5 ft	Fill	Not Excavated	14-Dec-10			33 [PSL-Eco]				
OUE-DP-101	1.2 to 1.7 ft	Fill	Not Excavated	14-Dec-10			70 [PSL-Eco]				
	2 to 2.5 ft	Fill	Not Excavated	14-Dec-10			8.9				
	3.5 to 4 ft	Fill	Not Excavated	14-Dec-10			120 [PSL-HH,PSL-Eco]				
	4.5 to 5 ft	Fill	Not Excavated	14-Dec-10			8.6				
OUE-HA-012	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10			23				
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10			13				
OUE-HA-014	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10			10				
	0.5 to 0.8 ft	Fill	Not Excavated	21-Jun-10			10				
OUE-HA-015	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10			9.4				
	0.5 to 1.3 ft	Fill	Not Excavated	21-Jun-10			9.5				
OUE-HA-016	0 to 0.5 ft	Fill	Not Excavated	24-Jun-10			7.5				
	0.5 to 1.5 ft	Fill	Not Excavated	24-Jun-10			26 [PSL-Eco]				
OUE-HA-019	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10			14				
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10			15				

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility Fort Bragg, California

				Sample Date / Analyte	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
	(ft bgs)			PSL-HH	660	3000	80	18	380	1600	380	
				PSL-Eco	20	36	22	0.12	2	41	0.82	
OUE-HA-020	0 to 0.5 ft	Fill	Not Excavated	24-Jun-10			8.3					
	0.5 to 1.5 ft	Fill	Not Excavated	24-Jun-10			10					
OUE-HA-023A	11 to 12 ft	MSB	Not Excavated	26-Jun-10	8.4	15	9.7	<0.033	0.75	20	<0.40	
	13 to 14 ft	MSB	Not Excavated	26-Jun-10	8.8	7.5	7.2	<0.026	<0.30	21	<0.30	
OUE-HA-023B	5 to 6.5 ft	Fill	Not Excavated	25-Jun-10	11	110 [PSL-Eco]	100 [PSL-HH,PSL-Eco]	<0.029	2	24	<0.36	
	6.5 to 8 ft	Fill	Not Excavated	25-Jun-10	10	290 [PSL-Eco]	3600 [PSL-HH,PSL-Eco]	<0.034	1.3	20	<0.42	
OUE-HA-024	10 to 11 ft	MSB	Not Excavated	26-Jun-10	8.6	49 [PSL-Eco]	25 [PSL-Eco]	<0.027	0.42	13	<0.31	
	11 to 12 ft	MSB	Not Excavated	26-Jun-10	10	12	18	0.025	<1.5	56 [PSL-Eco]	<0.31	
P4-38	10 to 10.5 ft	Fill	Not Excavated	20-Jul-04	55 [PSL-Eco]	190 [PSL-Eco]	19	0.19 [PSL-Eco]	3.2 [PSL-Eco]	32	0.83 [PSL-Eco]	
	12 to 12.5 ft	Fill	Not Excavated	20-Jul-04	21 [PSL-Eco]	58 [PSL-Eco]	16	0.059	1	19	0.7	
P4-39	4 to 4.5 ft	Fill	Not Excavated	20-Jul-04	6.8	35	21	0.042	0.74	20	0.3	
P4-40	6.5 to 7 ft	Fill	Not Excavated	20-Jul-04	4.6	110 [PSL-Eco]	400 [PSL-HH,PSL-Eco]	0.06	<0.95	29	<0.24	
P4-41	5.5 to 6 ft	Fill	Not Excavated	20-Jul-04	2.1	10	8.7	0.091	9.8 [PSL-Eco]	5.7	0.25	
Pond 8 Fill Are	a AOI											
HSA-6.29	2 to 2.5 ft	Fill	Not Excavated	18-Jan-06	6.4	13	13	0.046	0.65	19	0.51	
	6 to 6.5 ft	Fill	Not Excavated	18-Jan-06	4.2	6.5	5.4	0.039	0.45	14	<0.25	
	11 to 11.5 ft	Fill	Not Excavated	18-Jan-06	10	13	22	0.041	0.48	18	0.3	
	16 to 16.5 ft	Fill	Not Excavated	18-Jan-06	1.7	2.7	1.5	<0.014	<0.19	6.7	<0.19	
	20.5 to 21 ft	MSB	Not Excavated	19-Jan-06	5.1	5	3.3	0.1	1.6	15	<0.23	
HSA-6.30	2 to 2.5 ft	Fill	Not Excavated	19-Jan-06	3.3	2.7	4.2	0.029	0.74	12	<0.21	
	5.5 to 6 ft	Fill	Not Excavated	19-Jan-06	5.8	13	5.9	0.036	0.65	17	<0.23	
	6 to 6.5 ft	Fill	Not Excavated	19-Jan-06	6.2	14	6.2	0.035	0.42	23	<0.26	
	11 to 11.5 ft	Fill	Not Excavated	19-Jan-06	5.3	11	6.5	0.033	0.49	16	<0.23	
	16 to 16.5 ft	Fill	Not Excavated	19-Jan-06	5.5	8.4	3.5	0.048	<0.24	16	<0.24	
P6-18	0.5 to 2 ft	MSB	Not Excavated	19-Dec-03								
	4 to 5.5 ft	MSB	Not Excavated	19-Dec-03								
P6-19	0.5 to 2 ft	MSB	Not Excavated	19-Dec-03								
	4 to 5.5 ft	MSB	Not Excavated	19-Dec-03								
P6-TP3	4 to 4.5 ft	Fill	Not Excavated	18-Dec-03	5.8	17	7	0.049	<0.93	16	<0.23	
P6-TP6	10 to 10.5 ft	Fill	Not Excavated	19-Dec-03	5.3	9.7	5.7	0.048	<0.72	15	<0.18	
P6-TP8	8 to 8.5 ft	Fill	Not Excavated	19-Dec-03	5.9	13	9.5	0.039	<0.84	16	<0.21	
							NOTE: Excavated samples were assumed to be marine sediment for background comparisons.					

NOTE: Excavated samples were assumed to be marine sediment for background comparisons.

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
Water Treatme	nt and Truck	Dump AOI						
HA-4.149	0 to 0.5 ft	Fill	Not Excavated	07-Aug-06	<0.27	<0.27	25	19
HA-4.150	0 to 0.5 ft	Fill	Not Excavated	07-Aug-06	<0.25 [<0.26]	<0.25 [<0.26]	16 [11]	25 [19]
HA-4.160	2.7 to 3.2 ft	Fill	Not Excavated	08-Aug-06	<0.25	<0.25	84	59
HSA-4.1	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	<0.24 [<0.22]	<0.24 [<0.22]	18 [29]	43 [43]
	4 to 4.5 ft	Fill	Not Excavated	23-Jan-06	<0.19	<0.19	16	53
HA-4.137	2.3 to 2.8 ft	Fill	Not Excavated	08-Aug-06	<0.25 [<0.25]	<0.25 [<0.25]	56 [59]	61 [65]
HA-4.138	7.3 to 7.8 ft	Fill	Not Excavated	08-Aug-06	<0.25	<0.25	26	21
HA-4.139	6.2 to 6.7 ft	Fill	Not Excavated	08-Aug-06	<0.26 [<0.25]	<0.26 [<0.25]	10 [16]	37 [38]
HA-4.140	1 to 1.5 ft	Fill	Not Excavated	08-Aug-06	<0.25	<0.25	90	60
HA-4.141	1.1 to 1.6 ft	Fill	Not Excavated	08-Aug-06	<0.25	<0.25	73	53
HA-4.142	1.7 to 2.2 ft	Fill	Not Excavated	08-Aug-06	<0.27	<0.27	68	66
OUA-TP-028	0 to 0.4 ft	Fill	Not Excavated	18-Apr-07	<0.55	<0.28	61	62
OUE-DP-003	0 to 1 ft	MSB	Not Excavated	24-Jun-10	<0.29	<0.29	42 /J	150 /J [PSL-Eco]
	1 to 2 ft	MSB	Not Excavated	24-Jun-10	<0.27	<0.27	15 /J	21 /J
	4 to 5 ft	MSB	Not Excavated	24-Jun-10	<0.27	<0.27	15 /J	13 /J
OUE-DP-005	6.5 to 7 ft	MSB	Not Excavated	29-Jun-10				
OUE-DP-006	5 to 5.5 ft	MSB	Not Excavated	29-Jun-10				
OUE-DP-007	0.5 to 1 ft	MSB	Not Excavated	29-Jun-10				
OUE-DP-009	6 to 6.5 ft	MSB	Not Excavated	29-Jun-10	<0.29	<0.29	12	<14 /UB
	6.5 to 7.5 ft	MSB	Not Excavated	29-Jun-10	<0.30	<0.30	11	<10 /UB
OUE-DP-010	6 to 6.5 ft	MSB	Not Excavated	29-Jun-10	<0.29	<0.29	12	<13 /UB
	6.5 to 7.5 ft	MSB	Not Excavated	29-Jun-10	<0.29	<0.29	7.3	<9.1 /UB
OUE-DP-011	5 to 5.5 ft	MSB	Not Excavated	29-Jun-10	<0.28	<0.28	18	<15 /UB
	5.6 to 6.5 ft	MSB	Not Excavated	29-Jun-10	<0.29	<0.29	12	<13 /UB
OUE-DP-058	1 to 2 ft	Fill	Not Excavated	06-Nov-10				
	5 to 6 ft	Fill	Not Excavated	06-Nov-10				
	6 to 7 ft	MSB	Not Excavated	06-Nov-10				
OUE-DP-061	0 to 0.5 ft	MSB	Not Excavated	27-Oct-10				
	0.5 to 1.5 ft	MSB	Not Excavated	27-Oct-10				
OUE-DP-062	0 to 0.5 ft	Fill	Not Excavated	27-Oct-10				
	0.5 to 1.5 ft	Fill	Not Excavated	27-Oct-10				

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
OUE-DP-063	0 to 0.5 ft	MSB	Not Excavated	27-Oct-10				
	0.5 to 1 ft	MSB	Not Excavated	27-Oct-10				
OUE-HA- 001ABCD	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	<0.26	<0.26	29	24
OUE-HA- 002ABCD	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	<0.26	<0.26	57	71
P4-11	0 to 0.5 ft	MSB	Not Excavated	28-Mar-03				39
P4-12	0 to 0.5 ft	MSB	Not Excavated	28-Mar-03				51
P4-13	0 to 0.5 ft	Fill	Not Excavated	20-Mar-03	<0.22	0.36	31	35
P4-14	0 to 0.5 ft	MSB	Not Excavated	20-Mar-03	<0.18	<0.18	34	41
P4-15	1.2 to 1.7 ft	MSB	Not Excavated	19-Mar-03	<0.18	<0.18	45	39
P4-16	2.3 to 2.8 ft	MSB	Not Excavated	20-Mar-03	<0.22	<0.22	45	55
OUE-DP-001	0 to 1 ft	Fill	Not Excavated	24-Jun-10	<0.27	<0.27	45 /J	59 /J
	1 to 2 ft	Fill	Not Excavated	24-Jun-10	<0.28	<0.28	27 /J	59 /J
	4 to 5 ft	Fill	Not Excavated	24-Jun-10	<0.32	<0.32	13 /J	13 /J
OUE-DP-002	0 to 1 ft	Fill	Not Excavated	24-Jun-10	<0.27	<0.27	25 /J	25 /J
	1 to 2 ft	Fill	Not Excavated	24-Jun-10	<0.32	<0.32	22 /J	21 /J
	4 to 5 ft	MSB	Not Excavated	24-Jun-10	<0.31	<0.31	27 /J	8.3 /J
OUE-DP-004	0 to 1 ft	Fill	Not Excavated	23-Jun-10	<0.56	<0.56	27 /J	240 /J [PSL-Eco]
	1 to 2 ft	Fill	Not Excavated	23-Jun-10	<0.61	<0.61	20 /J	120 /J [PSL-Eco]
	3 to 4 ft	Fill	Not Excavated	23-Jun-10	<0.49	<0.49	8.4 /J	330 /J [PSL-Eco]
OUE-DP-008	5.5 to 6 ft	MSB	Not Excavated	29-Jun-10				
OUE-DP-012	9 to 9.5 ft	Fill	Not Excavated	22-Jun-10				
OUE-DP-013	5 to 6 ft	Fill	Not Excavated	22-Jun-10				
OUE-DP-059	2 to 3 ft	MSB	Not Excavated	06-Nov-10				
	5 to 6 ft	MSB	Not Excavated	06-Nov-10				
	6.5 to 7.5 ft	MSB	Not Excavated	06-Nov-10				
OUE-DP-060	2 to 3 ft	Fill	Not Excavated	06-Nov-10				
	5 to 6 ft	MSB	Not Excavated	06-Nov-10				
	7 to 8 ft	MSB	Not Excavated	06-Nov-10				
DP-ROAD-4.3	1 to 1.5 ft	Fill	EXCAVATED	24-Oct-05	<0.24	<0.24	58	56
Sawmill #1 AOI								
OUE-DP-014	1.5 to 2 ft	MSB	Not Excavated	29-Jun-10				

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
Looution ib	(ft bgs)	Linelogy	Exouvation otatuo	PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
DP-5.54	1 to 1.5 ft	Fill	Not Excavated	05-Oct-05	<0.27	<0.27	37	400 [PSL-Eco]
	5 to 5.5 ft	Fill	Not Excavated	05-Oct-05	<0.24	<0.24	23	14
	10 to 10.5 ft	Fill	Not Excavated	05-Oct-05	<0.25	<0.25	30	22
DP-5.55	1 to 1.5 ft	Fill	Not Excavated	05-Oct-05	<0.24	<0.24	91 [PSL-Eco]	63
DP-5.56	1 to 1.5 ft	Fill	Not Excavated	05-Oct-05	<0.23	<0.23	52	53
	1.5 to 2 ft	Fill	Not Excavated	05-Oct-05	<0.24	<0.24	50	70
DP-5.57	0.5 to 1 ft	Fill	Not Excavated	20-Oct-05	<0.27	<0.27	6.9	140 [PSL-Eco]
DP-ROAD-4.1	1 to 1.5 ft	Fill	Not Excavated	24-Oct-05	<0.22	<0.22	37	43
DP-ROAD-4.2	1 to 1.5 ft	Fill	Not Excavated	24-Oct-05	<0.25	<0.25	77	70
OUE-DP-015	7.5 to 8 ft	MSB	Not Excavated	29-Jun-10				
OUE-DP-016	2 to 2.5 ft	Fill	Not Excavated	29-Jun-10				
OUE-DP-017	1 to 1.5 ft	Fill	Not Excavated	29-Jun-10				
OUE-DP-018	5 to 6 ft	Fill	Not Excavated	22-Jun-10				
	6 to 7 ft	Fill	Not Excavated	22-Jun-10				
	8 to 9 ft	MSB	Not Excavated	22-Jun-10				
OUE-DP-019	2 to 2.5 ft	Fill	Not Excavated	21-Jun-10				
	5 to 6 ft	MSB	Not Excavated	21-Jun-10				
OUE-DP-020	5 to 5.5 ft	MSB	Not Excavated	21-Jun-10				
	5.5 to 6.5 ft	MSB	Not Excavated	21-Jun-10				
OUE-DP-021	3 to 4 ft	MSB	Not Excavated	22-Jun-10				
OUE-DP-022	3.5 to 4 ft	MSB	Not Excavated	29-Jun-10	<0.30	<0.30	31	15
	4 to 5 ft	MSB	Not Excavated	29-Jun-10	<0.30	<0.30	36	8.7
OUE-DP-023	1.5 to 2 ft	Fill	Not Excavated	29-Jun-10	<0.30	<0.30	30	97 [PSL-Eco]
	2 to 2.7 ft	Fill	Not Excavated	29-Jun-10	<0.29	<0.29	25	42
OUE-DP-024	2 to 2.5 ft	Fill	Not Excavated	22-Jun-10	<0.42	<0.42	22	220 [PSL-Eco]
	5 to 6 ft	MSB	Not Excavated	22-Jun-10				
OUE-DP-025	3.2 to 3.7 ft	MSB	Not Excavated	04-Nov-10				
	4 to 5 ft	MSB	Not Excavated	22-Jun-10				
OUE-DP-026	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	<0.30	<0.30	47	83
	0.5 to 2 ft	Fill	Not Excavated	25-Jun-10	<0.30	<0.30	45	76
-	2 to 3.5 ft	Fill	Not Excavated	25-Jun-10	<0.32	<0.32	34	200 [PSL-Eco]
OUE-DP-028	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10	<0.26	<0.26	50	86 [PSL-Eco]
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10	<0.26	<0.26	42	70

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
OUE-DP-030	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10	<0.26	<0.26	26	250 [PSL-Eco]
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10	<0.27	<0.27	34	190 [PSL-Eco]
OUE-DP-031	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10	<0.26	<0.26	28	110 [PSL-Eco]
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10	<0.27	<0.27	36	80
OUE-DP-068	3 to 3.5 ft	Fill	Not Excavated	12-Dec-10				
	3.5 to 4.5 ft	Fill	Not Excavated	12-Dec-10				
OUE-DP-069	4 to 4.5 ft	Fill	Not Excavated	12-Dec-10				
	4.5 to 5.5 ft	Fill	Not Excavated	12-Dec-10				
OUE-DP-070	1.2 to 1.7 ft	Fill	Not Excavated	21-Dec-10				
	2.5 to 3 ft	Fill	Not Excavated	12-Dec-10				
	3 to 4 ft	Fill	Not Excavated	12-Dec-10				
OUE-DP-071	2.2 to 2.7 ft	Fill	Not Excavated	04-Nov-10				
	3 to 3.5 ft	MSB	Not Excavated	03-Nov-10				
	5.5 to 6.5 ft	MSB	Not Excavated	03-Nov-10				
OUE-DP-072	2.5 to 3 ft	MSB	Not Excavated	04-Nov-10				
	3.5 to 4 ft	MSB	Not Excavated	04-Nov-10				
OUE-HA-003	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10				
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10				
OUE-HA-027	0 to 0.5 ft	Fill	Not Excavated	22-Jun-10				
	0.5 to 1.5 ft	Fill	Not Excavated	22-Jun-10				
OUE-HA-028	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10				
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10				
SAWMILL	0 to 0.5 ft	Fill	Not Excavated	17-Dec-03	<0.18	<0.18	16	33
Compressor He	ouse and Lat	h Building AO	1					
MW-3.14	0 to 0.5 ft	Fill	Not Excavated	29-Sep-07	0.060 J	0.071 J	43	55
	5.5 to 6 ft	MSB	Not Excavated	29-Sep-07	0.032 J	0.033 J	6.2	2.3
OUC-HA-020	0 to 0.5 ft	Fill	Not Excavated	05-May-08				
OUE-DP-032	0 to 0.5 ft	MSB	Not Excavated	25-Jun-10	<0.27	<0.27	45	110 [PSL-Eco]
	0.5 to 1.7 ft	MSB	Not Excavated	25-Jun-10	<0.29	<0.29	34	18
	2 to 3.5 ft	MSB	Not Excavated	25-Jun-10	<0.30	<0.30	28	19
OUE-DP-033	0 to 0.5 ft	MSB	Not Excavated	29-Jun-10	<0.35	<0.35	15	64
	0.5 to 1.5 ft	MSB	Not Excavated	29-Jun-10	<0.36	<0.36	15	<9.4 /UB
	4 to 5 ft	MSB	Not Excavated	29-Jun-10	<0.33	<0.33	30	<9.2 /UB
OUE-DP-034	0 to 1 ft	Fill	Not Excavated	25-Jun-10	<0.29	<0.29	61	90 [PSL-Eco]

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
Looutonib	(ft bgs)	Littiology	Exouvation otatuo	PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
	1 to 2 ft	MSB	Not Excavated	25-Jun-10	<0.33	<0.33	6.7	6.3
	3 to 4.5 ft	MSB	Not Excavated	25-Jun-10	<0.29	<0.29	11	7.9
OUE-DP-035	0 to 0.5 ft	Fill	Not Excavated	25-Jun-10	<0.29	<0.29	46	64
	0.5 to 1.5 ft	MSB	Not Excavated	25-Jun-10	<0.27	<0.27	51	81
	3 to 4.5 ft	MSB	Not Excavated	25-Jun-10	<0.30	<0.30	13	23
OUC-HA-001	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	0.047 J	0.19 J	40	150 [PSL-Eco]
	3.5 to 4 ft	NA	EXCAVATED	18-Apr-08	0.020 J	<0.30	21	28
OUC-HA-002	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	0.076 J	<0.29	32	460 [PSL-Eco]
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08				
	1.5 to 2.5 ft	NA	EXCAVATED	02-May-08				
	3.5 to 4 ft	NA	EXCAVATED	16-Apr-08	0.017 J	<0.30	33	57
OUC-HA-003	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	0.043 J	0.025 J	38	280 [PSL-Eco]
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08				
	1.5 to 2.5 ft	NA	EXCAVATED	02-May-08				
	3.5 to 4 ft	NA	EXCAVATED	16-Apr-08	<0.30	<0.30	28	21
OUC-HA-004	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	0.070 J	<0.30	33	670 [PSL-Eco]
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08				
	2.5 to 3 ft	NA	EXCAVATED	18-Apr-08	0.019 J	<0.33	31	84
OUC-HA-005	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	0.029 J	0.054 J	92 [PSL-Eco]	160 [PSL-Eco]
	1 to 1.5 ft	NA	EXCAVATED	18-Apr-08	0.033 J	<0.34	23	25
OUC-HA-006	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	0.040 J	0.095 J	82	130 [PSL-Eco]
	2 to 2.5 ft	NA	EXCAVATED	18-Apr-08	<0.29	<0.29	17	87 [PSL-Eco]
OUC-HA-007	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	0.094 J	0.034 J	49	340 [PSL-Eco]
	4 to 4.5 ft	NA	EXCAVATED	17-Apr-08	<0.34	<0.34	31	28
OUC-HA-008	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	0.038 J	0.097 J	65	87 [PSL-Eco]
	3.5 to 4 ft	NA	EXCAVATED	17-Apr-08	0.059 J	0.072 J	40	100 [PSL-Eco]
OUC-HA-009	0 to 0.5 ft	NA	EXCAVATED	18-Apr-08	0.047 J	0.028 J	38	210 [PSL-Eco]
	1.5 to 2 ft	NA	EXCAVATED	18-Apr-08	<0.30	<0.30	35	40
OUC-HA-010	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	0.062 J	0.16 J	80	98 [PSL-Eco]
	2.5 to 3 ft	NA	EXCAVATED	18-Apr-08	<0.36	<0.36	69	18
OUC-HA-011	0 to 0.5 ft	NA	EXCAVATED	17-Apr-08	0.081 J	0.26 J	83	80 /J
	3.5 to 4 ft	NA	EXCAVATED	17-Apr-08	0.11 J	<0.32	37	21
OUC-HA-012	0 to 0.5 ft	NA	EXCAVATED	16-Apr-08	0.080 J	0.11 J	87	89 [PSL-Eco]
	3.5 to 4 ft	NA	EXCAVATED	17-Apr-08	<0.31	<0.31	31	130 [PSL-Eco]
OUC-HA-013	0 to 0.5 ft	NA	EXCAVATED	02-May-08				

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
OUC-HA-014	0 to 0.5 ft	NA	EXCAVATED	02-May-08				
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08				
OUC-HA-015	0 to 0.5 ft	NA	EXCAVATED	02-May-08				
OUC-HA-016	0 to 0.5 ft	NA	EXCAVATED	02-May-08				
	0.5 to 1.5 ft	NA	EXCAVATED	02-May-08				
OUC-HA-017	0 to 0.5 ft	NA	EXCAVATED	02-May-08				
OUC-HA-018	0 to 0.5 ft	NA	EXCAVATED	05-May-08				
OUC-HA-019	0 to 0.5 ft	NA	EXCAVATED	05-May-08				
OUC-HA-021	0 to 0.5 ft	NA	EXCAVATED	05-May-08				
R37-CS-003	2.5 to 3 ft	NA	EXCAVATED	16-Jun-08				
R37-CS-004	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08				
R37-CS-005	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08				
R37-CS-006	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08				
R37-CS-007	2 to 2.5 ft	NA	EXCAVATED	16-Jun-08				
Power House a	nd Fuel Barr	n AOI						
HA-4.95	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	30	45
HA-4.96	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	24	32
HA-4.97	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	24	33
HA-4.98	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	28	38
HA-4.100	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.26	<0.26	43	54
HA-4.101	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	27	36
HA-4.102	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	23	32
HA-4.103	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	22	31
HA-4.105	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	35	50
HA-4.106	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	24	37
HA-4.156	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	26	37
HA-4.157	2 to 2.5 ft	Fill	Not Excavated	22-Aug-06	<0.25	<0.25	35	47
MW-4.6	0 to 0.5 ft	Fill	Not Excavated	28-Sep-07	0.13 J	0.071 J	49	100 [PSL-Eco]
	4 to 4.5 ft	Fill	Not Excavated	28-Sep-07	0.044 J	<0.30	11	28

				Sample Date /	Silver	Thallium	Vanadium	Zinc
	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
Looution ib	(ft bgs)	Littleidgy	Exouvation otatus	PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
OUE-DP-041	0 to 0.5 ft	Fill	Not Excavated	27-Sep-10	<0.28	0.29	33	100 [PSL-Eco]
	0.5 to 1 ft	Fill	Not Excavated	27-Sep-10	<0.28	0.47	40	100 [PSL-Eco]
OUE-DP-042	1 to 1.5 ft	Fill	Not Excavated	24-Sep-10	<0.29	<0.29	39	130 [PSL-Eco]
	1.5 to 3 ft	Fill	Not Excavated	24-Sep-10	<0.30	<0.30	37	93 [PSL-Eco]
	4 to 4.5 ft	Fill	Not Excavated	24-Sep-10	<0.31	<0.31	39	190 [PSL-Eco]
OUE-HA-013	0 to 0.5 ft	Fill	Not Excavated	24-Jun-10				
OUE-HA-029	0 to 1 ft	Fill	Not Excavated	28-Jun-10	<0.28	<0.28	33	77
OUE-HA-030	0 to 1 ft	Fill	Not Excavated	28-Jun-10	<0.26	<0.26	28	60
OUE-HA-031	0 to 1 ft	Fill	Not Excavated	28-Jun-10	<0.27	<0.27	30	130 [PSL-Eco]
OUE-HA-032	0 to 1 ft	Fill	Not Excavated	28-Jun-10	<0.27	<0.27	25	72
P4-36	0.5 to 2 ft	MSB	Not Excavated	18-Dec-03				
	4 to 5.5 ft	MSB	Not Excavated	18-Dec-03				
P4-37	0.9 to 1.4 ft	Fill	Not Excavated	18-Dec-03				
	5.4 to 5.9 ft	Fill	Not Excavated	18-Dec-03				
DP-4.16	1 to 1.5 ft	Fill	Not Excavated	05-Jun-06	<0.25	<0.25	76	59
DP-4.17	2.1 to 2.6 ft	MSB	Not Excavated	05-Jun-06	<0.25	<0.25	50	65
	2.6 to 3.1 ft	MSB	Not Excavated	05-Jun-06	<0.25	<0.25	32	55
DP-4.18	1.6 to 2.1 ft	MSB	Not Excavated	05-Jun-06	<0.25	<0.25	35	55
DP-4.19	1 to 1.5 ft	Fill	Not Excavated	05-Jun-06	<0.25	<0.25	42	62
DP-4.22	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	<0.27	<0.27	65	52
DP-4.23	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	<0.25	<0.25	130 [PSL-Eco]	56
DP-4.24	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	<0.25	<0.25	55	50
DP-5.59	0.5 to 1 ft	Fill	Not Excavated	20-Oct-05	<0.25	<0.25	71	56
DP-5.71	1 to 1.5 ft	Fill	Not Excavated	06-Jun-06	<0.26	<0.26	22	69
DP-5.72	0 to 0.5 ft	MSB	Not Excavated	06-Jun-06	<0.25	<0.25	50	44
HA-4.57	1.7 to 2.2 ft	Fill	Not Excavated	01-Aug-06	<0	<0	36	67
HA-4.58	1 to 1.5 ft	Fill	Not Excavated	01-Aug-06	<0 [<0]	<0 [<0]	75 [74]	55 [53]
HA-4.59	4 to 4.5 ft	Fill	Not Excavated	01-Aug-06	<0.046	<0.047	12	26
HA-4.60	3 to 3.5 ft	Fill	Not Excavated	01-Aug-06	<0	<0	79	57
HA-4.61	4 to 4.5 ft	Fill	Not Excavated	01-Aug-06	<0	<0	73	92 [PSL-Eco]
HA-4.62	1 to 1.5 ft	Fill	Not Excavated	01-Aug-06	<0	<0	24	35
HA-4.63	1 to 1.5 ft	Fill	Not Excavated	23-Aug-06	<0.27	<0.27	71	63
HA-4.66	6 to 6.5 ft	Fill	Not Excavated	09-Aug-06	<0.25	<0.25	42	1100 [PSL-Eco]
HA-4.67	6 to 6.5 ft	Fill	Not Excavated	09-Aug-06	<0.25	<0.25	41	410 [PSL-Eco]
HA-4.68	5 to 5.5 ft	Fill	Not Excavated	08-Aug-06	<0.25	<0.25	26	870 [PSL-Eco]

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
HA-4.70	3.5 to 4 ft	Fill	Not Excavated	13-Sep-06	<0.32	<0.32	31	52
HA-4.71	6 to 6.5 ft	Fill	Not Excavated	13-Sep-06	<0.37	<0.37	13	27
HA-4.72	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	<0.38	<0.38	28	99 [PSL-Eco]
HA-4.73	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	<0.3	<0.3	25	56
HA-4.74	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	<0.37	<0.37	12	24
HA-4.76	3.5 to 4 ft	Fill	Not Excavated	13-Sep-06	<0.35	<0.35	65	910 [PSL-Eco]
HA-4.77	6 to 6.5 ft	Fill	Not Excavated	07-Aug-06	<0.25	<0.25	40	33
HA-4.78	8 to 8.5 ft	Fill	Not Excavated	14-Sep-06	<0.32	<0.32	16	39
HA-4.79	8 to 8.5 ft	Fill	Not Excavated	08-Aug-06	<0.25	<0.25	68	90 [PSL-Eco]
HA-4.80	6 to 6.5 ft	Fill	Not Excavated	13-Sep-06	<0.29	<0.29	13	27
HA-4.81	8 to 8.5 ft	Fill	Not Excavated	13-Sep-06	<0.32	<0.28	43	63
HA-4.82	6.5 to 7 ft	Fill	Not Excavated	07-Aug-06	<0.25	<0.25	41	170 [PSL-Eco]
HA-4.83	4 to 4.5 ft	Fill	Not Excavated	13-Sep-06	<0.53	<0.53	45	370 [PSL-Eco]
HA-4.84	6 to 6.5 ft	Fill	Not Excavated	13-Sep-06	<0.42	<0.42	40	74
HA-4.85	7 to 7.5 ft	Fill	Not Excavated	13-Sep-06	<0.3	<0.3	22	61
HA-4.86	7 to 7.5 ft	Fill	Not Excavated	13-Sep-06	<0.33	<0.33	27	94 [PSL-Eco]
HA-4.87	4.5 to 5 ft	Fill	Not Excavated	07-Aug-06	<0.27	<0.27	28	170 [PSL-Eco]
HA-4.88	4.5 to 5 ft	Fill	Not Excavated	07-Aug-06	<0.25	<0.25	30	610 [PSL-Eco]
HA-4.90	2 to 2.5 ft	Fill	Not Excavated	08-Aug-06	<0.25 [<0.25]	0.47 [<0.25]	39 [40]	720 [440] [PSL- Eco]
HA-4.145	0.9 to 1.4 ft	Fill	Not Excavated	27-Jun-06	<0.25 [<0.25]	1 [0.95]	61 [66]	49 [55]
HA-4.146	2.1 to 2.6 ft	Fill	Not Excavated	27-Jun-06	<0.25	<0.25	32	58
HA-4.147	1.2 to 1.7 ft	Fill	Not Excavated	27-Jun-06	<0.25	0.31	46	64
HA-4.148	0.7 to 1.2 ft	Fill	Not Excavated	27-Jun-06	<0.27	0.97	46	42
HSA-4.4	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	<0.19	0.35	41	36
	6 to 6.5 ft	Fill	Not Excavated	23-Jan-06	<0.25	<0.25	21	19
	11 to 11.5 ft	Fill	Not Excavated	23-Jan-06	<0.23	<0.23	12	11
	16 to 16.5 ft	Fill	Not Excavated	24-Jan-06	<0.23	0.29	19	14
	21 to 21.5 ft	Fill	Not Excavated	24-Jan-06	<0.24	0.4	24	28
	26 to 26.5 ft	Fill	Not Excavated	24-Jan-06	<0.21	0.39	23	29

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
HSA-4.5	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	<0.19	<0.19	26	310 [PSL-Eco]
	6 to 6.5 ft	Fill	Not Excavated	23-Jan-06	<0.18	0.29	27	160
	11 to 11.5 ft	Fill	Not Excavated	23-Jan-06	<0.18	0.35	31	170 [PSL-Eco]
	16 to 16.5 ft	Fill	Not Excavated	24-Jan-06	<0.22	0.23	13	6.1
	21 to 21.5 ft	MSB	Not Excavated	24-Jan-06	<0.23	0.48	26	48
	26 to 26.5 ft	MSB	Not Excavated	24-Jan-06	<0.2	0.48	28	39
	31 to 31.5 ft	MSB	Not Excavated	24-Jan-06	<0.18	0.5	41	57
HSA-4.6	2 to 2.5 ft	Fill	Not Excavated	23-Jan-06	<0.25	<0.25	21	67
	11 to 11.5 ft	Fill	Not Excavated	23-Jan-06	<0.24	<0.24	8.1	3.8
	16 to 16.5 ft	Fill	Not Excavated	24-Jan-06	<0.21	0.22	13	19
	21 to 21.5 ft	Fill	Not Excavated	24-Jan-06	<0.25	<0.25	6	5
	26 to 26.5 ft	MSB	Not Excavated	24-Jan-06	<0.22	0.51	38	56
	31 to 31.5 ft	MSB	Not Excavated	24-Jan-06	<0.27	0.4	17	31
MW-4.5	0 to 0.5 ft	Fill	Not Excavated	28-Sep-07	0.062 J	0.069 J	37	76
	8.5 to 9 ft	MSB	Not Excavated	28-Sep-07	0.075 J	0.044 J	37	40
OUE-DP-036	1 to 2 ft	Fill	Not Excavated	22-Jun-10	<0.32	<0.32	32 /J	110 /J [PSL-Eco]
	3 to 4 ft	Fill	Not Excavated	22-Jun-10	<0.35	<0.35	13 /J	200 /J [PSL-Eco]
	5 to 7 ft	MSB	Not Excavated	22-Jun-10	<0.32	<0.32	29 /J	11 /J
OUE-DP-037	0 to 2.8 ft	Fill	Not Excavated	22-Jun-10	<0.32	<0.32	33 /J	82 /J [PSL-Eco]
	3 to 4 ft	Fill	Not Excavated	22-Jun-10	<0.32	<0.32	33 /J	49 /J
	5 to 7 ft	MSB	Not Excavated	22-Jun-10	<0.33	<0.33	12 /J	13 /J
OUE-DP-040	0.2 to 0.7 ft	Fill	Not Excavated	22-Jun-10	<0.29	<0.29	12	41
	0.7 to 1.7 ft	Fill	Not Excavated	22-Jun-10	<0.28	<0.28	13	35
	1.7 to 2.7 ft	Fill	Not Excavated	22-Jun-10	<0.31	<0.31	15	33
OUE-DP-045	5 to 5.5 ft	Fill	Not Excavated	22-Jun-10				
	5.5 to 6.5 ft	Fill	Not Excavated	22-Jun-10				
OUE-DP-046	3.5 to 4 ft	Fill	Not Excavated	22-Jun-10				
	5 to 6 ft	Fill	Not Excavated	22-Jun-10				
OUE-DP-047	5.5 to 6.5 ft	Fill	Not Excavated	22-Jun-10				
OUE-DP-048	6 to 6.5 ft	MSB	Not Excavated	26-Jun-10				
	8 to 9 ft	MSB	Not Excavated	26-Jun-10				

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
OUE-DP-049	13 to 13.5 ft	MSB	Not Excavated	23-Jun-10				
	13.5 to 15 ft	MSB	Not Excavated	23-Jun-10				
OUE-DP-050	8 to 9 ft	MSB	Not Excavated	26-Jun-10				
	9 to 10 ft	MSB	Not Excavated	26-Jun-10				
OUE-DP-076	5 to 6 ft	Fill	Not Excavated	02-Nov-10				
	6 to 7 ft	Fill	Not Excavated	02-Nov-10				
	8 to 9 ft	Fill	Not Excavated	02-Nov-10				
	10 to 11 ft	Fill	Not Excavated	05-Nov-10				
OUE-DP-077	12.5 to 13 ft	Fill	Not Excavated	02-Nov-10				
	15 to 16 ft	Fill	Not Excavated	02-Nov-10				
OUE-DP-078	2.2 to 2.7 ft	Fill	Not Excavated	04-Nov-10				
	5 to 5.5 ft	Fill	Not Excavated	04-Nov-10				
	10 to 10.5 ft	Fill	Not Excavated	04-Nov-10				
OUE-DP-079	0.5 to 1.5 ft	Fill	Not Excavated	05-Nov-10				
	2.5 to 3 ft	Fill	Not Excavated	05-Nov-10				
	3.5 to 4 ft	Fill	Not Excavated	05-Nov-10				
OUE-DP-080	5 to 5.5 ft	Fill	Not Excavated	05-Nov-10				
	5.5 to 6.5 ft	Fill	Not Excavated	05-Nov-10				
	5.5 to 6.5 ft	Fill	Not Excavated	05-Nov-10				
OUE-DP-081	2.5 to 3 ft	Fill	Not Excavated	05-Nov-10				
	5 to 5.5 ft	MSB	Not Excavated	05-Nov-10				
OUE-DP-086	0 to 0.5 ft	Fill	Not Excavated	04-Nov-10				
	0.5 to 1.5 ft	Fill	Not Excavated	04-Nov-10				
	3 to 3.5 ft	MSB	Not Excavated	04-Nov-10				
	5 to 6 ft	MSB	Not Excavated	04-Nov-10				
OUE-DP-087	0 to 0.5 ft	Fill	Not Excavated	04-Nov-10				
	0.5 to 1.5 ft	Fill	Not Excavated	04-Nov-10				
	3.5 to 4.5 ft	Fill	Not Excavated	04-Nov-10				
	5 to 6 ft	MSB	Not Excavated	04-Nov-10				
OUE-DP-088	0 to 0.5 ft	Fill	Not Excavated	04-Nov-10				
	0.5 to 1.5 ft	Fill	Not Excavated	04-Nov-10				
	3 to 4 ft	Fill	Not Excavated	04-Nov-10				
	6 to 7 ft	Fill	Not Excavated	05-Nov-10				
OUE-DP-089	5.4 to 5.9 ft	Fill	Not Excavated	02-Nov-10				
	5.9 to 6.8 ft	Fill	Not Excavated	02-Nov-10				

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)			PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
	10 to 10.5 ft	Fill	Not Excavated	02-Nov-10				
OUE-DP-090	1 to 1.5 ft	Fill	Not Excavated	05-Nov-10				
	2 to 2.5 ft	Fill	Not Excavated	05-Nov-10				
	3 to 3.5 ft	Fill	Not Excavated	05-Nov-10				
	5.5 to 6 ft	Fill	Not Excavated	05-Nov-10				
OUE-DP-093	6.8 to 7.3 ft	Fill	Not Excavated	03-Nov-10				
	11.2 to 11.7 ft	MSB	Not Excavated	03-Nov-10				
OUE-DP-094	2.5 to 3 ft	Fill	Not Excavated	12-Dec-10				
	3.5 to 4 ft	Fill	Not Excavated	12-Dec-10				
	5.5 to 6 ft	Fill	Not Excavated	12-Dec-10				
	7 to 7.5 ft	Fill	Not Excavated	12-Dec-10				
OUE-DP-095	0 to 0.5 ft	Fill	Not Excavated	14-Dec-10				
	2.5 to 3 ft	Fill	Not Excavated	14-Dec-10				
	5.5 to 6 ft	Fill	Not Excavated	14-Dec-10				
	7.5 to 8.5 ft	Fill	Not Excavated	14-Dec-10				
OUE-DP-101	1.2 to 1.7 ft	Fill	Not Excavated	14-Dec-10				
	2 to 2.5 ft	Fill	Not Excavated	14-Dec-10				
	3.5 to 4 ft	Fill	Not Excavated	14-Dec-10				
	4.5 to 5 ft	Fill	Not Excavated	14-Dec-10				
OUE-HA-012	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10				
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10				
OUE-HA-014	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10				
	0.5 to 0.8 ft	Fill	Not Excavated	21-Jun-10				
OUE-HA-015	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10				
	0.5 to 1.3 ft	Fill	Not Excavated	21-Jun-10				
OUE-HA-016	0 to 0.5 ft	Fill	Not Excavated	24-Jun-10				
	0.5 to 1.5 ft	Fill	Not Excavated	24-Jun-10				
OUE-HA-019	0 to 0.5 ft	Fill	Not Excavated	21-Jun-10				
	0.5 to 1.5 ft	Fill	Not Excavated	21-Jun-10				

				Sample Date / Analyte	Silver	Thallium	Vanadium	Zinc
Location ID	Depth	Lithology	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)	0,		PSL-HH	380	5	530	23000
				PSL-Eco	2	1	90	84
OUE-HA-020	0 to 0.5 ft	Fill	Not Excavated	24-Jun-10				
	0.5 to 1.5 ft	Fill	Not Excavated	24-Jun-10				
OUE-HA-023A	11 to 12 ft	MSB	Not Excavated	26-Jun-10	<0.38	<0.38	64	43
	13 to 14 ft	MSB	Not Excavated	26-Jun-10	<0.30	<0.30	56	55
OUE-HA-023B	5 to 6.5 ft	Fill	Not Excavated	25-Jun-10	0.71	<0.36	39	200 [PSL-Eco]
	6.5 to 8 ft	Fill	Not Excavated	25-Jun-10	5.4 [PSL-Eco]	<0.42	37	230 [PSL-Eco]
OUE-HA-024	10 to 11 ft	MSB	Not Excavated	26-Jun-10	<0.31	<0.31	34	41
	11 to 12 ft	MSB	Not Excavated	26-Jun-10	<0.31	<0.31	64	35
P4-38	10 to 10.5 ft	Fill	Not Excavated	20-Jul-04	12 [PSL-Eco]	<0.27	47	130 [PSL-Eco]
	12 to 12.5 ft	Fill	Not Excavated	20-Jul-04	1.1	<0.24	50	76
P4-39	4 to 4.5 ft	Fill	Not Excavated	20-Jul-04	<0.18	<0.18	35	57
P4-40	6.5 to 7 ft	Fill	Not Excavated	20-Jul-04	<0.24	<0.24	21	510 [PSL-Eco]
P4-41	5.5 to 6 ft	Fill	Not Excavated	20-Jul-04	<0.2	<0.2	9.8	27
Pond 8 Fill Area	a AOI							
HSA-6.29	2 to 2.5 ft	Fill	Not Excavated	18-Jan-06	<0.23	0.62	43	71
	6 to 6.5 ft	Fill	Not Excavated	18-Jan-06	<0.25	<0.25	32	23
	11 to 11.5 ft	Fill	Not Excavated	18-Jan-06	<0.22	0.27	45	160 [PSL-Eco]
	16 to 16.5 ft	Fill	Not Excavated	18-Jan-06	<0.19	0.28	20	17
	20.5 to 21 ft	MSB	Not Excavated	19-Jan-06	<0.23	<0.23	27	31
HSA-6.30	2 to 2.5 ft	Fill	Not Excavated	19-Jan-06	<0.21	0.52	30	17
	5.5 to 6 ft	Fill	Not Excavated	19-Jan-06	<0.23	0.42	31	31
	6 to 6.5 ft	Fill	Not Excavated	19-Jan-06	<0.26	0.29	36	37
	11 to 11.5 ft	Fill	Not Excavated	19-Jan-06	<0.23	0.38	32	32
	16 to 16.5 ft	Fill	Not Excavated	19-Jan-06	<0.24	<0.24	29	35
P6-18	0.5 to 2 ft	MSB	Not Excavated	19-Dec-03				
	4 to 5.5 ft	MSB	Not Excavated	19-Dec-03				
P6-19	0.5 to 2 ft	MSB	Not Excavated	19-Dec-03				
	4 to 5.5 ft	MSB	Not Excavated	19-Dec-03				
P6-TP3	4 to 4.5 ft	Fill	Not Excavated	18-Dec-03	<0.23	<0.23	32	39
P6-TP6	10 to 10.5 ft	Fill	Not Excavated	19-Dec-03	<0.18	<0.18	34	29
P6-TP8	8 to 8.5 ft	Fill	Not Excavated	19-Dec-03	<0.21	<0.21	36	43

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Lesstian ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
Water Treatment ar	d Truck Dur	np AOI		•				•		
HA-4.122	6 to 6.5 ft	Not Excavated	23-Aug-06			<1	1.9	6.4	8.3	12 L
HA-4.124	5 to 5.5 ft	Not Excavated	23-Aug-06			<1	2.6	7.3	9.9	19 L
HA-4.126	5 to 5.5 ft	Not Excavated	23-Aug-06			<1	1.2	4.6	5.8	9.3 L
HA-4.127	5.5 to 6 ft	Not Excavated	23-Aug-06			<0.99	2.1	6.4	8.5	11 L
HA-4.128	6 to 6.5 ft	Not Excavated	23-Aug-06			<0.99 [1.1]	3.3 [4.4]	7.2 [9.6]	10.5 [15.1]	9.3 L [12 L]
HA-4.129	7.5 to 8 ft	Not Excavated	23-Aug-06			<1	2.8	7	9.8	12 L
HA-4.131	7 to 7.5 ft	Not Excavated	23-Aug-06			<1	2.3	8.5	10.8	20 L
HA-4.132	5.5 to 6 ft	Not Excavated	23-Aug-06			<1	1.5	5.1	6.6	14 L
HA-4.136	6 to 6.5 ft	Not Excavated	23-Aug-06			<1	2.7	8.9	11.6	24 L
HA-4.137	2.3 to 2.8 ft	Not Excavated	08-Aug-06			1.2 [1.2]	4.9 [3.9]	36 [33]	42.1 [38.1]	200 L [170 L]
HA-4.138	7.3 to 7.8 ft	Not Excavated	08-Aug-06			<1	<1	<1	ND	<5
HA-4.139	6.2 to 6.7 ft	Not Excavated	08-Aug-06			1.2 [<1]	3.1 [2]	53 [31]	57.3 [33]	200 L [130 L]
HA-4.140	1 to 1.5 ft	Not Excavated	08-Aug-06			2.3	3.8	53	59.1	260 L
HA-4.141	1.1 to 1.6 ft	Not Excavated	08-Aug-06			<1	<1	2.2	2.2	<5
HA-4.142	1.7 to 2.2 ft	Not Excavated	08-Aug-06			<1	1.9	11	12.9	62 L
HA-4.143	0.5 to 1 ft	Not Excavated	29-Jun-06			<0.99	<0.99	16	16	120
HA-4.160	2.7 to 3.2 ft	Not Excavated	08-Aug-06			<0.99	2.2	5.6	7.8	11 L
HSA-4.1	2 to 2.5 ft	Not Excavated	23-Jan-06			<1 [<0.99]	<1 [<0.99]	20 [17]	20 [17]	160 [98]
	4 to 4.5 ft	Not Excavated	23-Jan-06			<1	<1	19	19	140
OUA-TP-028	0 to 0.4 ft	Not Excavated	18-Apr-07			<2.2	1.2 J	27	28.2	170 H
OUE-DP-003	0 to 1 ft	Not Excavated	24-Jun-10			<5.8 Jb/UB	3.7 Jb	68 b/J	71.7	460

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leasting ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
	1 to 2 ft	Not Excavated	24-Jun-10			<1.1 Jb/UB	0.57 Jb	1.8 b/J	2.37	11
	4 to 5 ft	Not Excavated	24-Jun-10			<1.1	<1.1	<1.1	ND	<5.4
OUE-HA-001ABCD	0 to 0.5 ft	Not Excavated	25-Jun-10			<1.0	0.27 J	4.9	5.2	20
OUE-HA-002ABCD	0 to 0.5 ft	Not Excavated	25-Jun-10			<1.1	0.46 J	11	11.5	82
P4-11	0 to 0.5 ft	Not Excavated	28-Mar-03		<1.1				7.8 HY	
P4-12	0 to 0.5 ft	Not Excavated	28-Mar-03		<1.1				16 HY	
P4-13	0 to 0.5 ft	Not Excavated	20-Mar-03		<1.1				20 HY	
P4-14	0 to 0.5 ft	Not Excavated	20-Mar-03		<1.1				37 HY	
P4-15	1.2 to 1.7 ft	Not Excavated	19-Mar-03		<1.1				3.9 HY	
P4-16	2.3 to 2.8 ft	Not Excavated	20-Mar-03		<1.1				27 HY	
P4-17	0 to 0.5 ft	Not Excavated	28-Mar-03		<1				42 HY	
P4-18	0 to 0.5 ft	Not Excavated	28-Mar-03		<0.94				16 HY	
P4-19	0 to 0.5 ft	Not Excavated	28-Mar-03		<1.1				29 HY	
P4-PH3	0 to 0.5 ft	Not Excavated	21-Jul-04						5.8 HY	35
	7.5 to 8 ft	Not Excavated	21-Jul-04						2.5 HY	<5
P4-PH4	2 to 2.5 ft	Not Excavated	21-Jul-04						<1	5.4 YZ
	9 to 9.5 ft	Not Excavated	21-Jul-04						18 LY	<5
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05			<1	<1	12	12	38
FL-CS-001	2 to 2.5 ft	Not Excavated	19-Jun-07			0.60 J	8.4	210	219	740 HL
FL-CS-002	2.5 to 3 ft	Not Excavated	19-Jun-07			0.56 J	5.7	89	95	390 HL
FL-CS-003	2.5 to 3 ft	Not Excavated	19-Jun-07			<1.2	2	41	43	170 HL
FL-CS-004	2.5 to 3 ft	Not Excavated	19-Jun-07			0.27 J	1.9	56	58	350 H

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastion ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	-
FL-CS-005	2.5 to 3 ft	Not Excavated	19-Jun-07			<1.5	4.3	69	73	280 HL
FL-CS-006	2.5 to 3 ft	Not Excavated	19-Jun-07			0.30 J	2.8	29	32	150 HL
FL-CS-007	6 to 6.5 ft	Not Excavated	19-Jun-07			0.20 J	13	51	64	96 HL
FL-CS-008	2.5 to 3 ft	Not Excavated	20-Jun-07			4.9	11	120	136	480 HL
FL-CS-009	2.5 to 3 ft	Not Excavated	20-Jun-07			1.0 J	6.3	110	117	430 HL
FL-CS-010	2.5 to 3 ft	Not Excavated	20-Jun-07			3	35	75	113	200 HL
FL-CS-011	6.5 to 7 ft	EXCAVATED	22-Jun-07			7.8	120	490	618	1400 HL
FL-CS-012	6.5 to 7 ft	EXCAVATED	22-Jun-07			24 J	740	15000 [RBSC- ali_d]	15764 [RBSC-ali_d,TPH- LGW]	39000 HL
FL-CS-013	6.5 to 7 ft	Not Excavated	22-Jun-07			2.1	9.3	150	161	620 HL
FL-CS-014	6.5 to 7 ft	Not Excavated	22-Jun-07			0.44 J	3.6	89	93	580 HL
FL-CS-015	6.5 to 7 ft	Not Excavated	22-Jun-07			0.50 J	2.9	31	34	170 HL
FL-CS-016	5.5 to 6 ft	Not Excavated	22-Jun-07			0.86 J	2.2	20	23	110 HL
FL-CS-017	4 to 4.5 ft	Not Excavated	11-Jul-07			1.3 J	13	330	344	1300 HL
FL-CS-018	4 to 4.5 ft	Not Excavated	11-Jul-07			5.4	74	280	359	650 HL
FL-CS-019	3.5 to 4 ft	Not Excavated	11-Jul-07			0.46 J	1.8	74	76	330 HL
FL-CS-020	3.5 to 4 ft	Not Excavated	11-Jul-07			1.2 J	5.6	250	257	1100 HL
FL-CS-021	3.5 to 4 ft	Not Excavated	11-Jul-07			3.9 J	10 J	640	654	3600 HL
FL-CS-022	3 to 3.5 ft	Not Excavated	11-Jul-07			0.41 J	1.7	26	28	110 HL
FL-CS-023	4.5 to 5.5 ft	Not Excavated	11-Jul-07			1.1 J	7.2	100	108	480 HL
FL-CS-024	4.5 to 5.5 ft	Not Excavated	11-Jul-07			0.28 J	3.1	46	49	230 HL
FL-CS-025	4.5 to 5.5 ft	Not Excavated	11-Jul-07			1.0 J	7.3	27	35	240 HL

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastion ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
FL-CS-026	5 to 5.5 ft	Not Excavated	11-Jul-07			<22	<22	120	120	1700 H
FL-CS-027	5 to 5.5 ft	Not Excavated	11-Jul-07			0.20 J	0.64 J	3.4	4.2	16 HL
FL-CS-028	3.5 to 4 ft	Not Excavated	10-Aug-07			<1.3	1.3 J	63	64	410 H
FL-CS-029	5 to 5.5 ft	Not Excavated	10-Aug-07			<1.5	0.64 J	5.9	6.5	44 H
FL-CS-030	4.5 to 5 ft	Not Excavated	10-Aug-07			0.18 J	<1.3	5.4	5.6	36 H
FL-CS-031	4.5 to 5 ft	Not Excavated	10-Aug-07			1.6 J	7	270	279	1200 H
HA-4.42	0.5 to 1 ft	Not Excavated	11-Jul-06			<1	2.1	6.9	9.0	17 L
HA-4.43	0.1 to 0.6 ft	Not Excavated	11-Jul-06			<1	1.9	25	27	200
HA-4.44	0.5 to 1 ft	EXCAVATED	11-Jul-06			<10	17	350	367	2900
HA-4.45	0.5 to 1 ft	EXCAVATED	11-Jul-06			<1	<1	31	31	200
HA-4.46	0.5 to 1 ft	EXCAVATED	11-Jul-06			<9.9	<9.9	520	520	3300
HA-4.47	0.5 to 1 ft	EXCAVATED	11-Jul-06			<5	6.7	240	247	1500
HA-4.48	0.5 to 1 ft	EXCAVATED	11-Jul-06			<1	<1	3.8	3.8	25
HA-4.114	0.5 to 1 ft	EXCAVATED	11-Jul-06			1.2	2.4	32	36	180
HA-4.119	0.5 to 1 ft	Not Excavated	28-Jun-06			1.1	2.5	46	50	180
HA-4.120	0.5 to 1 ft	EXCAVATED	29-Jun-06			<0.99 [<1]	1.1 [<1]	19 [7.6]	20 [7.6]	140 [43]
HA-4.121	0.5 to 1 ft	EXCAVATED	29-Jun-06			<1	5.9	130	136	500
HA-4.130	7 to 7.4 ft	Not Excavated	23-Aug-06			<1 [<1]	2.3 [3.1]	20 [9.2]	22 [12]	20 L [17 L]
HA-4.135	6.5 to 7 ft	Not Excavated	23-Aug-06			<1	3.2	9.2	12	20 L
HA-4.144	0.5 to 1 ft	EXCAVATED	29-Jun-06			<1	<1	3.8	3.8	37
HA-4.155	0.5 to 1 ft	EXCAVATED	11-Jul-06			<5	5.5	250	256	1600
MW-4.2	2.5 to 3 ft	Not Excavated	16-Dec-03						<1	<5

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Less they ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
OUE-DP-001	0 to 1 ft	Not Excavated	24-Jun-10			<1.1 J/UB	9.8	42	52	40
	1 to 2 ft	Not Excavated	24-Jun-10			<1.1 J/UB	1.0 J	8.3	9.3	55
	4 to 5 ft	Not Excavated	24-Jun-10			<1.3	0.27 J	2.4	2.7	11
OUE-DP-002	0 to 1 ft	Not Excavated	24-Jun-10			<1.1 J/UB	1.2	8.9	10	44
	1 to 2 ft	Not Excavated	24-Jun-10			<1.3 Jb/UB	1.6 b/J	8.7 b/J	10	38
	4 to 5 ft	Not Excavated	24-Jun-10			<1.3 Jb/UB	0.87 Jb	2.7 b/J	4.6	23
OUE-DP-004	0 to 1 ft	Not Excavated	23-Jun-10			<2.2 Jb/UB	1.4 Jb	13 b/J	14	66
	1 to 2 ft	Not Excavated	23-Jun-10			<120	130	6200	6330 [TPH-LGW]	16000
	3 to 4 ft	Not Excavated	23-Jun-10			<5.8	12	460	472	750
OUE-DP-012	13.5 to 14.5 ft	Not Excavated	22-Jun-10			74 [RBSC-ali_di]	610	2000	2684 [TPH-LGW]	1700
OUE-DP-013	5 to 6 ft	Not Excavated	22-Jun-10			<1.1	0.40 J	7.3	7.7	24
OUE-DP-064	0 to 0.5 ft	Not Excavated	27-Oct-10			0.21 J	0.69 J	36	37	210
	0.5 to 1.5 ft	Not Excavated	27-Oct-10			<1.2	0.62 J	29	30	210
	3 to 4 ft	Not Excavated	27-Oct-10			<1.3	0.42 J	34	34	190
OUE-DP-065	0 to 0.5 ft	Not Excavated	27-Oct-10			<1.1	<1.1	<1.1	ND	2.5 J
	0.5 to 1.5 ft	Not Excavated	27-Oct-10			<1.2	0.88 J	18	19	79
	3 to 4 ft	Not Excavated	27-Oct-10			<1.7	0.64 J	25	26	63
OUE-DP-066	0 to 0.5 ft	Not Excavated	27-Oct-10			<1.2	0.97 J	20	21	130
	0.5 to 1.5 ft	Not Excavated	27-Oct-10			<1.4	1.6	27	29	180
	3 to 4 ft	Not Excavated	27-Oct-10			<1.5	0.79 J	23	24	73
OUE-DP-083	0 to 0.7 ft	Not Excavated	03-Nov-10			<1.2	0.63 J	6.8	7.4	32

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Lesstian ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
	5 to 5.5 ft	Not Excavated	03-Nov-10			<1.1	1.4	5	6.4	9.2
	8.5 to 9 ft	Not Excavated	03-Nov-10			<6.5	11	290	301	270
OUE-DP-091	6 to 7 ft	Not Excavated	05-Nov-10			4.8	31	340	376	900
OUE-DP-092	5.5 to 6 ft	Not Excavated	05-Nov-10			2.3 J	14	170	186	440
P4-20	0 to 0.5 ft	Not Excavated	28-Mar-03		<1.1				3.3 HY	
Sawmill #1 AOI										
P5-1	11.5 to 12 ft	Not Excavated	24-Mar-03		<1.1				100 HY	
DP-5.54	1 to 1.5 ft	Not Excavated	05-Oct-05			<1	<1	2.2	2.2	20 H
	5 to 5.5 ft	Not Excavated	05-Oct-05			<1	<1	13	13	250
	10 to 10.5 ft	Not Excavated	05-Oct-05			<0.99	<0.99	<0.99	ND	8.4 H
DP-5.55	1 to 1.5 ft	Not Excavated	05-Oct-05			<1	<1	9.9	9.9	51 H
DP-5.56	1 to 1.5 ft	Not Excavated	05-Oct-05			<1	3.7	24	28	87 H
	1.5 to 2 ft	Not Excavated	05-Oct-05			<1	2.6	35	38	86 H
DP-5.57	0.5 to 1 ft	Not Excavated	20-Oct-05			<1	4.2	210	214	390
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05			<1	<1	13	13	53
DP-ROAD-4.2	1 to 1.5 ft	Not Excavated	24-Oct-05			<1	1.9	14	16	40
HA-4.35	2.7 to 3.2 ft	Not Excavated	12-Jul-06			<1	<1	10	10	65
HA-4.36	2.7 to 3.2 ft	Not Excavated	12-Jul-06			<10	<10	950	950	3600
HA-4.37	3 to 3.5 ft	Not Excavated	12-Jul-06			<3 [<20]	7.8 [47]	300 [1200]	308 [1247] [TPH-LGW]	830 [8700]
HA-4.38	2.2 to 2.7 ft	Not Excavated	12-Jul-06			<1	<1	1.8	1.8	5.1 Y
HA-4.39	3 to 3.5 ft	Not Excavated	12-Jul-06			<5	<5	260	260	1500

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Lesstian ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	-
HA-4.40	2.3 to 2.8 ft	Not Excavated	12-Jul-06			<1	<1	<1	ND	<5
HA-4.41	3 to 3.5 ft	Not Excavated	12-Jul-06			<1	<1	18	18	79
HA-4.49	4.5 to 5 ft	Not Excavated	01-Aug-06			<1	3.2	89	92	440
HA-4.50	4 to 4.5 ft	Not Excavated	01-Aug-06			<6	10	380	390	1400
HA-4.51	4 to 4.5 ft	Not Excavated	01-Aug-06			<1	2.7	86	89	380
HA-4.52	2.5 to 3 ft	Not Excavated	01-Aug-06			<1	3.3	19	22	99 L
HA-4.53	5 to 5.5 ft	Not Excavated	01-Aug-06			<1	1.7	37	39	280
HA-4.54	9 to 9.5 ft	Not Excavated	01-Aug-06			2.1	4	41	47	240
HA-4.55	4 to 4.5 ft	Not Excavated	01-Aug-06			<1	<1	15	15	57
HA-4.56	3.5 to 4 ft	Not Excavated	01-Aug-06			<0	3.3	61	64	140
HA-5.84	3 to 3.5 ft	Not Excavated	20-Jul-06			<40 [<10]	74 [32]	3400 [1700]	3474 [1732] [TPH-LGW]	11000 [4900]
HA-5.85	3 to 3.5 ft	Not Excavated	20-Jul-06			<10	27	680	707	2100
HA-5.86	2.7 to 3.2 ft	Not Excavated	12-Jul-06			<1	1.8	88	90	370
HA-5.87	3 to 3.5 ft	Not Excavated	20-Jul-06			<20	24	2100	2124 [TPH-LGW]	8300
HA-5.88	3 to 3.5 ft	Not Excavated	20-Jul-06			<50	<50	1600	1600 [TPH-LGW]	9300
HA-5.89	2.5 to 3 ft	Not Excavated	20-Jul-06			<5	29	640	669	1400
HA-5.90	3 to 3.5 ft	Not Excavated	20-Jul-06			<50	240	5600	5840 [TPH-LGW]	15000
HA-5.91	3 to 3.5 ft	Not Excavated	20-Jul-06			<10	40	1300	1340 [TPH-LGW]	4100
MW-4.4	5.6 to 7.1 ft	Not Excavated	16-Dec-03						99 HY	230 L
MW-5.7	4.5 to 6 ft	Not Excavated	15-Dec-03						5.5 HY	16
OUE-DP-018	5 to 6 ft	Not Excavated	22-Jun-10			<1.3	1.4	39	40	120

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Lesstian ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
	6 to 7 ft	Not Excavated	22-Jun-10			0.15 J	0.86 J	14	15	46
	8 to 9 ft	Not Excavated	22-Jun-10			<1.2	<1.2	0.41 J	0.41	1.5 J
OUE-DP-019	2 to 2.5 ft	Not Excavated	21-Jun-10			0.26 J	3.9	650	654	2100
	5 to 6 ft	Not Excavated	21-Jun-10			0.37 J	0.27 J	16	17	53
OUE-DP-020	5 to 5.5 ft	Not Excavated	21-Jun-10			<1.2	0.15 J	8.3	8.5	32
	5.5 to 6.5 ft	Not Excavated	21-Jun-10			<1.2	<1.2	0.89 J	0.89	3.6 J
OUE-DP-021	3 to 4 ft	Not Excavated	22-Jun-10			0.75 J	5.9	230	237	660
OUE-DP-022	3.5 to 4 ft	Not Excavated	29-Jun-10			<1.2	0.34 J	2.7	3.0	10
	4 to 5 ft	Not Excavated	29-Jun-10			<1.2	0.37 J	1.8	2.2	6.1
OUE-DP-023	1.5 to 2 ft	Not Excavated	29-Jun-10			<12	7.1 J	460	467	1100
	2 to 2.7 ft	Not Excavated	29-Jun-10			<1.2	8	320	328	780
OUE-DP-024	2 to 2.5 ft	Not Excavated	22-Jun-10			<8.3	25	1700	1725 [TPH-LGW]	5700
	5 to 6 ft	Not Excavated	22-Jun-10			<1.2 b/UJ	1.7 Yb/J	58 b/J	59.7 /J	110 b/J
OUE-DP-025	1.5 to 2 ft	Not Excavated	22-Jun-10			<50	340	9700	10040 [TPH-LGW]	17000
	4 to 5 ft	Not Excavated	22-Jun-10			24	610	12000 [RBSC- ali_di]	12634 [RBSC- ali_di,TPH-LGW]	23000
OUE-DP-026	0 to 0.5 ft	Not Excavated	25-Jun-10			2.1	7	46	55	150
	0.5 to 2 ft	Not Excavated	25-Jun-10			0.59 J	6.5	39	46	110
	2 to 3.5 ft	Not Excavated	25-Jun-10			<3.8	6.4 Y	390	396	960
OUE-DP-028	0 to 0.5 ft	Not Excavated	21-Jun-10			0.65 J	2.5	19	22	100
	0.5 to 1.5 ft	Not Excavated	21-Jun-10			0.33 J	0.57 J	1.9	2.8	4.3 J
OUE-DP-030	0 to 0.5 ft	Not Excavated	21-Jun-10			0.39 J	3.3	11	15	48

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastian ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	-
	0.5 to 1.5 ft	Not Excavated	21-Jun-10			0.16 J	0.34 J	2.5	3.0	13
OUE-DP-031	0 to 0.5 ft	Not Excavated	21-Jun-10			0.17 J	<1.0	2	2.2	14
	0.5 to 1.5 ft	Not Excavated	21-Jun-10			1.1 J	13	150	164	530
OUE-HA-027	0 to 0.5 ft	Not Excavated	22-Jun-10			<1.3	<1.3	1.2 J	1.2	6.5
	0.5 to 1.5 ft	Not Excavated	22-Jun-10			<1.3	0.60 J	26	27	95
OUE-T5-3	3 to 3.5 ft	Not Excavated	04-Nov-10			78 [RBSC-ali_di]	92	1700	1870 [TPH-LGW]	7100
P4-21	2 to 2.5 ft	Not Excavated	20-Mar-03		<1				350 HY	
	4.5 to 5 ft	Not Excavated	20-Mar-03						6.4 HYb	
P4-22	2 to 2.5 ft	Not Excavated	20-Mar-03		<0.97				88 HY	
P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03		<1.1				290 HY	
P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03		<1.1				95 HY	
P5-2	0.5 to 1 ft	Not Excavated	24-Mar-03		<0.96				2100 HY [TPH-LGW]	
	4.5 to 5 ft	Not Excavated	24-Mar-03						250 HYb	
P5-3	3.3 to 3.8 ft	Not Excavated	24-Mar-03		6.8 HY				68 HY	
SAWMILL	0 to 0.5 ft	Not Excavated	17-Dec-03						8400 HY [TPH-LGW]	14000 L
Compressor House	and Lath Bu	uilding AOI								
DP-5.64	1 to 1.5 ft	Not Excavated	05-Jun-06			<0.99	<0.99	2.3	2.3	<5
DP-5.65	1 to 1.5 ft	Not Excavated	05-Jun-06			<2	3.9	74	77.9	750
DP-5.66	1 to 1.5 ft	Not Excavated	05-Jun-06			<1	<1	<1	ND	<5
DP-5.66	1 to 1.5 ft	EXCAVATED	05-Jun-06			<1	<1	<1	ND	<5
DP-5.67	1 to 1.5 ft	Not Excavated	05-Jun-06			<2	3.6	180	184	840

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastian ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
DP-5.68	1 to 1.5 ft	EXCAVATED	05-Jun-06			<1	<1	<1	ND	<5
DP-5.69	1 to 1.5 ft	EXCAVATED	05-Jun-06			<40	190	3200	3390 [TPH-LGW]	13000 L
DP-5.70	1 to 1.5 ft	EXCAVATED	05-Jun-06			<10	<10	110	110	2700
HA-5.73	1 to 1.5 ft	Not Excavated	07-Aug-06			<1	1.2	9.3	10.5	44 H
HA-5.74	2 to 2.5 ft	Not Excavated	02-Aug-06			<0.99	<0.99	<0.99	ND	<5
HA-5.75	1.5 to 2 ft	EXCAVATED	02-Aug-06			<50 [<100 U,q]	120 [170 q]	8200 [13000 q] [RBSC-ali_di]	8320 [13170] [RBSC- ali_di,TPH-LGW]	20000 [31000 q]
HA-5.76	1 to 1.5 ft	EXCAVATED	02-Aug-06			<50 [<5]	<50 [<5]	4000 [200]	4000 [200]	24000 [1100]
HA-5.77	1.5 to 2 ft	EXCAVATED	02-Aug-06			<1	<1	2.4	2.4	20 H
HA-5.78	1.5 to 2 ft	EXCAVATED	02-Aug-06			<1	<1	4.9	4.9	56 H
HA-5.79	3 to 3.5 ft	EXCAVATED	07-Aug-06			<50	300	7200	7500 [RBSC- aro_di,TPH-LGW]	21000 HL
HA-5.80	1.5 to 2 ft	EXCAVATED	02-Aug-06			<20 U,q	<20 U,q	1200 q	1200 [TPH-LGW]	7900 q
HA-5.81	3 to 3.5 ft	EXCAVATED	07-Aug-06			11	64	1400	1475 [TPH-LGW]	3800 HL
HA-5.82	1.5 to 2 ft	EXCAVATED	02-Aug-06			<5	10	370	380	2000 H
HA-5.83	1.5 to 2 ft	EXCAVATED	02-Aug-06			<50	<50	1900	1900 [TPH-LGW]	12000 H
MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07	0.071 J	0.071	<5.4 J/UB	7.5 Y	190 Y	198	1300
	5.5 to 6 ft	Not Excavated	29-Sep-07	0.039 J	0.039	<1.3 J/UB	0.32 J	4.7 Y	5.02	42
OUC-HA-051	0 to 0.5 ft	Not Excavated	24-Nov-09			2.5	79	280	362	150
	4 to 5 ft	Not Excavated	24-Nov-09			1.5	41	230	273	340
OUC-HA-052	0 to 0.5 ft	Not Excavated	24-Nov-09			1.3	52	330	383	200
	4 to 5 ft	Not Excavated	24-Nov-09			<1.2 J/UB	7.4	150	157	490
			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
-------------	---------------	---------------	--------------------------	-----------------	---	----------------	----------------	----------------	--	-------------------
	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
OUC-HA-053	0 to 0.5 ft	Not Excavated	24-Nov-09			<1.2 J/UB	23	150	173	180
	4 to 5 ft	Not Excavated	24-Nov-09			<1.2 J/UB	5.7	140	146	380
OUC-TP-001	7 to 7.5 ft	Not Excavated	10-Jul-08			<1.2	0.78 J	21	21.8	74
OUE-DP-032	0 to 0.5 ft	Not Excavated	25-Jun-10			<3.2	1.0 J	31	32	170
	0.5 to 1.7 ft	Not Excavated	25-Jun-10			<1.2	<1.2	0.96 J	0.96	6.6
	2 to 3.5 ft	Not Excavated	25-Jun-10			<1.2	<1.2	0.26 J	0.26	2.3 J
OUE-DP-033	0 to 0.5 ft	Not Excavated	29-Jun-10			<14	33	1500	1533 [TPH-LGW]	10000
	0.5 to 1.5 ft	Not Excavated	29-Jun-10			<1.4	0.39 J	25	25.4	150
	4 to 5 ft	Not Excavated	29-Jun-10			0.23 J	0.72 J	20 /J	21.0 /J	130 /J
OUE-DP-034	0 to 1 ft	Not Excavated	25-Jun-10			0.67 J	5.9	87	93.6	260
	1 to 2 ft	Not Excavated	25-Jun-10			<1.3	1.3 J	14	15.3	130
	3 to 4.5 ft	Not Excavated	25-Jun-10			<1.2	<1.2	0.62 J	0.62	6
OUE-DP-035	0 to 0.5 ft	Not Excavated	25-Jun-10			2.2 J	19	120	141	460
	0.5 to 1.5 ft	Not Excavated	25-Jun-10			1.2	9.5	51	61.7	150
	3 to 4.5 ft	Not Excavated	25-Jun-10			1.7	8.4	40	50.1	180
P3-46	0.5 to 1 ft	EXCAVATED	18-Mar-03		<1.1				230 HY	
	4 to 4.5 ft	EXCAVATED	18-Mar-03		<1				160 HY	
P3-47	0.5 to 1 ft	EXCAVATED	17-Mar-03		<1.1				68 HY	
	4 to 4.5 ft	EXCAVATED	17-Mar-03		36 [RBSC-ali_di]				2000 HLY [TPH-LGW]	
P3-PH6	2.5 to 3 ft	EXCAVATED	21-Jul-04						390 HY	1100
	6 to 6.5 ft	Not Excavated	21-Jul-04						5.6 HY	15

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Lesstian ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
P3-PH16	4 to 4.5 ft	EXCAVATED	21-Jul-04				310 HY		310	1900
R37-CS-001	9 to 9.5 ft	Not Excavated	10-Jun-08			0.24 J	<1.2	6	6.2	15
R37-CS-002	7 to 7.5 ft	Not Excavated	10-Jun-08			<1.2	<1.2	1.0 J	1	8.4
R37-CS-008	12 to 12.5 ft	Not Excavated	21-Jun-08			<1.3	<1.3	<1.3	ND	1.4 J
R37-CS-009	6 to 6.5 ft	Not Excavated	23-Jun-08			430 [RBSC-ali]	1700 [RBSC- ali_di]	3600	5730 [TPH-LGW]	12000
R37-CS-010	7 to 7.5 ft	Not Excavated	23-Jun-08			<1.2	<1.2	1.5	1.5	8.4
R37-CS-011	7.5 to 8 ft	Not Excavated	24-Jun-08			<1.2	0.61 J	28	28.6	110
R37-CS-012	7.5 to 8 ft	Not Excavated	24-Jun-08			<1.2	<1.2	2.3	2.3	11
R37-CS-013	9.5 to 10 ft	Not Excavated	24-Jun-08			<1.2	0.34 J	11	11.3	100
R37-CS-014	8.5 to 9 ft	Not Excavated	24-Jun-08			<1.2	1.5	34	35.5	230
R37-CS-015	7 to 7.5 ft	Not Excavated	24-Jun-08			<24	3.5 J	890	894	6600
R37-CS-016	8.5 to 9 ft	Not Excavated	24-Jun-08			15 J	130	3600	3745 [TPH-LGW]	12000
R37-CS-017	9 to 9.5 ft	Not Excavated	10-Jul-08			<1.1	<1.1	<1.1	ND	<5.7
R37-CS-018	7.5 to 8 ft	Not Excavated	10-Jul-08			<1.1	<1.1	19	19	120
R37-CS-019	8 to 8.5 ft	Not Excavated	11-Jul-08			3.3 J	58	1400	1461 [TPH-LGW]	3000
R37-CS-020	12 to 12.5 ft	Not Excavated	12-Jul-08			<1.1	<1.1	<1.1	ND	<5.7
R37-CS-021	12 to 12.5 ft	Not Excavated	14-Jul-08			<1.1	2.4	98	100	180
R37-CS-022	10 to 10.5 ft	Not Excavated	14-Jul-08			<12	12	710	722	1900
R37-CS-023	10 to 10.5 ft	Not Excavated	14-Jul-08			<1.2	<1.2	0.21 J	0.21	1.2 J
R37-CS-024	9 to 9.5 ft	Not Excavated	21-Jul-08			<1.2	<1.2	2.2	2.2	9.8

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastion ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
Power House and F	uel Barn AC	N						•		
DP-4.30	1 to 1.5 ft	Not Excavated	06-Jun-06			<1	2	35	37	190
DP-4.31	1 to 1.5 ft	Not Excavated	06-Jun-06			<1	1.2	6.9	8.1	28
DP-4.32	1 to 1.5 ft	Not Excavated	06-Jun-06			<1	<1	1	1	5.8
DP-4.33	1 to 1.5 ft	Not Excavated	06-Jun-06			<1	<1	1.7	1.7	6.3
DP-4.34	1 to 1.5 ft	Not Excavated	06-Jun-06			<1	1.4	43	44.4	310
HA-4.95	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	1.5	7.7	9.2	31
HA-4.96	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	<1	2.3	2.3	8.9
HA-4.97	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	<1	3.8	3.8	14
HA-4.98	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	<1	4.1	4.1	18
HA-4.100	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	1.4	16	17.4	48
HA-4.101	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	<1	4.5	4.5	26
HA-4.102	2 to 2.5 ft	Not Excavated	22-Aug-06			<0.99	1.4	7.4	8.8	43
HA-4.103	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	<1	2.6	2.6	17
HA-4.105	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	<1	6.3	6.3	15
HA-4.106	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	<1	2.8	2.8	9.9
HA-4.118A	0.5 to 1 ft	Not Excavated	07-Aug-06			1	2	35	38	240 HL
HA-4.156	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	<1	11	11	45
HA-4.157	2 to 2.5 ft	Not Excavated	22-Aug-06			<1	<1	12	12	46 L
MW-4.6	0 to 0.5 ft	Not Excavated	28-Sep-07	0.023 J	0.023	<1.0 J/UB	2.0 Y	28 Y	30	180
	4 to 4.5 ft	Not Excavated	28-Sep-07	0.13 J	0.13	2.9 Y	3.6 Y	53 Y	59.5	240
OUE-DP-041	0 to 0.5 ft	Not Excavated	27-Sep-10			<1.1	0.96 J	15	16.0	55

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
	0.5 to 1 ft	Not Excavated	27-Sep-10			<1.1	0.45 J	11	11.5	46
OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10			<1.1	<1.1	6.6	6.6	39
	1.5 to 3 ft	Not Excavated	24-Sep-10			<1.2	<1.2	5.6	5.6	42
	4 to 4.5 ft	Not Excavated	24-Sep-10			<1.2	<1.2	6.6	6.6	51
OUE-DP-055	0 to 0.5 ft	Not Excavated	25-Jun-10			0.31 J	1.1 J	13	14.4	41
	0.5 to 1.5 ft	Not Excavated	25-Jun-10			1.6	13	72	86.6	240
	2 to 3 ft	Not Excavated	25-Jun-10			0.75 J	5	110	116	340
OUE-DP-056	0 to 0.5 ft	Not Excavated	25-Jun-10			0.51 J	2	31	33.5	140
	2 to 3 ft	Not Excavated	25-Jun-10			<1.4	0.32 J	8	8.32	38
	5 to 6 ft	Not Excavated	25-Jun-10			<1.4	0.29 J	2.8	3.1	15
OUE-HA-013	0 to 0.5 ft	Not Excavated	24-Jun-10			0.19 J	1.3 J	52	53.5	240
	0.5 to 1.5 ft	Not Excavated	24-Jun-10			<1.5	0.63 J	17	17.6	80
	4 to 5 ft	Not Excavated	24-Jun-10			<1.4	0.24 J	9.7	9.9	61
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10			<1.1	0.16 J	3	3.2	25
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10			<1.0	0.35 J	4.6	5.0	24
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10			<1.1	0.52 J	7.3	7.8	41
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10			0.24 J	1.6	20	21.8	46
P4-PH1	3 to 3.5 ft	Not Excavated	20-Jul-04						55 HY	350
	6 to 6.5 ft	Not Excavated	20-Jul-04						3600 HY [TPH-LGW]	9600
DP-4.20	1 to 1.5 ft	Not Excavated	06-Jun-06			<1	2.3	7.3	9.6	15
DP-4.21	1 to 1.5 ft	Not Excavated	06-Jun-06			<1	2.8	57	60	320
	1.5 to 2 ft	Not Excavated	06-Jun-06			<0.99	2.2	28	30	120

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastion ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
DP-4.22	1 to 1.5 ft	Not Excavated	06-Jun-06			1.4	5.5	29	36	71
DP-4.23	1 to 1.5 ft	Not Excavated	06-Jun-06			1.1	2.9	43	47	220
DP-4.24	1 to 1.5 ft	Not Excavated	06-Jun-06			<0.99	<0.99	7.4	7.4	29
DP-4.25	1 to 1.5 ft	Not Excavated	06-Jun-06			<1	4.3	120	124	400
DP-4.26	1 to 1.5 ft	Not Excavated	06-Jun-06			<1	<1	12	12	57
DP-4.27	1.1 to 1.6 ft	Not Excavated	06-Jun-06			<1	1.4	14	15	84
DP-4.28	1.3 to 1.8 ft	Not Excavated	06-Jun-06			<1	3.1	19	22	62
DP-4.29	1 to 1.5 ft	Not Excavated	06-Jun-06			1	6	140	147	450
DP-5.59	0.5 to 1 ft	Not Excavated	20-Oct-05			<1	<1	<1	ND	<5
HA-4.63	1 to 1.5 ft	Not Excavated	23-Aug-06			<1	6.5	23	30	46 L
HA-4.64	1.5 to 2 ft	Not Excavated	31-Jul-06			<1	2.6	42	45	220
HA-4.65	4 to 4.5 ft	Not Excavated	31-Jul-06			<20	110	1400	1510 [TPH-LGW]	5600 H
HA-4.66	6 to 6.5 ft	Not Excavated	09-Aug-06			<10	<10	250	250	1400
HA-4.67	6 to 6.5 ft	Not Excavated	09-Aug-06			<5	<5	130	130	750
HA-4.68	5 to 5.5 ft	Not Excavated	08-Aug-06			<3	6.9	200	207	680
HA-4.70	3.5 to 4 ft	Not Excavated	13-Sep-06			1.7	5.2	79	86	300 HL
HA-4.71	6 to 6.5 ft	Not Excavated	13-Sep-06			<13	33	390	423	2400 H
HA-4.72	8 to 8.5 ft	Not Excavated	13-Sep-06			<1.5	1.6	16	18	86 H
HA-4.73	8 to 8.5 ft	Not Excavated	13-Sep-06			<1.2	<1.2	28	28	170 H
HA-4.74	8 to 8.5 ft	Not Excavated	13-Sep-06			<1.5	<1.5	6.4	6.4	38 H
HA-4.76	3.5 to 4 ft	Not Excavated	13-Sep-06			3.1	9.3	140	152	900 H
HA-4.77	6 to 6.5 ft	Not Excavated	07-Aug-06			1.3	6	36	43	110 L

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastion ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
HA-4.78	8 to 8.5 ft	Not Excavated	14-Sep-06			<1.2	2.6	17	20	47
HA-4.79	8 to 8.5 ft	Not Excavated	08-Aug-06			<1	<1	2.7	2.7	16
HA-4.80	6 to 6.5 ft	Not Excavated	13-Sep-06			1.5	2.4	8.7	13	40 H
HA-4.81	8 to 8.5 ft	Not Excavated	13-Sep-06			<1.1	1.6	100	102	540 H
HA-4.82	6.5 to 7 ft	Not Excavated	07-Aug-06			26	33	400	459	2100 L
HA-4.83	4 to 4.5 ft	Not Excavated	13-Sep-06			14	41	120	175	600 HL
HA-4.84	6 to 6.5 ft	Not Excavated	13-Sep-06			<1.7	<1.7	24	24	140 H
HA-4.85	7 to 7.5 ft	Not Excavated	13-Sep-06			<1.2	<1.2	1.5	1.5	8.8 H
HA-4.86	7 to 7.5 ft	Not Excavated	13-Sep-06			<1.3	<1.3	4	4.0	83 H
HA-4.87	4.5 to 5 ft	Not Excavated	07-Aug-06			<9.9	<9.9	160	160	730
HA-4.88	4.5 to 5 ft	Not Excavated	07-Aug-06			<1	2.5	12	15	46 L
HA-4.90	13.5 to 14 ft	Not Excavated	08-Aug-06			1.1 [2.4]	5.3 [7]	42 [57]	48 [66]	95 L [120 L]
HA-4.108	1 to 1.5 ft	Not Excavated	28-Jun-06			<1 [<1]	<1 [<1]	6.3 [4.3]	6.3 [4.3]	35 [20]
HA-4.109	1 to 1.5 ft	Not Excavated	28-Jun-06			<0.99	<0.99	9.8	9.8	51
HA-4.110	1 to 1.5 ft	Not Excavated	28-Jun-06			<0.99	<0.99	3.4	3.4	22
HA-4.111	1 to 1.5 ft	Not Excavated	28-Jun-06			<1	1.2	24	25	110
HA-4.112	1 to 1.5 ft	Not Excavated	28-Jun-06			<1	1.2	9.8	11	48
HA-4.113	1 to 1.5 ft	Not Excavated	29-Jun-06			<1	1.4	32	33	82 L
HA-4.115	1 to 1.5 ft	Not Excavated	11-Jul-06			<1	<1	1.4	1.4	16
HA-4.158	1 to 1.5 ft	Not Excavated	29-Jun-06			<1	<1	2.1	2.1	31 HY
HA-4.159	5 to 5.5 ft	Not Excavated	31-Jul-06			<3	3.3	94	97	440 H
HSA-4.2	2 to 2.5 ft	Not Excavated	24-Jan-06			<1	1.9	52	54	190

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastian ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
	3.5 to 4 ft	Not Excavated	24-Jan-06			<1	<1	22	22	100
HSA-4.3	2 to 2.5 ft	Not Excavated	24-Jan-06			<10	15	490	505	1600
	3.5 to 4 ft	Not Excavated	24-Jan-06			<1	<1	1.4	1.4	6.1
HSA-4.4	2 to 2.5 ft	Not Excavated	23-Jan-06			<1	<1	6.4	6.4	25
	6 to 6.5 ft	Not Excavated	23-Jan-06			1.2	1.7	32	35	93
	11 to 11.5 ft	Not Excavated	23-Jan-06			<1	<1	1.3	1.3	5 H
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.17	ND	<1	<1	<1	ND	<5
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.19	ND	<1	<1	<1	ND	<5
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.18	ND	<1	<1	<1	ND	<5
HSA-4.5	2 to 2.5 ft	Not Excavated	23-Jan-06			<3	<3	200	200	1300
	6 to 6.5 ft	Not Excavated	23-Jan-06			<3	3.3	180	183	1100
	11 to 11.5 ft	Not Excavated	23-Jan-06			<0.99	2.1	55	57	320
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.17	ND	<1	<1	2.9	2.9	6.7
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.19	ND	<1	<1	<1	ND	<5
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.18	ND	<1	<1	5.4	5.4	46
	31 to 31.5 ft	Not Excavated	24-Jan-06	<0.17	ND	<1	1.1	4.2	5.3	9.7
HSA-4.6	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.17	ND	<2	5.7	170	176	430
	11 to 11.5 ft	Not Excavated	23-Jan-06			<1	4	19	23	130 H
	16 to 16.5 ft	Not Excavated	24-Jan-06			8.7	<5	760	769	410 L
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.26	ND	<1	<1	6.3	6.3	23 HL
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.16	ND	<1	<1	15	15	6.4 HLY
	31 to 31.5 ft	Not Excavated	24-Jan-06	<0.16	ND	1	1.4	330	332	57 L

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location iD	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
MW-4.1	1 to 1.5 ft	Not Excavated	16-Dec-03						72 HY	450
MW-4.5	0 to 0.5 ft	Not Excavated	28-Sep-07	0.057 J	0.057	1.2	3.6	40	45	150
	8.5 to 9 ft	Not Excavated	28-Sep-07	<0.24	ND	<1.3 J/UB	<1.3	1.5 Y	1.5	8.8
OUE-DP-036	1 to 2 ft	Not Excavated	22-Jun-10			<1.3 Jb/UB	3.4 b/J	44 b/J	47	220
	3 to 4 ft	Not Excavated	22-Jun-10			<1.4	0.77 J	7.1	7.9	36
	5 to 7 ft	Not Excavated	22-Jun-10			<1.3	<1.3	2	2.0	14
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10			1.5	5.6	27	34	140
	3 to 4 ft	Not Excavated	22-Jun-10			0.30 J	1.9	17	19	77
	5 to 7 ft	Not Excavated	22-Jun-10			<1.3	0.24 J	2.5	2.7	13
OUE-DP-038	0 to 2.5 ft	Not Excavated	22-Jun-10			1.6 J	3.0 J	470	475	1300
OUE-DP-039	2 to 2.7 ft	Not Excavated	23-Jun-10			<1.2 b	1.5 Yb	48 b	50	260 b
	5 to 5.5 ft	Not Excavated	23-Jun-10			<2.3 b	0.73 Jb	52 b	53	340 b
	10 to 11.5 ft	Not Excavated	24-Jun-10			<2.4 b	7.1 b	82 b	89	390 b
	16.5 to 17 ft	Not Excavated	24-Jun-10			<1.2 b	<1.2 b	2.7 b	2.7	7.7 b
OUE-DP-040	0.2 to 0.7 ft	Not Excavated	22-Jun-10			0.25 J	0.26 J	19	20	74
	0.7 to 1.7 ft	Not Excavated	22-Jun-10			0.28 J	0.42 J	4	4.7	21
	1.7 to 2.7 ft	Not Excavated	22-Jun-10			0.44 J	0.87 J	6.7	8.0	23
OUE-DP-046	3.5 to 4 ft	Not Excavated	22-Jun-10			1.1 J	1.6	40	43	160
	5 to 6 ft	Not Excavated	22-Jun-10			1.1 J	3.6	32	37	110
OUE-DP-047	5.5 to 6.5 ft	Not Excavated	22-Jun-10			0.57 J	1.3 J	24	26	120
	11.5 to 12.5	Not Excavated	22-Jun-10			0.62 J	1.4 J	9	11	31
OUE-DP-054	0 to 0.5 ft	Not Excavated	25-Jun-10			0.24 J	1.5	17	19	65

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastian ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
	0.5 to 1.5 ft	Not Excavated	25-Jun-10			<3.7	2.6 J	73	76	290
	2 to 3.5 ft	Not Excavated	25-Jun-10			0.30 J	1.7	30	32	110
OUE-DP-093	6.8 to 7.3 ft	Not Excavated	03-Nov-10			<1.3	0.83 J	24	25	98
	11.2 to 11.7 ft	Not Excavated	03-Nov-10			0.27 J	1.6	10	12	32
OUE-HA-015	0 to 0.5 ft	Not Excavated	21-Jun-10			<1.2	1.1 J	15	16	59
	0.5 to 1.3 ft	Not Excavated	21-Jun-10			<1.2	1.6	16	18	60
OUE-HA-016	0 to 0.5 ft	Not Excavated	24-Jun-10			0.57 J	1.1	5.3	7.0	22
	0.5 to 1.5 ft	Not Excavated	24-Jun-10			<6.3	1.9 J	78	80	320
	4 to 5 ft	Not Excavated	24-Jun-10			2	8.1	110	120	430
OUE-HA-017	0 to 0.5 ft	Not Excavated	24-Jun-10			0.63 J	3.1	46	50	210
	0.5 to 1.5 ft	Not Excavated	24-Jun-10			0.52 J	3.2	39	43	210
	4 to 5 ft	Not Excavated	24-Jun-10			<1.2	1.6	16	18	60
OUE-HA-018	0 to 0.5 ft	Not Excavated	24-Jun-10			1.3	2.5	17	21	64
	0.5 to 1.5 ft	Not Excavated	24-Jun-10			<6.2	3.6 J	120	124	400
	4 to 5 ft	Not Excavated	24-Jun-10			<1.2	0.45 J	7	7.5	33
OUE-HA-020	0 to 0.5 ft	Not Excavated	24-Jun-10			0.65 J	5.4	33	39	11
	0.5 to 1.5 ft	Not Excavated	24-Jun-10			1.1 J	6.8	39	47	170
	4 to 5 ft	Not Excavated	24-Jun-10			0.74 J	1.1 J	18	20	74
OUE-HA-023A	11 to 12 ft	Not Excavated	26-Jun-10			<1.5	0.55 J	4.8	5.4	39
	13 to 14 ft	Not Excavated	26-Jun-10			<1.2	<1.2	0.57 J	0.57	4.8 J
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10			0.44 J	1.7	19	21	69
	6.5 to 8 ft	Not Excavated	25-Jun-10			0.34 J	1.1 J	10	11	33

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastion ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
OUE-HA-024	10 to 11 ft	Not Excavated	26-Jun-10			0.24 J	0.86 J	7.8	8.9	32
	11 to 12 ft	Not Excavated	26-Jun-10			<1.2	1.0 J	5.7	6.7	35
OUE-HA-033	0 to 0.5 ft	Not Excavated	12-Nov-10			1.7	5.4	51	58	180
	0.5 to 1 ft	Not Excavated	13-Nov-10			2.2	6.7	58	67	200
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04						410 HY	1600
	12 to 12.5 ft	Not Excavated	20-Jul-04						91 HY	320
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04						5.6 HY	35
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04						4.1 HY	14
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04						42 H	120 L
P4-PH2	2 to 2.5 ft	Not Excavated	20-Jul-04						74 HY	340
	4 to 4.5 ft	Not Excavated	20-Jul-04						2 HY	9.4
Pond 8 Fill Area A) I									
HSA-6.29	2 to 2.5 ft	Not Excavated	18-Jan-06			<2	5.7	92	97.7	610
	6 to 6.5 ft	Not Excavated	18-Jan-06			<1	1.1	16	17.1	99
	11 to 11.5 ft	Not Excavated	18-Jan-06			<1	4.1	41	45.1	220
	16 to 16.5 ft	Not Excavated	18-Jan-06			<1	<1	16	16	86
	20.5 to 21 ft	Not Excavated	19-Jan-06			<1	<1	2 HY	2	<5
HSA-6.30	2 to 2.5 ft	Not Excavated	19-Jan-06			<1	<1	4.8	4.8	33
	5.5 to 6 ft	Not Excavated	19-Jan-06			<1	<1	6.5	6.5	38
	6 to 6.5 ft	Not Excavated	19-Jan-06			2.6	4.6	150	157	250
	11 to 11.5 ft	Not Excavated	19-Jan-06			<1	3.5	37	40.5	150
	16 to 16.5 ft	Not Excavated	19-Jan-06			<1	<1	<1	ND	<5

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility Fort Bragg, California

			Sample Date / Analyte	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Leastian ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Status	RBSC-ali_di	9.8	9.8	51	648	10772	10772	281346
			RBSC-aro_di	1.6	1.6	8.5	110	4220	4220	4220
			TPH-LGW						1045	
P6-PH2	4 to 4.5 ft	Not Excavated	20-Jul-04						81 HY	390
	10 to 10.5 ft	Not Excavated	20-Jul-04						11 HY	38
P6-TP3	4 to 4.5 ft	Not Excavated	18-Dec-03						5 HY	34 H
P6-TP6	10 to 10.5 ft	Not Excavated	19-Dec-03						16 HY	42
P6-TP8	8 to 8.5 ft	Not Excavated	19-Dec-03						310 HY	250 L

NOTE:

The two samples from DP-5.66 (one excavated, one not excavated) have the same depth

(1-1.5 ft bgs) because the non-excavated sample had a depth adjustment of 1.5-2 ft bgs

to 1-1.5 ft bgs to take into account the previous fill/foundation cap and the excavated sample

did not have a depth adjustment.

			Sample Date / Analyte	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	PCB #8	PCB #18
Location ID	Depth (ft bgs)	Excavation	Units	mg/kg	mg/kg	mg/kg						
	(it bgs)	Status	PSL-HH	3.9	0.14	0.14	0.22	0.22	0.22	0.22		
			PSL-Eco									
Water Treatment	and Truck Dump /	AOI										
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05								<0.00033	<0.00033
OUE-DP-012	9 to 9.5 ft	Not Excavated	22-Jun-10	<0.016	<0.033	<0.016	<0.016	<0.016	<0.016	<0.016	0.00096 J	<0.00097
OUE-DP-013	5 to 6 ft	Not Excavated	22-Jun-10	<0.013	<0.027	<0.013	<0.013	<0.013	<0.013	<0.013	<0.00056	<0.00056
OUA-TP-028	0 to 0.4 ft	Not Excavated	18-Apr-07							<0.00093	<0.00093	<0.00093
OUE-DP-009	6 to 6.5 ft	Not Excavated	29-Jun-10							<0.00059	<0.00059	<0.00059
OUE-DP-010	6 to 6.5 ft	Not Excavated	29-Jun-10							<0.00058	<0.00058	<0.00058
P3-46	0.5 to 1 ft	EXCAVATED	18-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
	4 to 4.5 ft	EXCAVATED	18-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P3-47	0.5 to 1 ft	EXCAVATED	17-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
	4 to 4.5 ft	EXCAVATED	17-Mar-03	<0.012 /J								
P4-14	0 to 0.5 ft	Not Excavated	20-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P4-16	2.3 to 2.8 ft	Not Excavated	20-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P4-33	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
Sawmill #1 AOI												
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05								<0.00033	<0.00033
DP-ROAD-4.2	1 to 1.5 ft	Not Excavated	24-Oct-05								<0.00034	<0.00034
OUE-DP-024	3.5 to 4 ft	Not Excavated	04-Nov-10								<0.0011	<0.0011
OUE-DP-025	1.5 to 2 ft	Not Excavated	22-Jun-10	<0.015	<0.03	<0.015	<0.015	<0.015	<0.015	<0.015	0.00042 CJ	<0.00063
P4-22	2 to 2.5 ft	Not Excavated	20-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		

			Sample Date / Analyte	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	PCB #8	PCB #18
Location ID	Depth (ft bgs)	Excavation	Units	mg/kg	mg/kg	mg/kg						
	(it bgs)	Status	PSL-HH	3.9	0.14	0.14	0.22	0.22	0.22	0.22		
			PSL-Eco									
P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P4-32	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
SAWMILL	0 to 0.5 ft	Not Excavated	17-Dec-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
Compressor Hous	se and Lath Buildi	ing AOI										
OUE-HA-004	0 to 0.5 ft	Not Excavated	22-Jun-10							<0.00056	<0.00056	<0.00056
OUE-HA-005	0 to 0.5 ft	Not Excavated	22-Jun-10							<0.00056	<0.00056	<0.00056
OUE-HA-006	0 to 0.5 ft	Not Excavated	22-Jun-10							<0.00054	<0.00054	<0.00054
OUE-HA-007	0 to 0.5 ft	Not Excavated	22-Jun-10							<0.00053	<0.00053	<0.00053
OUE-HA-008	0 to 0.5 ft	Not Excavated	22-Jun-10							<0.00064	<0.00064	<0.00064
OUE-HA-009	0 to 0.5 ft	Not Excavated	22-Jun-10							<0.00062	<0.00062	<0.00062
P3-48	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
Power House and	Fuel Barn AOI											
DP-4.20	1 to 1.5 ft	Not Excavated	06-Jun-06								<0.00033	<0.00033
DP-4.21	1 to 1.5 ft	Not Excavated	06-Jun-06								0.0011 C	0.00055
	1.5 to 2 ft	Not Excavated	06-Jun-06								0.004 C	<0.00033
DP-4.25	1 to 1.5 ft	Not Excavated	06-Jun-06								<0.00034	<0.00034
DP-4.26	1 to 1.5 ft	Not Excavated	06-Jun-06								<0.00034	<0.00034
DP-4.27	1.1 to 1.6 ft	Not Excavated	06-Jun-06								<0.00034	<0.00034
DP-4.28	1.3 to 1.8 ft	Not Excavated	06-Jun-06								<0.00033	<0.00033
DP-4.29	1 to 1.5 ft	Not Excavated	06-Jun-06								<0.00034	0.00062 C
HA-4.64	1.5 to 2 ft	Not Excavated	31-Jul-06								<0	<0

			Sample Date / Analyte	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	PCB #8	PCB #18
Location ID	Depth (ft bgs)	Excavation	Units	mg/kg								
	(it bgs)	Status	PSL-HH	3.9	0.14	0.14	0.22	0.22	0.22	0.22	-	
			PSL-Eco				-					
HA-4.65	4 to 4.5 ft	Not Excavated	31-Jul-06								<0	<0
HA-4.159	5 to 5.5 ft	Not Excavated	31-Jul-06								<0	<0
HSA-4.5	16 to 16.5 ft	Not Excavated	24-Jan-06								<0.00033 U,b	<0.00033 U,b
OUE-DP-046	3.5 to 4 ft	Not Excavated	22-Jun-10	<0.017	<0.034	<0.017	<0.017	<0.017	<0.017	0.029	<0.0023	<0.0023
OUE-DP-047	5.5 to 6.5 ft	Not Excavated	22-Jun-10	<0.018	<0.036	<0.018	<0.018	<0.018	<0.018	0.0045 J	<0.00075	<0.00075
OUE-HA-020	0 to 0.5 ft	Not Excavated	24-Jun-10								0.00055	0.00011 CJ
OUE-HA-021	0 to 0.5 ft	Not Excavated	22-Jun-10								<0.00057	<0.00057
	0.5 to 1.5 ft	Not Excavated	22-Jun-10								<0.0005 b/UJ	<0.0005 b/UJ
OUE-HA-022	0 to 0.5 ft	Not Excavated	22-Jun-10								<0.00055	<0.00055
OUE-HA-025	0 to 0.5 ft	Not Excavated	21-Jun-10								<0.0006	<0.0006
OUE-HA-026	0 to 0.5 ft	Not Excavated	21-Jun-10								0.00031 CJ	<0.00056
P4-25	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P4-26	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P4-27	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P4-28	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P4-29	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P4-30	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012		
P4-31	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.24	<0.48	<0.24	<0.24	<0.24	<0.24	<0.24		
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04	<0.0098	<0.02	<0.0098	<0.0098	<0.0098	<0.0098	<0.0098		
	12 to 12.5 ft	Not Excavated	20-Jul-04	<0.0097	<0.019	<0.0097	<0.0097	<0.0097	<0.0097	<0.0097		

			Sample Date / Analyte	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	PCB #8	PCB #18
Location ID	Depth (ft has)	Excavation	Units	mg/kg	mg/kg	mg/kg						
	(it bgs)	Status	PSL-HH	3.9	0.14	0.14	0.22	0.22	0.22	0.22		
			PSL-Eco				-		-			
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04	<0.0097	<0.019	<0.0097	<0.0097	<0.0097	<0.0097	<0.0097		
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04	<0.0098	<0.02	<0.0098	<0.0098	<0.0098	<0.0098	<0.0098		
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04	<0.0098	<0.02	<0.0098	<0.0098	<0.0098	<0.0098	<0.0098		
DP-4.30	1 to 1.5 ft	Not Excavated	06-Jun-06								0.0014 C	<0.00034
DP-4.32	1 to 1.5 ft	Not Excavated	06-Jun-06								<0.00033	<0.00033
DP-4.33	1 to 1.5 ft	Not Excavated	06-Jun-06	-	-				-		<0.00034	<0.00034
DP-4.34	1 to 1.5 ft	Not Excavated	06-Jun-06								<0.00033	<0.00033
DP-4.31	1 to 1.5 ft	Not Excavated	06-Jun-06								0.0011 C	<0.00034
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10								<0.00058	<0.00058
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10								<0.00054	<0.00054
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10								<0.00052	<0.00052
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10								<0.00052	0.00012 CJ
P4-34	0 to 0.5 ft	Not Excavated	11-Mar-03	<0.012	<0.024	<0.012	<0.012	<0.012	<0.012	<0.012	<0.024	

			Sample Date / Analyte	PCB #28	PCB #44	PCB #52	PCB #66	PCB #77	PCB #81	PCB #101	PCB #118
Location ID	Depth (ft bgs)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	-				0.034	0.011		0.11
			PSL-Eco	-							-
Water Treatment	and Truck Dump	AOI									
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
OUE-DP-012	9 to 9.5 ft	Not Excavated	22-Jun-10	<0.00097	<0.00097	<0.00097	<0.00097	<0.00097	<0.00097	<0.00097	<0.00097
OUE-DP-013	5 to 6 ft	Not Excavated	22-Jun-10	<0.00056	<0.00056	<0.00056	<0.00056	0.00038 CJ	<0.00056	<0.00056	<0.00056
OUA-TP-028	0 to 0.4 ft	Not Excavated	18-Apr-07	<0.00093	<0.00093	<0.00093	<0.00093		<0.00093	<0.00093	<0.00093
OUE-DP-009	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.00059	<0.00059	<0.00059	<0.00059		<0.00059	<0.00059	<0.00059
OUE-DP-010	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.00058	<0.00058	<0.00058	<0.00058		<0.00058	<0.00058	<0.00058
P3-46	0.5 to 1 ft	EXCAVATED	18-Mar-03					<0.012			
	4 to 4.5 ft	EXCAVATED	18-Mar-03					<0.012			
P3-47	0.5 to 1 ft	EXCAVATED	17-Mar-03					<0.012			
	4 to 4.5 ft	EXCAVATED	17-Mar-03					<0.012 /J			
P4-14	0 to 0.5 ft	Not Excavated	20-Mar-03					<0.012			
P4-16	2.3 to 2.8 ft	Not Excavated	20-Mar-03					<0.012			
P4-33	0 to 0.5 ft	Not Excavated	11-Mar-03					<0.012			
Sawmill #1 AOI											
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-ROAD-4.2	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
OUE-DP-024	3.5 to 4 ft	Not Excavated	04-Nov-10	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011
OUE-DP-025	1.5 to 2 ft	Not Excavated	22-Jun-10	0.0025	0.0014 C	<0.00063	<0.00063	<0.00063	0.0035 C	<0.00063	<0.00063
P4-22	2 to 2.5 ft	Not Excavated	20-Mar-03								
P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03								

			Sample Date / Analyte	PCB #28	PCB #44	PCB #52	PCB #66	PCB #77	PCB #81	PCB #101	PCB #118
Location ID	Depth (ft bgs)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH					0.034	0.011		0.11
			PSL-Eco								
P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03								
P4-32	0 to 0.5 ft	Not Excavated	11-Mar-03								
SAWMILL	0 to 0.5 ft	Not Excavated	17-Dec-03								
Compressor Hou	se and Lath Build	ing AOI									
OUE-HA-004	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00056	<0.00056	<0.00056	<0.00056		<0.00056	<0.00056	<0.00056
OUE-HA-005	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00056	<0.00056	<0.00056	0.00021 J		<0.00056	<0.00056	<0.00056
OUE-HA-006	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00054	<0.00054	<0.00054	<0.00054		<0.00054	<0.00054	0.00025 J
OUE-HA-007	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00053	<0.00053	<0.00053	<0.00053		<0.00053	0.0009 C	0.00032 J
OUE-HA-008	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00064	<0.00064	<0.00064	<0.00064		<0.00064	<0.00064	<0.00064
OUE-HA-009	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00062	<0.00062	<0.00062	<0.00062		<0.00062	<0.00062	<0.00062
P3-48	0 to 0.5 ft	Not Excavated	11-Mar-03					<0.012			
Power House and	I Fuel Barn AOI										
DP-4.20	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-4.21	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
	1.5 to 2 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-4.25	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-4.26	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-4.27	1.1 to 1.6 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-4.28	1.3 to 1.8 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-4.29	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
HA-4.64	1.5 to 2 ft	Not Excavated	31-Jul-06	<0	<0	<0	<nd< td=""><td><0</td><td><0</td><td><0</td><td><0</td></nd<>	<0	<0	<0	<0

			Sample Date / Analyte	PCB #28	PCB #44	PCB #52	PCB #66	PCB #77	PCB #81	PCB #101	PCB #118
Location ID	Depth (ft bgs)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH					0.034	0.011		0.11
			PSL-Eco								
HA-4.65	4 to 4.5 ft	Not Excavated	31-Jul-06	<0	<0	<0	<nd< td=""><td><0</td><td><0</td><td><0</td><td><0</td></nd<>	<0	<0	<0	<0
HA-4.159	5 to 5.5 ft	Not Excavated	31-Jul-06	<0	<0	<0	<nd< td=""><td><0</td><td><0</td><td><0</td><td><0</td></nd<>	<0	<0	<0	<0
HSA-4.5	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b
OUE-DP-046	3.5 to 4 ft	Not Excavated	22-Jun-10	<0.0023	<0.0023	<0.0023	<0.0023	<0.0023	<0.0023	<0.0023	<0.0023
OUE-DP-047	5.5 to 6.5 ft	Not Excavated	22-Jun-10	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
OUE-HA-020	0 to 0.5 ft	Not Excavated	24-Jun-10	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055
OUE-HA-021	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00057	0.00033 CJ	0.0006 C	<0.00057	<0.00057	<0.00057	0.0011	0.0012
	0.5 to 1.5 ft	Not Excavated	22-Jun-10	<0.0005 b/UJ	0.00026 CJb	<0.0005 b/UJ	<0.0005 b/UJ	0.00058 #b/J	<0.0005 b/UJ	0.00042 Jb	0.00023 Jb
OUE-HA-022	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00055	<0.00055	0.00021 CJ	<0.00055	0.00016 CJ	<0.00055	0.00055 J	0.00028 J
OUE-HA-025	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
OUE-HA-026	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056
P4-25	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-26	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-27	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-28	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-29	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-30	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-31	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04								
	12 to 12.5 ft	Not Excavated	20-Jul-04								

			Sample Date / Analyte	PCB #28	PCB #44	PCB #52	PCB #66	PCB #77	PCB #81	PCB #101	PCB #118
Location ID	Depth (ft bgc)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	-				0.034	0.011		0.11
			PSL-Eco								
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04								
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04								
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04								
DP-4.30	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034		<0.00034	<0.00034	<0.00034
DP-4.32	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033	<0.00033		<0.00033	<0.00033	<0.00033
DP-4.33	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034		<0.00034	<0.00034	<0.00034
DP-4.34	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033	<0.00033		<0.00033	<0.00033	<0.00033
DP-4.31	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034		<0.00034	<0.00034	<0.00034
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	<0.00058	<0.00058	<0.00058	<0.00058		<0.00058	<0.00058	<0.00058
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	<0.00054	<0.00054	<0.00054	<0.00054		<0.00054	<0.00054	<0.00054
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	<0.00052	<0.00052	<0.00052	<0.00052		<0.00052	<0.00052	<0.00052
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	<0.00052	<0.00052	<0.00052	<0.00052		<0.00052	<0.00052	<0.00052
P4-34	0 to 0.5 ft	Not Excavated	11-Mar-03					<0.012			

			Sample Date / Analyte	PCB #126	PCB #128	PCB #138	PCB #153	PCB #156	PCB #157	PCB #167	PCB #170
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	0.000034				0.11	0.11	0.11	
			PSL-Eco								
Water Treatment	and Truck Dump A	AOI									
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
OUE-DP-012	9 to 9.5 ft	Not Excavated	22-Jun-10	<0.00097	<0.00097	<0.00097	<0.00097	<0.00097	<0.00097	<0.00097	<0.00097
OUE-DP-013	5 to 6 ft	Not Excavated	22-Jun-10	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056
OUA-TP-028	0 to 0.4 ft	Not Excavated	18-Apr-07	<0.00093	<0.00093	<0.00093	<0.00093	<0.00093	<0.00093	<0.00093	<0.00093
OUE-DP-009	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.00059	<0.00059	<0.00059	<0.00059	<0.00059	<0.00059	<0.00059	<0.00059
OUE-DP-010	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058
P3-46	0.5 to 1 ft	EXCAVATED	18-Mar-03								
	4 to 4.5 ft	EXCAVATED	18-Mar-03								
P3-47	0.5 to 1 ft	EXCAVATED	17-Mar-03								
	4 to 4.5 ft	EXCAVATED	17-Mar-03								
P4-14	0 to 0.5 ft	Not Excavated	20-Mar-03								
P4-16	2.3 to 2.8 ft	Not Excavated	20-Mar-03								
P4-33	0 to 0.5 ft	Not Excavated	11-Mar-03								
Sawmill #1 AOI											
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-ROAD-4.2	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
OUE-DP-024	3.5 to 4 ft	Not Excavated	04-Nov-10	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	0.00071 CJ	<0.0011
OUE-DP-025	1.5 to 2 ft	Not Excavated	22-Jun-10	<0.00063	0.00025 CJ	<0.00063	<0.00063	<0.00063	<0.00063	<0.00063	<0.00063
P4-22	2 to 2.5 ft	Not Excavated	20-Mar-03								
P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03								

			Sample Date /	PCB #126	PCB #128	PCB #138	PCB #153	PCB #156	PCB #157	PCB #167	PCB #170
Location ID	Depth	Excavation	Units	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka
Location ib	(ft bgs)	Status	PSL-HH	0.000034				0.11	0.11	0.11	
			PSL-Eco								
P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03								
P4-32	0 to 0.5 ft	Not Excavated	11-Mar-03								
SAWMILL	0 to 0.5 ft	Not Excavated	17-Dec-03								
Compressor Hou	se and Lath Build	ing AOI									
OUE-HA-004	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00056	<0.00056	0.00014 CJ	0.00032 CJ	<0.00056	<0.00056	<0.00056	<0.00056
OUE-HA-005	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056
OUE-HA-006	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00054	<0.00054	<0.00054	0.00064 C	<0.00054	<0.00054	<0.00054	0.00028 J
OUE-HA-007	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00053	<0.00053	0.00057 C	0.00089	<0.00053	<0.00053	<0.00053	0.00058
OUE-HA-008	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00064	<0.00064	<0.00064	0.00031 J	<0.00064	<0.00064	<0.00064	<0.00064
OUE-HA-009	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00062	<0.00062	<0.00062	<0.00062	<0.00062	<0.00062	<0.00062	<0.00062
P3-48	0 to 0.5 ft	Not Excavated	11-Mar-03								
Power House and	d Fuel Barn AOI										
DP-4.20	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-4.21	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
	1.5 to 2 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-4.25	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-4.26	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-4.27	1.1 to 1.6 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	0.0004	0.00047	<0.00034	<0.00034	<0.00034	<0.00034
DP-4.28	1.3 to 1.8 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-4.29	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
HA-4.64	1.5 to 2 ft	Not Excavated	31-Jul-06	<nd< td=""><td><0</td><td><0</td><td><0</td><td><0</td><td><0</td><td><0</td><td><0</td></nd<>	<0	<0	<0	<0	<0	<0	<0

			Sample Date / Analyte	PCB #126	PCB #128	PCB #138	PCB #153	PCB #156	PCB #157	PCB #167	PCB #170
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	0.000034				0.11	0.11	0.11	
			PSL-Eco								
HA-4.65	4 to 4.5 ft	Not Excavated	31-Jul-06	<nd< td=""><td><0</td><td><0</td><td><0</td><td><0</td><td><0</td><td><0</td><td><0</td></nd<>	<0	<0	<0	<0	<0	<0	<0
HA-4.159	5 to 5.5 ft	Not Excavated	31-Jul-06	<nd< td=""><td><0</td><td><0</td><td><0</td><td><0</td><td><0</td><td><0</td><td><0</td></nd<>	<0	<0	<0	<0	<0	<0	<0
HSA-4.5	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b
OUE-DP-046	3.5 to 4 ft	Not Excavated	22-Jun-10	<0.0023	<0.0023	<0.0023	<0.0023	<0.0023	<0.0023	<0.0023	<0.0023
OUE-DP-047	5.5 to 6.5 ft	Not Excavated	22-Jun-10	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
OUE-HA-020	0 to 0.5 ft	Not Excavated	24-Jun-10	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055
OUE-HA-021	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00057	<0.00057	<0.00057	0.0016 C	<0.00057	<0.00057	<0.00057	<0.00057
	0.5 to 1.5 ft	Not Excavated	22-Jun-10	<0.0005 b/UJ	<0.0005 b/UJ	0.00035 Jb	<0.0005 b/UJ	0.00018 #CJb	0.00022 #Jb	<0.0005 b/UJ	0.00028 #Jb
OUE-HA-022	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00055	<0.00055	<0.00055	0.00046 J	<0.00055	<0.00055	<0.00055	0.00026 J
OUE-HA-025	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
OUE-HA-026	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056	<0.00056
P4-25	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-26	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-27	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-28	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-29	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-30	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-31	0 to 0.5 ft	Not Excavated	11-Mar-03								
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04								
	12 to 12.5 ft	Not Excavated	20-Jul-04								

			Sample Date / Analyte	PCB #126	PCB #128	PCB #138	PCB #153	PCB #156	PCB #157	PCB #167	PCB #170
Location ID	Depth (ft bgs)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	0.000034				0.11	0.11	0.11	
			PSL-Eco				-				
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04								
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04								
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04								
DP-4.30	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-4.32	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-4.33	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-4.34	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	0.00053	0.00036	<0.00033	<0.00033	<0.00033	<0.00033
DP-4.31	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	0.00021 J [PSL-HH]	<0.00054	<0.00054	<0.00054	<0.00054	<0.00054	<0.00054	<0.00054
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	0.001 C
P4-34	0 to 0.5 ft	Not Excavated	11-Mar-03								

			Sample Date / Analyte	PCB #180	PCB #187	PCB #209	Total PCB Aroclors	Total PCB Congeners ⁶
Location ID	Depth (ft has)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH				0.22	0.22
			PSL-Eco					1
Water Treatment	and Truck Dump A	NOI						
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05	<0.00033	<0.00033	<0.00033		ND
OUE-DP-012	9 to 9.5 ft	Not Excavated	22-Jun-10	<0.00097	<0.00097	<0.00097	ND	0.0019
OUE-DP-013	5 to 6 ft	Not Excavated	22-Jun-10	<0.00056	0.00089 C	<0.00056	ND	0.0025
OUA-TP-028	0 to 0.4 ft	Not Excavated	18-Apr-07	<0.00093	<0.00093			ND
OUE-DP-009	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.00059	<0.00059	<0.00059		ND
OUE-DP-010	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.00058	<0.00058	<0.00058		ND
P3-46	0.5 to 1 ft	EXCAVATED	18-Mar-03				ND	
	4 to 4.5 ft	EXCAVATED	18-Mar-03				ND	
P3-47	0.5 to 1 ft	EXCAVATED	17-Mar-03				ND	
	4 to 4.5 ft	EXCAVATED	17-Mar-03				ND	
P4-14	0 to 0.5 ft	Not Excavated	20-Mar-03				ND	
P4-16	2.3 to 2.8 ft	Not Excavated	20-Mar-03				ND	
P4-33	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	
Sawmill #1 AOI								
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.00033	<0.00033	<0.00033		ND
DP-ROAD-4.2	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.00034	<0.00034	<0.00034		ND
OUE-DP-024	3.5 to 4 ft	Not Excavated	04-Nov-10	0.00062 J	<0.0011	<0.0011		0.0027
OUE-DP-025	1.5 to 2 ft	Not Excavated	22-Jun-10	<0.00063	<0.00063	0.00049 #CJ	ND	0.017
P4-22	2 to 2.5 ft	Not Excavated	20-Mar-03				ND	
P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03				ND	

			Sample Date / Analyte	PCB #180	PCB #187	PCB #209	Total PCB Aroclors	Total PCB Congeners ⁶
Location ID	Depth (ft has)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH				0.22	0.22
			PSL-Eco					1
P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03				ND	
P4-32	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	
SAWMILL	0 to 0.5 ft	Not Excavated	17-Dec-03				ND	
Compressor Hou	se and Lath Buildi	ng AOI						
OUE-HA-004	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00056	<0.00056	<0.00056		0.00092
OUE-HA-005	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00056	<0.00056	<0.00056		0.00042
OUE-HA-006	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00054	<0.00054	<0.00054		0.0023
OUE-HA-007	0 to 0.5 ft	Not Excavated	22-Jun-10	0.00064	0.00037 J	<0.00053		0.0085
OUE-HA-008	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00064	<0.00064	<0.00064		0.0010
OUE-HA-009	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00062	<0.00062	<0.00062		ND
P3-48	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	
Power House and	d Fuel Barn AOI							
DP-4.20	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033		ND
DP-4.21	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034		0.0033
	1.5 to 2 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033		0.0080
DP-4.25	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034		ND
DP-4.26	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034		ND
DP-4.27	1.1 to 1.6 ft	Not Excavated	06-Jun-06	0.00061	0.00043	<0.00034		0.0038
DP-4.28	1.3 to 1.8 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033		ND
DP-4.29	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034		0.0012
HA-4.64	1.5 to 2 ft	Not Excavated	31-Jul-06	<0	<0	<0		ND

			Sample Date / Analyte	PCB #180	PCB #187	PCB #209	Total PCB Aroclors	Total PCB Congeners ⁶
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it ags)	Status	PSL-HH				0.22	0.22
			PSL-Eco					1
HA-4.65	4 to 4.5 ft	Not Excavated	31-Jul-06	<0	<0	<0		ND
HA-4.159	5 to 5.5 ft	Not Excavated	31-Jul-06	<0	<0	<0		ND
HSA-4.5	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.00033 U,b	<0.00033 U,b	<0.00033 U,b		ND
OUE-DP-046	3.5 to 4 ft	Not Excavated	22-Jun-10	<0.0023	<0.0023	<0.0023	0.029	ND
OUE-DP-047	5.5 to 6.5 ft	Not Excavated	22-Jun-10	0.00026 J	<0.00075	<0.00075	0.0045	0.00052
OUE-HA-020	0 to 0.5 ft	Not Excavated	24-Jun-10	<0.00055	<0.00055	<0.00055		0.0013
OUE-HA-021	0 to 0.5 ft	Not Excavated	22-Jun-10	0.0002 J	0.00024 J	0.001 #C		0.0130
	0.5 to 1.5 ft	Not Excavated	22-Jun-10	0.00032 #CJb	0.00031 Jb	0.00065 #Cb/J		0.0076 /J
OUE-HA-022	0 to 0.5 ft	Not Excavated	22-Jun-10	<0.00055	<0.00055	<0.00055		0.0038
OUE-HA-025	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.0006	<0.0006	<0.0006		ND
OUE-HA-026	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.00056	<0.00056	<0.00056		0.00062
P4-25	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	
P4-26	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	
P4-27	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	
P4-28	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	
P4-29	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	
P4-30	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	
P4-31	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04				ND	
	12 to 12.5 ft	Not Excavated	20-Jul-04				ND	

			Sample Date / Analyte	PCB #180	PCB #187	PCB #209	Total PCB Aroclors	Total PCB Congeners ⁶
Location ID	Depth (ft bas)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH				0.22	0.22
			PSL-Eco				-	1
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04				ND	
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04				ND	
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04				ND	
DP-4.30	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034		0.0028
DP-4.32	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00033	<0.00033	<0.00033		ND
DP-4.33	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034		ND
DP-4.34	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00033	0.00035	<0.00033		0.0025
DP-4.31	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00034	<0.00034	<0.00034		0.0022
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	<0.00058	<0.00058	<0.00058		ND
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	<0.00054	<0.00054	<0.00054		0.00042
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	<0.00052	<0.00052	<0.00052		ND
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	<0.00052	<0.00052	<0.00052		0.0022
P4-34	0 to 0.5 ft	Not Excavated	11-Mar-03				ND	

			Sample	4-Methylphenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
Lesstian ID	Depth	Evenuetien Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	310	3400		17000	0.15	0.038	0.15
			PSL-Eco	-	5	0.6	0.6	1	1	1
Water Treatment an	d Truck Dum	p AOI								
OUE-DP-001	0 to 1 ft	Not Excavated	24-Jun-10	<0.35						
	1 to 2 ft	Not Excavated	24-Jun-10	<0.37						
	4 to 5 ft	Not Excavated	24-Jun-10	<0.42						
OUE-DP-002	0 to 1 ft	Not Excavated	24-Jun-10	<0.36						
	1 to 2 ft	Not Excavated	24-Jun-10	<0.42						
	4 to 5 ft	Not Excavated	24-Jun-10	<0.41						
OUE-DP-004	0 to 1 ft	Not Excavated	23-Jun-10	<0.73						
	1 to 2 ft	Not Excavated	23-Jun-10	<40						
	3 to 4 ft	Not Excavated	23-Jun-10	<16						
P4-20	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.66	<0.33	<0.33	<0.33	<0.33	<0.33
HA-4.137	2.3 to 2.8 ft	Not Excavated	08-Aug-06		<0.34 [<0.066]	<0.34 [<0.066]	<0.34 [<0.066]	<0.34 [<0.066]	<0.34 [<0.066]	<0.34 [<0.066]
HA-4.138	7.3 to 7.8 ft	Not Excavated	08-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.139	6.2 to 6.7 ft	Not Excavated	08-Aug-06		<0.13 [<0.13]	<0.13 [<0.13]	<0.13 [<0.13]	<0.13 [<0.13]	<0.13 [<0.13]	<0.13 [<0.13]
HA-4.140	1 to 1.5 ft	Not Excavated	08-Aug-06		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
HA-4.141	1.1 to 1.6 ft	Not Excavated	08-Aug-06		<0.066	<0.066	<0.066	<0.066	<0.066	<0.066
HA-4.142	1.7 to 2.2 ft	Not Excavated	08-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.160	2.7 to 3.2 ft	Not Excavated	08-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HSA-4.1	2 to 2.5 ft	Not Excavated	23-Jan-06		<0.053 [<0.049]	<0.045 [<0.085]	<0.053 [<0.049]	<0.051 [<0.046]	<0.048 [<0.037]	<0.085 [0.037 J]
	4 to 4.5 ft	Not Excavated	23-Jan-06		<0.16	<0.28	<0.16	<0.15	<0.12	<0.11
OUE-DP-003	0 to 1 ft	Not Excavated	24-Jun-10	<3.9	<0.029	<0.029	<0.029			
	1 to 2 ft	Not Excavated	24-Jun-10	<0.36	<0.0053	<0.0053	<0.0053			
	4 to 5 ft	Not Excavated	24-Jun-10	<0.36	<0.0054	<0.0054	<0.0054			
OUE-DP-009	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.39	<0.078	<0.078	<0.078	<0.078	<0.078	<0.078
	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.4	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OUE-DP-010	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.39	<0.077	<0.077	<0.077	<0.077	<0.077	<0.077
	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.38	<0.076	<0.076	<0.076	<0.076	<0.076	<0.076
OUE-DP-011	5 to 5.5 ft	Not Excavated	29-Jun-10	<0.37	<0.074	<0.074	<0.074	<0.074	<0.074	<0.074
	5.6 to 6.5 ft	Not Excavated	29-Jun-10	<0.38	<0.076	<0.076	<0.076	<0.076	<0.076	<0.076
P4-13	0 to 0.5 ft	Not Excavated	20-Mar-03	<0.33	<0.66	<0.33	<0.33	<0.33	<0.33	<0.33
P4-14	0 to 0.5 ft	Not Excavated	20-Mar-03	<0.33	<0.67	<0.33	<0.33	<0.33	<0.33	<0.33
P4-15	1.2 to 1.7 ft	Not Excavated	19-Mar-03	<0.33	<0.66	<0.33	<0.33	<0.33	<0.33	<0.33
P4-16	2.3 to 2.8 ft	Not Excavated	20-Mar-03	<0.33	<0.67	<0.33	<0.33	<0.33	<0.33	<0.33
P4-17	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.66	<0.33	<0.33	<0.33	<0.33	<0.33

			Sample	4-Methylphenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
=	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	310	3400		17000	0.15	0.038	0.15
			PSL-Eco		5	0.6	0.6	1	1	1
P4-18	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.66	<0.33	<0.33	<0.33	<0.33	<0.33
P4-19	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.66	<0.33	<0.33	<0.33	<0.33	<0.33
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05		<0.034	<0.028	<0.03	<0.032	<0.027	<0.029
Sawmill #1 AOI										
DP-5.57	0.5 to 1 ft	Not Excavated	20-Oct-05		<0.19	<0.17	<0.19	<0.18	<0.18	<0.16
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05		<0.034	<0.028	<0.03	<0.032	<0.027	<0.029
DP-ROAD-4.2	1 to 1.5 ft	Not Excavated	24-Oct-05		<0.034	<0.028	<0.03	<0.033	<0.027	<0.029
HA-4.35	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.66	<0.072	<0.067	<0.068	<0.044	<0.059	<0.068
HA-4.36	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<6.7	<0.62	<0.44	<0.41	<0.55	<0.42	<0.48
HA-4.37	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.33 [<1]	<0.016 [<0.093]	<0.023 [<0.066]	<0.016 [<0.061]	<0.015 [<0.082]	<0.012 [<0.064]	<0.011 [<0.072]
HA-4.38	2.2 to 2.7 ft	Not Excavated	12-Jul-06	<6.7	<0.63	<0.44	<0.41	<0.56	<0.43	<0.48
HA-4.39	3 to 3.5 ft	Not Excavated	12-Jul-06	<13	<1.3	<0.89	<0.83	<1.1	<0.86	<0.97
HA-4.40	2.3 to 2.8 ft	Not Excavated	12-Jul-06	<0.33	<0.031	<0.022	<0.021	<0.028	<0.021	<0.024
HA-4.41	3 to 3.5 ft	Not Excavated	12-Jul-06	<1	<0.095	<0.067	<0.062	<0.084	<0.065	<0.073
HA-5.84	3 to 3.5 ft	Not Excavated	20-Jul-06	<33 [<8.4]	<3.1 [<0.79]	<2.2 [<0.55]	<2 [<0.51]	<2.8 [<0.69]	<2.1 [<0.54]	<2.4 [<0.6]
HA-5.85	3 to 3.5 ft	Not Excavated	20-Jul-06	<3.3	<0.36	<0.33	<0.34	<0.22	<0.29	<0.34
HA-5.86	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.67	<0.063	<0.044	<0.041	0.057 J	0.062 J [PSL-HH]	0.056 J
HA-5.87	3 to 3.5 ft	Not Excavated	20-Jul-06	<33	<3.6	<3.3	<3.4	<2.2	<2.9	<3.4
HA-5.88	3 to 3.5 ft	Not Excavated	20-Jul-06	<17	<1.8	<1.7	<1.7	<1.1	<1.5	<1.7
HA-5.89	2.5 to 3 ft	Not Excavated	20-Jul-06	<1.7	<0.18	<0.17	<0.17	<0.11	<0.15	<0.17
HA-5.90	3 to 3.5 ft	Not Excavated	20-Jul-06	<66	<6.2	<4.4	<4.1	<5.5	<4.2	<4.8
HA-5.91	3 to 3.5 ft	Not Excavated	20-Jul-06	<6.8	<0.73	<0.68	<0.69	<0.44	<0.59	<0.69
OUE-DP-018	5 to 6 ft	Not Excavated	22-Jun-10	<0.44						
OUE-DP-026	0 to 0.5 ft	Not Excavated	25-Jun-10	<0.4						
	0.5 to 2 ft	Not Excavated	25-Jun-10	<0.41						
	2 to 3.5 ft	Not Excavated	25-Jun-10	<1.3						
OUE-DP-028	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.35						
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.35						
P4-21	2 to 2.5 ft	Not Excavated	20-Mar-03	<1.6	<3.3	<1.6	<1.6	<1.6	<1.6	<1.6
P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.34	<0.67	<0.34	<0.34	<0.34	<0.34	<0.34
P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.67	<0.33	<0.33	<0.33	<0.33	<0.33
P5-2	0.5 to 1 ft	Not Excavated	24-Mar-03	<42	<83	<42	<42	<42	<42	<42
P5-3	3.3 to 3.8 ft	Not Excavated	24-Mar-03	<0.33	<0.67	<0.33	<0.33	<0.33	<0.33	<0.33
SAWMILL	0 to 0.5 ft	Not Excavated	17-Dec-03	<41	<8.2	<8.2	<8.2	<8.2	<8.2	<8.2

			Sample	4-Methylphenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	310	3400		17000	0.15	0.038	0.15
			PSL-Eco		5	0.6	0.6	1	1	1
DP-3.48	1 to 1.5 ft	Not Excavated	22-Sep-05	<0.34	<0.038	<0.035	<0.039	<0.036	<0.036	<0.032
	5 to 5.5 ft	Not Excavated	22-Sep-05	<0.34	<0.038	<0.035	<0.039	<0.036	<0.036	<0.032
P5-1	11.5 to 12 ft	Not Excavated	24-Mar-03	<8.3	<17	<8.3	<8.3	<8.3	<8.3	<8.3
Compressor House	and Lath Buil	ding AOI								
MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07	<7.1	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4
	5.5 to 6 ft	Not Excavated	29-Sep-07	<0.43	<0.085	<0.085	<0.0064	<0.085	0.022 J	<0.085
OUE-DP-032	0 to 0.5 ft	Not Excavated	25-Jun-10	<0.36	<0.027	0.0058 J	<0.027			
	0.5 to 1.7 ft	Not Excavated	25-Jun-10	<0.39	<0.0058	<0.0058	<0.0058			
	2 to 3.5 ft	Not Excavated	25-Jun-10	<0.4	<0.0061	<0.0061	<0.0061			
OUE-DP-033	0 to 0.5 ft	Not Excavated	29-Jun-10	<23	<0.34	<0.34	<0.34			
	0.5 to 1.5 ft	Not Excavated	29-Jun-10	<0.47	<0.0071	<0.0071	<0.0071			
	4 to 5 ft	Not Excavated	29-Jun-10	<0.43	<0.0066	<0.0066	<0.0066			
OUE-DP-034	0 to 1 ft	Not Excavated	25-Jun-10	<1.2	<0.058	<0.058	<0.058			
	1 to 2 ft	Not Excavated	25-Jun-10	<0.44	<0.0066	0.0043 J	0.0019 J			
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.39	<0.0057	<0.0057	<0.0057			
OUE-DP-035	0 to 0.5 ft	Not Excavated	25-Jun-10	<2.7	<0.017	0.0059 J	0.004 J			
	0.5 to 1.5 ft	Not Excavated	25-Jun-10	<1.1	0.0046 J	<0.011	0.0026 J			
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.79	<0.03	<0.03	<0.03			
Power House and F	uel Barn AOI	•	•							
DP-4.16	1 to 1.5 ft	Not Excavated	05-Jun-06		<0.031	<0.022	<0.02	<0.028	<0.021	<0.024
DP-4.17	2.1 to 2.6 ft	Not Excavated	05-Jun-06		<0.031	0.14	0.063 J	0.073	0.11 [PSL-HH]	0.12
	2.6 to 3.1 ft	Not Excavated	05-Jun-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
DP-4.18	1.6 to 2.1 ft	Not Excavated	05-Jun-06		<0.062	<0.044	<0.041	<0.055	<0.042	<0.048
DP-4.19	1 to 1.5 ft	Not Excavated	05-Jun-06		<0.031	<0.022	<0.02	<0.027	0.027 J	<0.024
DP-4.22	1 to 1.5 ft	Not Excavated	06-Jun-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
DP-4.23	1 to 1.5 ft	Not Excavated	06-Jun-06		<0.094	<0.066	<0.061	<0.083	<0.064	<0.072
DP-4.24	1 to 1.5 ft	Not Excavated	06-Jun-06		<0.016	<0.022	<0.016	<0.015	<0.012	<0.011
DP-5.59	0.5 to 1 ft	Not Excavated	20-Oct-05		<0.038	<0.034	<0.038	<0.035	<0.035	<0.032
DP-5.71	1 to 1.5 ft	Not Excavated	06-Jun-06		<0.16	<0.11	<0.1	<0.14	<0.11	<0.12
DP-5.72	0 to 0.5 ft	Not Excavated	06-Jun-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
HA-4.57	1.7 to 2.2 ft	Not Excavated	01-Aug-06		<0.066	<0.066	<0.066	<0.066	<0.066	<0.066
HA-4.58	1 to 1.5 ft	Not Excavated	01-Aug-06		<0.067 [<0.066]	<0.067 [<0.066]	<0.067 [<0.066]	<0.067 [<0.066]	<0.067 [<0.066]	<0.067 [<0.066]
HA-4.59	4 to 4.5 ft	Not Excavated	01-Aug-06		<0.66	<0.66	<0.66	<0.66	<0.66	<0.66
HA-4.60	3 to 3.5 ft	Not Excavated	01-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067

			Sample	4-Methylphenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
La continue ID	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	310	3400		17000	0.15	0.038	0.15
			PSL-Eco	-	5	0.6	0.6	1	1	1
HA-4.61	4 to 4.5 ft	Not Excavated	01-Aug-06		<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
HA-4.62	1 to 1.5 ft	Not Excavated	01-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.63	1 to 1.5 ft	Not Excavated	23-Aug-06		<0.066	<0.066	<0.066	<0.066	<0.066	<0.066
HA-4.66	6 to 6.5 ft	Not Excavated	09-Aug-06		<0.66	<0.66	<0.66	<0.66	<0.66	<0.66
HA-4.67	6 to 6.5 ft	Not Excavated	09-Aug-06		<0.2	<0.2	0.07 J	0.058 J	0.04 J [PSL-HH]	0.034 J
HA-4.68	5 to 5.5 ft	Not Excavated	08-Aug-06		<0.67	<0.67	<0.67	<0.67	<0.67	<0.67
HA-4.77	6 to 6.5 ft	Not Excavated	07-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.78	8 to 8.5 ft	Not Excavated	14-Sep-06		<0.082	<0.082	<0.082	<0.082	<0.082	<0.082
HA-4.79	8 to 8.5 ft	Not Excavated	08-Aug-06		<0.066	<0.066	<0.066	<0.066	<0.066	<0.066
HA-4.82	6.5 to 7 ft	Not Excavated	07-Aug-06		<0.66	<0.66	<0.66	<0.66	<0.66	<0.66
HA-4.87	4.5 to 5 ft	Not Excavated	07-Aug-06		<0.066	<0.066	<0.066	<0.066	<0.066	<0.066
HA-4.88	4.5 to 5 ft	Not Excavated	07-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.90	13.5 to 14 ft	Not Excavated	08-Aug-06		<0.13 [<0.2]	0.031 J [<0.2]	<0.13 [0.13 J]	0.032 J [1.3] [PSL- HH,PSL-Eco]	<0.13 [0.87] [PSL-HH]	0.025 J [0.8] [PSL-HH]
HA-4.145	0.9 to 1.4 ft	Not Excavated	27-Jun-06		<0.016 [<0.016]	<0.023 [<0.023]	<0.016 [<0.016]	<0.015 [<0.015]	<0.012 [0.015 J]	<0.011 [0.016 J]
HA-4.146	2.1 to 2.6 ft	Not Excavated	27-Jun-06		<0.016	<0.023	<0.016	<0.015	<0.012	<0.011
HA-4.147	1.2 to 1.7 ft	Not Excavated	27-Jun-06		<0.016	0.028 J	<0.016	0.097	0.12 [PSL-HH]	0.091
HA-4.148	0.7 to 1.2 ft	Not Excavated	27-Jun-06		<0.016	<0.022	<0.016	0.039 J	0.037 J	0.027 J
HSA-4.2	2 to 2.5 ft	Not Excavated	24-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
	3.5 to 4 ft	Not Excavated	24-Jan-06		<0.016	<0.023	<0.016	<0.015	<0.012	0.014 J
HSA-4.3	2 to 2.5 ft	Not Excavated	24-Jan-06		0.73 J	2.1	2.8 [PSL-Eco]	13 [PSL-HH,PSL-Eco]	18 [PSL-HH,PSL-Eco]	27 [PSL-HH,PSL-Eco]
	3.5 to 4 ft	Not Excavated	24-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
HSA-4.4	2 to 2.5 ft	Not Excavated	23-Jan-06		<0.026	<0.022	<0.026	<0.025	<0.024	<0.042
	6 to 6.5 ft	Not Excavated	23-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
	11 to 11.5 ft	Not Excavated	23-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
	16 to 16.5 ft	Not Excavated	24-Jan-06		<0.026	<0.022	<0.026	<0.025	<0.023	<0.041
	21 to 21.5 ft	Not Excavated	24-Jan-06		<0.026	<0.022	<0.026	<0.025	<0.024	<0.042
	26 to 26.5 ft	Not Excavated	24-Jan-06		<0.052	<0.044	<0.052	<0.05	<0.047	<0.083
HSA-4.5	2 to 2.5 ft	Not Excavated	23-Jan-06		<0.32	<0.56	<0.33	<0.3	<0.25	<0.22
	6 to 6.5 ft	Not Excavated	23-Jan-06		<0.049	<0.085	<0.05	<0.046	<0.037	<0.034
	11 to 11.5 ft	Not Excavated	23-Jan-06		<0.065	<0.11	<0.066	<0.061	<0.05	<0.045
	16 to 16.5 ft	Not Excavated	24-Jan-06		<0.027	<0.022	<0.026	<0.026	<0.024	<0.042

			Sample	4-Methylphenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	310	3400		17000	0.15	0.038	0.15
			PSL-Eco		5	0.6	0.6	1	1	1
	21 to 21.5 ft	Not Excavated	24-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
	26 to 26.5 ft	Not Excavated	24-Jan-06		<0.026	<0.022	<0.026	<0.025	<0.024	<0.042
	31 to 31.5 ft	Not Excavated	24-Jan-06		<0.026	<0.022	<0.026	<0.025	<0.023	<0.041
HSA-4.6	2 to 2.5 ft	Not Excavated	23-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
	11 to 11.5 ft	Not Excavated	23-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
	16 to 16.5 ft	Not Excavated	24-Jan-06		<0.18	<0.17	<0.17	<0.11	<0.15	<0.17
	21 to 21.5 ft	Not Excavated	24-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
	26 to 26.5 ft	Not Excavated	24-Jan-06		<0.026	<0.022	<0.026	<0.025	<0.024	<0.042
	31 to 31.5 ft	Not Excavated	24-Jan-06		<0.052	<0.043	<0.051	<0.05	<0.047	<0.082
MW-4.5	0 to 0.5 ft	Not Excavated	28-Sep-07	<1.1	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21
	8.5 to 9 ft	Not Excavated	28-Sep-07	<0.44	<0.087	<0.087	<0.087	<0.087	0.056 J [PSL-HH]	<0.087
OUE-DP-036	1 to 2 ft	Not Excavated	22-Jun-10	<0.43						
	3 to 4 ft	Not Excavated	22-Jun-10	0.57						
	5 to 7 ft	Not Excavated	22-Jun-10	<0.43						
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10	<0.42						
	3 to 4 ft	Not Excavated	22-Jun-10	<0.42						
	5 to 7 ft	Not Excavated	22-Jun-10	<0.44						
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10	<0.48						
	6.5 to 8 ft	Not Excavated	25-Jun-10	<0.56						
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04	<0.34	<0.067	<0.067	<0.067	<0.067	<0.067	0.12
	12 to 12.5 ft	Not Excavated	20-Jul-04	<0.34	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04	<0.33	<0.066	<0.066	<0.066	<0.066	<0.066	<0.066
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04	<0.34	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04	<0.34	<0.068	<0.068	<0.068	<0.068	<0.068	0.11
HA-4.95	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.96	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	0.011 J
HA-4.97	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.98	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.100	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.068	<0.068	<0.068	<0.068	<0.068	<0.068
HA-4.101	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.102	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.066	<0.066	<0.066	<0.066	<0.066	<0.066
HA-4.103	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.105	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
HA-4.106	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.068	<0.068	<0.068	<0.068	<0.068	<0.068

			Sample	4-Methylphenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ib	(ft bgs)	Excavation Status	PSL-HH	310	3400		17000	0.15	0.038	0.15
			PSL-Eco		5	0.6	0.6	1	1	1
HA-4.156	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.066	<0.066	<0.066	<0.066	<0.066	<0.066
HA-4.157	2 to 2.5 ft	Not Excavated	22-Aug-06		<0.068	<0.068	<0.068	<0.068	<0.068	<0.068
MW-4.6	0 to 0.5 ft	Not Excavated	28-Sep-07	<0.69	<0.14	<0.14	<0.14	<0.14	<0.14	0.047 J
	4 to 4.5 ft	Not Excavated	28-Sep-07	<0.8	<0.16	<0.16	<0.16	0.035 J	0.036 J	0.051 J
OUE-DP-041	0 to 0.5 ft	Not Excavated	27-Sep-10	<0.37	<0.0056	<0.0056	<0.0056			
	0.5 to 1 ft	Not Excavated	27-Sep-10	<0.37	<0.0055	<0.0055	<0.0055			
OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10	<0.38	<0.0057	<0.0057	<0.0057			
	1.5 to 3 ft	Not Excavated	24-Sep-10	<0.39	<0.0059	<0.0059	0.0015 J			
	4 to 4.5 ft	Not Excavated	24-Sep-10	<0.41	<0.0062	0.0018 J	0.0018 J			
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	<0.37	<0.0056	0.0032 J	0.0031 J			
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	<0.34	<0.0052	<0.0052	<0.0052			
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	<0.35	<0.0053	0.0017 J	0.0012 J			
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	<0.35	<0.0053	0.0014 J	0.0014 J			
Pond 8 Fill AOI										
HSA-6.29	2 to 2.5 ft	Not Excavated	18-Jan-06		<0.078	<0.066	<0.078	<0.076	<0.07	<0.12
	6 to 6.5 ft	Not Excavated	18-Jan-06		<0.026	<0.022	<0.026	<0.025	<0.024	<0.042
	11 to 11.5 ft	Not Excavated	18-Jan-06		<0.026	<0.022	<0.026	<0.025	<0.023	<0.041
	16 to 16.5 ft	Not Excavated	18-Jan-06		<0.026	<0.022	<0.026	<0.025	<0.023	<0.041
	20.5 to 21 ft	Not Excavated	19-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
HSA-6.30	2 to 2.5 ft	Not Excavated	19-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
	5.5 to 6 ft	Not Excavated	19-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
	6 to 6.5 ft	Not Excavated	19-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
	11 to 11.5 ft	Not Excavated	19-Jan-06		<0.026	<0.022	<0.026	<0.025	<0.024	<0.042
	16 to 16.5 ft	Not Excavated	19-Jan-06		<0.026	<0.022	<0.026	<0.026	<0.024	<0.042
P6-TP3	4 to 4.5 ft	Not Excavated	18-Dec-03	<0.33	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
P6-TP6	10 to 10.5 ft	Not Excavated	19-Dec-03	<0.33	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067
P6-TP8	8 to 8.5 ft	Not Excavated	19-Dec-03	<0.34	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067

			Sample	Benzo(a.h.i)pervlene	Benzo(k)fluoranthene	bis(2-Ethylhexyl)Phthalate	Butvi Benzvi Phthalate	Chrysene	Dibenz(a,h)anthracene	Di-n-butylphthalate	Di-n-octvlphthalate
	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	-	0.38	35	260	3.8	0.015	6100	2400
			PSL-Eco	1	1			1	1	200	
Water Treatment a	nd Truck Dump	AOI									
OUE-DP-001	0 to 1 ft	Not Excavated	24-Jun-10			0.021 J	<0.35			<0.35	<0.35
	1 to 2 ft	Not Excavated	24-Jun-10			<0.37	<0.37			<0.37	<0.37
	4 to 5 ft	Not Excavated	24-Jun-10			<0.42	<0.42			<0.42	<0.42
OUE-DP-002	0 to 1 ft	Not Excavated	24-Jun-10			<0.36	<0.36			<0.36	<0.36
	1 to 2 ft	Not Excavated	24-Jun-10			<0.42	0.022 J			<0.42	<0.42
	4 to 5 ft	Not Excavated	24-Jun-10			<0.41	<0.41			<0.41	<0.41
OUE-DP-004	0 to 1 ft	Not Excavated	23-Jun-10			0.034 J	<0.73			<0.73	<0.73
	1 to 2 ft	Not Excavated	23-Jun-10			<40	<40			<40	<40
	3 to 4 ft	Not Excavated	23-Jun-10			<16	<16			<16	<16
P4-20	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
HA-4.137	2.3 to 2.8 ft	Not Excavated	08-Aug-06	<0.34 [<0.066]	<0.34 [<0.066]			<0.34 [<0.066]	<0.34 [<0.066]		
HA-4.138	7.3 to 7.8 ft	Not Excavated	08-Aug-06	<0.067	<0.067			<0.067	<0.067		
HA-4.139	6.2 to 6.7 ft	Not Excavated	08-Aug-06	<0.13 [<0.13]	<0.13 [<0.13]			<0.13 [<0.13]	<0.13 [<0.13]		
HA-4.140	1 to 1.5 ft	Not Excavated	08-Aug-06	<0.2	<0.2			<0.2	<0.2		
HA-4.141	1.1 to 1.6 ft	Not Excavated	08-Aug-06	<0.066	<0.066			<0.066	<0.066		
HA-4.142	1.7 to 2.2 ft	Not Excavated	08-Aug-06	<0.067	<0.067			<0.067	<0.067		
HA-4.160	2.7 to 3.2 ft	Not Excavated	08-Aug-06	<0.067	<0.067			<0.067	<0.067		
HSA-4.1	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.047 [<0.04]	<0.045 [<0.052]			<0.071 [0.064 J]	<0.051 [<0.042]		
	4 to 4.5 ft	Not Excavated	23-Jan-06	<0.13	<0.17			<0.17	<0.14		
OUE-DP-003	0 to 1 ft	Not Excavated	24-Jun-10	0.0086 J		<3.9	<3.9		<0.029	<3.9	<3.9
	1 to 2 ft	Not Excavated	24-Jun-10	<0.0053		<0.36	<0.36		<0.0053	<0.36	<0.36
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0054		<0.36	<0.36		<0.0054	<0.36	<0.36
OUE-DP-009	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.078	<0.078	<0.39	<0.39	<0.078	<0.078	<0.39	<0.39
	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.08	<0.08	<0.4	<0.4	<0.08	<0.08	<0.4	<0.4
OUE-DP-010	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.077	<0.077	<0.39	<0.39	<0.077	<0.077	<0.39	<0.39
	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.076	<0.076	<0.38	<0.38	<0.076	<0.076	<0.38	<0.38
OUE-DP-011	5 to 5.5 ft	Not Excavated	29-Jun-10	<0.074	<0.074	<0.37	<0.37	<0.074	<0.074	<0.37	<0.37
	5.6 to 6.5 ft	Not Excavated	29-Jun-10	<0.076	<0.076	<0.38	<0.38	<0.076	<0.076	<0.38	<0.38
P4-13	0 to 0.5 ft	Not Excavated	20-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
P4-14	0 to 0.5 ft	Not Excavated	20-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
P4-15	1.2 to 1.7 ft	Not Excavated	19-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
P4-16	2.3 to 2.8 ft	Not Excavated	20-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
P4-17	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33

			Sample	Benzo(a.h.i)pervlene	Benzo(k)fluoranthene	bis(2-Ethvlhexvl)Phthalate	Butvl Benzvl Phthalate	Chrvsene	Dibenz(a.h)anthracene	Di-n-butylphthalate	Di-n-octvlphthalate
=	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	-	0.38	35	260	3.8	0.015	6100	2400
			PSL-Eco	1	1			1	1	200	
P4-18	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
P4-19	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05	<0.038	<0.043			<0.03	<0.036		
Sawmill #1 AOI											
DP-5.57	0.5 to 1 ft	Not Excavated	20-Oct-05	<0.17	<0.23			<0.2	<0.19		
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.038	<0.043			<0.03	<0.036		
DP-ROAD-4.2	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.038	<0.043			<0.03	<0.036		
HA-4.35	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.053	<0.053	<0.66	<0.66	<0.048	<0.051	<0.66	<0.66
HA-4.36	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.52	<0.54	<6.7	<6.7	<0.54	<0.54	<6.7	<6.7
HA-4.37	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.013 [<0.077]	<0.017 [<0.08]	<0.33 [<1]	<0.33 [<1]	<0.017 [<0.081]	<0.014 [<0.081]	<0.33 [<1]	<0.33 [<1]
HA-4.38	2.2 to 2.7 ft	Not Excavated	12-Jul-06	<0.52	<0.54	<6.7	<6.7	<0.55	<0.55	<6.7	<6.7
HA-4.39	3 to 3.5 ft	Not Excavated	12-Jul-06	<1	<1.1	<13	<13	<1.1	<1.1	<13	<13
HA-4.40	2.3 to 2.8 ft	Not Excavated	12-Jul-06	<0.026	<0.027	<0.33	<0.33	<0.027	<0.027	<0.33	<0.33
HA-4.41	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.079	0.14 J	<1	<1	<0.082	<0.082	<1	<1
HA-5.84	3 to 3.5 ft	Not Excavated	20-Jul-06	<2.6 [<0.65]	<2.7 [<0.68]	<33 [<8.4]	<33 [<8.4]	<2.7 [<0.68]	<2.7 [<0.68]	<33 [<8.4]	<33 [<8.4]
HA-5.85	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.27	<0.27	<3.3	<3.3	<0.24	<0.26	<3.3	<3.3
HA-5.86	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.052	0.12 J	<0.67	<0.67	0.07 J	<0.054	<0.67	<0.67
HA-5.87	3 to 3.5 ft	Not Excavated	20-Jul-06	<2.7	<2.7	<33	<33	<2.4	<2.6	<33	<33
HA-5.88	3 to 3.5 ft	Not Excavated	20-Jul-06	<1.3	<1.3	<17	<17	<1.2	<1.3	<17	<17
HA-5.89	2.5 to 3 ft	Not Excavated	20-Jul-06	<0.13	<0.13	<1.7	<1.7	<0.12	<0.13	<1.7	<1.7
HA-5.90	3 to 3.5 ft	Not Excavated	20-Jul-06	<5.2	<5.4	<66	<66	<5.4	<5.4	<66	<66
HA-5.91	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.54	<0.54	<6.8	<6.8	<0.49	<0.52	<6.8	<6.8
OUE-DP-018	5 to 6 ft	Not Excavated	22-Jun-10			<0.44	<0.44			<0.44	<0.44
OUE-DP-026	0 to 0.5 ft	Not Excavated	25-Jun-10			0.079 J	<0.4			<0.4	<0.4
	0.5 to 2 ft	Not Excavated	25-Jun-10			0.081 J	<0.41			<0.41	<0.41
	2 to 3.5 ft	Not Excavated	25-Jun-10			<1.3	<1.3			<1.3	<1.3
OUE-DP-028	0 to 0.5 ft	Not Excavated	21-Jun-10			0.034 J	<0.35			<0.35	<0.35
	0.5 to 1.5 ft	Not Excavated	21-Jun-10			<0.35	<0.35			<0.35	<0.35
P4-21	2 to 2.5 ft	Not Excavated	20-Mar-03	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6
P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34
P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.33	0.33	<0.33	<0.33	<0.33	<0.33	<0.33
P5-2	0.5 to 1 ft	Not Excavated	24-Mar-03	<42	<42	<42	<42	<42	<42	<42	<42
P5-3	3.3 to 3.8 ft	Not Excavated	24-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
SAWMILL	0 to 0.5 ft	Not Excavated	17-Dec-03	<8.2	<8.2	<41	<41	<8.2	<8.2	<41	<41

			Sample	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	bis(2-Ethylhexyl)Phthalate	Butyl Benzyl Phthalate	Chrysene	Dibenz(a,h)anthracene	Di-n-butylphthalate	Di-n-octylphthalate
Less the ID	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH		0.38	35	260	3.8	0.015	6100	2400
			PSL-Eco	1	1			1	1	200	
DP-3.48	1 to 1.5 ft	Not Excavated	22-Sep-05	<0.034	<0.046	<0.34	<0.34	<0.04	<0.039	<0.34	<0.34
	5 to 5.5 ft	Not Excavated	22-Sep-05	<0.034	<0.046	<0.34	<0.34	<0.04	<0.039	<0.34	<0.34
P5-1	11.5 to 12 ft	Not Excavated	24-Mar-03	<8.3	<8.3	<8.3	<8.3	<8.3	<8.3	<8.3	<8.3
Compressor House	and Lath Buil	ding AOI									
MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07	<0.13	<1.4	<7.1	<7.1	<1.4	<1.4	<7.1	<7.1
	5.5 to 6 ft	Not Excavated	29-Sep-07	<0.085	<0.085	0.067 J	<0.43	<0.085	<0.0064	<0.43	<0.43
OUE-DP-032	0 to 0.5 ft	Not Excavated	25-Jun-10	0.0098 J		0.019 J	<0.36		<0.027	<0.36	<0.36
	0.5 to 1.7 ft	Not Excavated	25-Jun-10	<0.0058		<0.39	<0.39		<0.0058	<0.39	<0.39
	2 to 3.5 ft	Not Excavated	25-Jun-10	<0.0061		<0.4	<0.4		<0.0061	<0.4	<0.4
OUE-DP-033	0 to 0.5 ft	Not Excavated	29-Jun-10	<0.34		<23	<23		<0.34	<23	<23
	0.5 to 1.5 ft	Not Excavated	29-Jun-10	<0.0071		<0.47	<0.47		<0.0071	<0.47	0.039 J
	4 to 5 ft	Not Excavated	29-Jun-10	<0.0066		<0.43	<0.43		<0.0066	<0.43	<0.43
OUE-DP-034	0 to 1 ft	Not Excavated	25-Jun-10	<0.058		<1.2	<1.2		<0.058	<1.2	<1.2
	1 to 2 ft	Not Excavated	25-Jun-10	0.0052 J		0.022 J	<0.44		<0.0066	<0.44	<0.44
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.0057		0.015 J	<0.39		<0.0057	<0.39	<0.39
OUE-DP-035	0 to 0.5 ft	Not Excavated	25-Jun-10	0.011 J		<2.7	<2.7		<0.017	<2.7	<2.7
	0.5 to 1.5 ft	Not Excavated	25-Jun-10	0.006 J		<1.1	<1.1		0.0021 J	<1.1	<1.1
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.03		<0.79	<0.79		<0.03	<0.79	<0.79
Power House and F	uel Barn AOI	•	•								
DP-4.16	1 to 1.5 ft	Not Excavated	05-Jun-06	<0.026	<0.027			<0.027	<0.027		
DP-4.17	2.1 to 2.6 ft	Not Excavated	05-Jun-06	0.17	0.12			0.12	<0.027		
	2.6 to 3.1 ft	Not Excavated	05-Jun-06	<0.026	<0.027			<0.027	<0.027		
DP-4.18	1.6 to 2.1 ft	Not Excavated	05-Jun-06	<0.052	<0.054			0.054 J	<0.054		
DP-4.19	1 to 1.5 ft	Not Excavated	05-Jun-06	<0.026	<0.027			0.042 J	<0.027		
DP-4.22	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.026	<0.027			<0.027	<0.027		
DP-4.23	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.078	<0.081			<0.081	<0.081		
DP-4.24	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.013	<0.017			<0.017	<0.014		
DP-5.59	0.5 to 1 ft	Not Excavated	20-Oct-05	<0.033	<0.045			<0.039	<0.038		
DP-5.71	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.13	<0.13			<0.13	<0.13		
DP-5.72	0 to 0.5 ft	Not Excavated	06-Jun-06	<0.026	<0.027			<0.027	<0.027		
HA-4.57	1.7 to 2.2 ft	Not Excavated	01-Aug-06	<0.066	<0.066			<0.066	<0.066		
HA-4.58	1 to 1.5 ft	Not Excavated	01-Aug-06	<0.067 [<0.066]	<0.067 [<0.066]			<0.067 [<0.066]	<0.067 [<0.066]		
HA-4.59	4 to 4.5 ft	Not Excavated	01-Aug-06	<0.66	<0.66			<0.66	<0.66		
HA-4.60	3 to 3.5 ft	Not Excavated	01-Aug-06	<0.067	<0.067			<0.067	<0.067		
			Sample	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	bis(2-Ethylhexyl)Phthalate	Butyl Benzyl Phthalate	Chrysene	Dibenz(a,h)anthracene	Di-n-butylphthalate	Di-n-octylphthalate
-------------	---------------	-----------------------	-----------	----------------------	----------------------	----------------------------	------------------------	------------------------------------	-----------------------------	---------------------	---------------------
Lesstian ID	Depth	Europeantiere Chattan	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH		0.38	35	260	3.8	0.015	6100	2400
			PSL-Eco	1	1			1	1	200	
HA-4.61	4 to 4.5 ft	Not Excavated	01-Aug-06	<0.33	<0.33			<0.33	<0.33		
HA-4.62	1 to 1.5 ft	Not Excavated	01-Aug-06	<0.067	0.051 J			0.029 J	<0.067		
HA-4.63	1 to 1.5 ft	Not Excavated	23-Aug-06	<0.066	<0.066			<0.066	<0.066		
HA-4.66	6 to 6.5 ft	Not Excavated	09-Aug-06	<0.66	<0.66			<0.66	<0.66		
HA-4.67	6 to 6.5 ft	Not Excavated	09-Aug-06	<0.2	0.05 J			0.084 J	<0.2		
HA-4.68	5 to 5.5 ft	Not Excavated	08-Aug-06	<0.67	<0.67			<0.67	<0.67		
HA-4.77	6 to 6.5 ft	Not Excavated	07-Aug-06	<0.067	<0.067			<0.067	<0.067		
HA-4.78	8 to 8.5 ft	Not Excavated	14-Sep-06	<0.082	<0.082			0.0089 J	<0.082		
HA-4.79	8 to 8.5 ft	Not Excavated	08-Aug-06	<0.066	<0.066			<0.066	<0.066		
HA-4.82	6.5 to 7 ft	Not Excavated	07-Aug-06	<0.66	<0.66			<0.66	<0.66		
HA-4.87	4.5 to 5 ft	Not Excavated	07-Aug-06	<0.066	<0.066			<0.066	<0.066		
HA-4.88	4.5 to 5 ft	Not Excavated	07-Aug-06	<0.067	<0.067			<0.067	<0.067		
HA-4.90	13.5 to 14 ft	Not Excavated	08-Aug-06	<0.13 [0.4]	<0.13 [0.9] [PSL-HH]			0.057 J [1.9] [PSL- HH,PSL-Eco]	<0.13 [0.19 J] [PSL- HH]		
HA-4.145	0.9 to 1.4 ft	Not Excavated	27-Jun-06	<0.013 [0.022 J]	<0.017 [0.02 J]			<0.017 [0.028 J]	<0.014 [<0.014]		
HA-4.146	2.1 to 2.6 ft	Not Excavated	27-Jun-06	<0.013	<0.017			<0.017	<0.014		
HA-4.147	1.2 to 1.7 ft	Not Excavated	27-Jun-06	0.097	0.14			0.15	0.033 J [PSL-HH]		
HA-4.148	0.7 to 1.2 ft	Not Excavated	27-Jun-06	0.027 J	0.036 J			0.057 J	<0.014		
HSA-4.2	2 to 2.5 ft	Not Excavated	24-Jan-06	<0.023	<0.022			<0.036	<0.026		
	3.5 to 4 ft	Not Excavated	24-Jan-06	<0.013	<0.017			<0.017	<0.014		
HSA-4.3	2 to 2.5 ft	Not Excavated	24-Jan-06	7.4 [PSL-Eco]	17 [PSL-HH,PSL-Eco]			22 [PSL-HH,PSL-Eco]	2.1 [PSL-HH,PSL-Eco]		
	3.5 to 4 ft	Not Excavated	24-Jan-06	<0.023	<0.022			<0.036	<0.026		
HSA-4.4	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.023	<0.022			<0.035	<0.025		
	6 to 6.5 ft	Not Excavated	23-Jan-06	<0.023	<0.022			<0.036	<0.026		
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.023	<0.022			<0.036	<0.026		
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.023	<0.022			<0.035	<0.025		
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.023	<0.022			<0.035	<0.025		
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.046	<0.044			<0.07	<0.05		
HSA-4.5	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.27	<0.34			<0.34	<0.27		
	6 to 6.5 ft	Not Excavated	23-Jan-06	<0.04	<0.052			0.052 J	<0.042		
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.054	<0.069			<0.069	<0.056		
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.024	<0.022			<0.036	<0.026		

			Sample	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	bis(2-Ethylhexyl)Phthalate	Butyl Benzyl Phthalate	Chrysene	Dibenz(a,h)anthracene	Di-n-butylphthalate	Di-n-octylphthalate
Less the ID	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH		0.38	35	260	3.8	0.015	6100	2400
			PSL-Eco	1	1			1	1	200	
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.023	<0.022			<0.036	<0.026		
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.023	<0.022			<0.035	<0.025		
	31 to 31.5 ft	Not Excavated	24-Jan-06	<0.023	<0.022			<0.035	<0.025		
HSA-4.6	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.023	<0.022			<0.035	<0.026		
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.023	<0.022			<0.036	<0.026		
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.13	<0.13			<0.12	<0.13		
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.023	<0.022			<0.035	<0.026		
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.023	<0.022			<0.035	<0.025		
	31 to 31.5 ft	Not Excavated	24-Jan-06	<0.046	<0.044			<0.069	<0.05		
MW-4.5	0 to 0.5 ft	Not Excavated	28-Sep-07	<0.21	<0.21	0.043 J	<1.1	<0.21	<0.21	<1.1	<1.1
	8.5 to 9 ft	Not Excavated	28-Sep-07	<0.087	<0.087	0.04 J	<0.44	<0.087	<0.087	<0.44	<0.44
OUE-DP-036	1 to 2 ft	Not Excavated	22-Jun-10			<0.43	0.039 J			<0.43	<0.43
	3 to 4 ft	Not Excavated	22-Jun-10			<0.47	<0.47			<0.47	<0.47
	5 to 7 ft	Not Excavated	22-Jun-10			<0.43	<0.43			<0.43	<0.43
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10			0.029 J	<0.42			<0.42	<0.42
	3 to 4 ft	Not Excavated	22-Jun-10			<0.42	<0.42			<0.42	<0.42
	5 to 7 ft	Not Excavated	22-Jun-10			<0.44	<0.44			<0.44	<0.44
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10			0.035 J	0.047 J			0.6	<0.48
	6.5 to 8 ft	Not Excavated	25-Jun-10			<0.56	<0.56			<0.56	<0.56
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04	<0.067	<0.067	1.4	0.38	<0.067	<0.067	<0.34	<0.34
	12 to 12.5 ft	Not Excavated	20-Jul-04	<0.067	<0.067	<0.34	<0.34	<0.067	<0.067	<0.34	<0.34
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04	<0.066	<0.066	<0.33	<0.33	<0.066	<0.066	<0.33	<0.33
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04	<0.067	<0.067	<0.34	<0.34	<0.067	<0.067	<0.34	<0.34
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04	<0.068	<0.068	<0.34	<0.34	<0.068	<0.068	<0.34	<0.34
HA-4.95	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067			<0.067	<0.067		
HA-4.96	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067			0.025 J	<0.067		
HA-4.97	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067			<0.067	<0.067		
HA-4.98	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067			<0.067	<0.067		
HA-4.100	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.068	<0.068			<0.068	<0.068		
HA-4.101	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067			<0.067	<0.067		
HA-4.102	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.066	<0.066			<0.066	<0.066		
HA-4.103	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067			<0.067	<0.067		
HA-4.105	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067			<0.067	<0.067		
HA-4.106	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.068	<0.068			<0.068	<0.068		

			Sample	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	bis(2-Ethylhexyl)Phthalate	Butyl Benzyl Phthalate	Chrysene	Dibenz(a,h)anthracene	Di-n-butylphthalate	Di-n-octylphthalate
Leastion ID	Depth	Execution Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	-	0.38	35	260	3.8	0.015	6100	2400
			PSL-Eco	1	1			1	1	200	
HA-4.156	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.066	<0.066			<0.066	<0.066		
HA-4.157	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.068	<0.068			<0.068	<0.068		
MW-4.6	0 to 0.5 ft	Not Excavated	28-Sep-07	<0.14	<0.14	0.038 J	<0.69	0.044 J	<0.14	<0.69	<0.69
	4 to 4.5 ft	Not Excavated	28-Sep-07	0.042 J	<0.16	0.031 J	<0.8	0.052 J	<0.16	<0.8	<0.8
OUE-DP-041	0 to 0.5 ft	Not Excavated	27-Sep-10	0.002 J		0.024 J	<0.37		<0.0056	0.016 J	<0.37
	0.5 to 1 ft	Not Excavated	27-Sep-10	0.003 J		0.015 J	<0.37		<0.0055	<0.37	<0.37
OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10	0.0053 J		0.043 J	<0.38		0.0033 J	0.012 J	<0.38
	1.5 to 3 ft	Not Excavated	24-Sep-10	0.01		0.03 J	<0.39		0.0041 J	0.013 J	<0.39
	4 to 4.5 ft	Not Excavated	24-Sep-10	0.018		<0.41	<0.41		0.0023 J	<0.41	<0.41
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	0.014		<0.37	<0.37		0.0015 J	<0.37	<0.37
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	0.0023 J		<0.34	<0.34		<0.0052	<0.34	<0.34
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	0.0023 J		0.099 J	<0.35		<0.0053	<0.35	<0.35
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	0.0021 J		0.039 J	<0.35		<0.0053	<0.35	<0.35
Pond 8 Fill AOI											
HSA-6.29	2 to 2.5 ft	Not Excavated	18-Jan-06	<0.069	<0.066			<0.11	<0.076		
	6 to 6.5 ft	Not Excavated	18-Jan-06	<0.023	<0.022			<0.035	<0.025		
	11 to 11.5 ft	Not Excavated	18-Jan-06	<0.023	<0.022			<0.035	<0.025		
	16 to 16.5 ft	Not Excavated	18-Jan-06	<0.023	<0.022			<0.035	<0.025		
	20.5 to 21 ft	Not Excavated	19-Jan-06	<0.023	<0.022			<0.036	<0.026		
HSA-6.30	2 to 2.5 ft	Not Excavated	19-Jan-06	<0.024	<0.022			<0.036	<0.026		
	5.5 to 6 ft	Not Excavated	19-Jan-06	<0.023	<0.022			<0.036	<0.026		
	6 to 6.5 ft	Not Excavated	19-Jan-06	<0.023	<0.022			<0.036	<0.026		
	11 to 11.5 ft	Not Excavated	19-Jan-06	<0.023	<0.022			<0.035	<0.025		
	16 to 16.5 ft	Not Excavated	19-Jan-06	<0.023	<0.022			<0.035	<0.026		
P6-TP3	4 to 4.5 ft	Not Excavated	18-Dec-03	<0.067	<0.067	<0.33	<0.33	<0.067	<0.067	<0.33	<0.33
P6-TP6	10 to 10.5 ft	Not Excavated	19-Dec-03	<0.067	<0.067	<0.33	<0.33	<0.067	<0.067	<0.33	<0.33
P6-TP8	8 to 8.5 ft	Not Excavated	19-Dec-03	<0.067	<0.067	<0.34	<0.34	<0.067	<0.067	<0.34	<0.34

			Sample	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	2300	2300	0.15	3.6		1700				0.038
			PSL-Eco	1	0.6	1	0.6	0.6	1.2	29	1.1		
Water Treatment a	nd Truck Dum	AOI											
OUE-DP-001	0 to 1 ft	Not Excavated	24-Jun-10										
	1 to 2 ft	Not Excavated	24-Jun-10										
	4 to 5 ft	Not Excavated	24-Jun-10										
OUE-DP-002	0 to 1 ft	Not Excavated	24-Jun-10										
	1 to 2 ft	Not Excavated	24-Jun-10										
	4 to 5 ft	Not Excavated	24-Jun-10										
OUE-DP-004	0 to 1 ft	Not Excavated	23-Jun-10										
	1 to 2 ft	Not Excavated	23-Jun-10										
	3 to 4 ft	Not Excavated	23-Jun-10										
P4-20	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND
HA-4.137	2.3 to 2.8 ft	Not Excavated	08-Aug-06	<0.34 [<0.066]	<0.34 [<0.066]	<0.34 [<0.066]	<0.34 [<0.066]	<0.34 [<0.066]	<0.34 [<0.066]	ND [ND]	ND [ND]	ND [ND]	ND [ND]
HA-4.138	7.3 to 7.8 ft	Not Excavated	08-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
HA-4.139	6.2 to 6.7 ft	Not Excavated	08-Aug-06	<0.13 [<0.13]	<0.13 [<0.13]	<0.13 [<0.13]	0.21 [<0.13]	0.091 J [<0.13]	<0.13 [<0.13]	0.30 [ND]	ND [ND]	0.091 [ND]	ND [ND]
HA-4.140	1 to 1.5 ft	Not Excavated	08-Aug-06	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	ND	ND	ND	ND
HA-4.141	1.1 to 1.6 ft	Not Excavated	08-Aug-06	<0.066	<0.066	<0.066	<0.066	<0.066	<0.066	ND	ND	ND	ND
HA-4.142	1.7 to 2.2 ft	Not Excavated	08-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
HA-4.160	2.7 to 3.2 ft	Not Excavated	08-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
HSA-4.1	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.066 [<0.044]	<0.063 [<0.051]	<0.08 [<0.04]	<0.061 [<0.055]	<0.062 [<0.05]	<0.061 [0.053 J]	ND [ND]	ND [0.15]	ND [0.15]	ND [0.0043]
	4 to 4.5 ft	Not Excavated	23-Jan-06	<0.15	<0.17	<0.13	<0.18	<0.17	<0.13	ND	ND	ND	ND
OUE-DP-003	0 to 1 ft	Not Excavated	24-Jun-10		<0.029	<0.029							
	1 to 2 ft	Not Excavated	24-Jun-10		<0.0053	<0.0053							
	4 to 5 ft	Not Excavated	24-Jun-10		<0.0054	<0.0054							
OUE-DP-009	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.078	<0.078	<0.078	<0.078	<0.078	<0.078	ND	ND	ND	ND
	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	ND	ND	ND	ND
OUE-DP-010	6 to 6.5 ft	Not Excavated	29-Jun-10	<0.077	<0.077	<0.077	<0.077	<0.077	<0.077	ND	ND	ND	ND
	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.076	<0.076	<0.076	<0.076	<0.076	<0.076	ND	ND	ND	ND
OUE-DP-011	5 to 5.5 ft	Not Excavated	29-Jun-10	<0.074	<0.074	<0.074	<0.074	<0.074	<0.074	ND	ND	ND	ND
	5.6 to 6.5 ft	Not Excavated	29-Jun-10	<0.076	<0.076	<0.076	<0.076	<0.076	<0.076	ND	ND	ND	ND
P4-13	0 to 0.5 ft	Not Excavated	20-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND
P4-14	0 to 0.5 ft	Not Excavated	20-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND
P4-15	1.2 to 1.7 ft	Not Excavated	19-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND
P4-16	2.3 to 2.8 ft	Not Excavated	20-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND
P4-17	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND

			Sample	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
=	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	2300	2300	0.15	3.6		1700	-	-	-	0.038
			PSL-Eco	1	0.6	1	0.6	0.6	1.2	29	1.1		
P4-18	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND
P4-19	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05	< 0.036	<0.038	<0.037	<0.00078	<0.037	<0.034	ND	ND	ND	ND
Sawmill #1 AOI													
DP-5.57	0.5 to 1 ft	Not Excavated	20-Oct-05	<0.19	<0.17	<0.18	<0.22	<0.2	<0.2	ND	ND	ND	ND
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.036	<0.038	<0.037	<0.036	<0.037	<0.035	ND	ND	ND	ND
DP-ROAD-4.2	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.036	<0.038	<0.037	<0.036	<0.037	<0.035	ND	ND	ND	ND
HA-4.35	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.069	<0.065	<0.063	<0.082	<0.06	<0.049	ND	ND	ND	ND
HA-4.36	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.64	<0.6	<0.58	<0.68	<0.63	<0.68	ND	ND	ND	ND
HA-4.37	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.015 [<0.095]	<0.017 [<0.09]	<0.013 [<0.086]	<0.018 [<0.1]	<0.016 [<0.094]	<0.012 [<0.1]	ND [ND]	ND [ND]	ND [ND]	ND [ND]
HA-4.38	2.2 to 2.7 ft	Not Excavated	12-Jul-06	<0.64	<0.61	<0.58	<0.68	<0.64	<0.69	ND	ND	ND	ND
HA-4.39	3 to 3.5 ft	Not Excavated	12-Jul-06	<1.3	<1.2	<1.2	<1.4	<1.3	<1.4	ND	ND	ND	ND
HA-4.40	2.3 to 2.8 ft	Not Excavated	12-Jul-06	<0.032	<0.03	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
HA-4.41	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.097	<0.092	<0.088	<0.1	<0.096	<0.1	ND	0.14	0.14	0.014
HA-5.84	3 to 3.5 ft	Not Excavated	20-Jul-06	<3.2 [<0.8]	<3 [<0.76]	<2.9 [<0.73]	<3.4 [<0.85]	<3.2 [<0.79]	<3.4 [<0.86]	ND [ND]	ND [ND]	ND [ND]	ND [ND]
HA-5.85	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.35	<0.33	<0.32	<0.41	<0.3	<0.24	ND	ND	ND	ND
HA-5.86	2.7 to 3.2 ft	Not Excavated	12-Jul-06	0.14	<0.061	<0.058	<0.068	0.11 J	0.12 J	0.11	0.63	0.60	0.086 [PSL-HH]
HA-5.87	3 to 3.5 ft	Not Excavated	20-Jul-06	<3.5	<3.3	<3.2	<4.1	<3	<2.4	ND	ND	ND	ND
HA-5.88	3 to 3.5 ft	Not Excavated	20-Jul-06	<1.7	<1.6	<1.6	<2.1	<1.5	<1.2	ND	ND	ND	ND
HA-5.89	2.5 to 3 ft	Not Excavated	20-Jul-06	<0.18	<0.17	<0.16	<0.21	<0.15	<0.12	ND	ND	ND	ND
HA-5.90	3 to 3.5 ft	Not Excavated	20-Jul-06	<6.4	<6	<5.8	<6.8	<6.3	<6.8	ND	ND	ND	ND
HA-5.91	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.7	<0.66	<0.64	<0.84	<0.61	<0.49	ND	ND	ND	ND
OUE-DP-018	5 to 6 ft	Not Excavated	22-Jun-10										ND
OUE-DP-026	0 to 0.5 ft	Not Excavated	25-Jun-10										
	0.5 to 2 ft	Not Excavated	25-Jun-10										
	2 to 3.5 ft	Not Excavated	25-Jun-10										
OUE-DP-028	0 to 0.5 ft	Not Excavated	21-Jun-10										ND
	0.5 to 1.5 ft	Not Excavated	21-Jun-10										ND
P4-21	2 to 2.5 ft	Not Excavated	20-Mar-03	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	ND	ND	ND	ND
P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	ND	ND	ND	ND
P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND
P5-2	0.5 to 1 ft	Not Excavated	24-Mar-03	<42	<42	<42	<42	<42	<42	ND	ND	ND	ND
P5-3	3.3 to 3.8 ft	Not Excavated	24-Mar-03	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND
SAWMILL	0 to 0.5 ft	Not Excavated	17-Dec-03	<8.2	<8.2	<8.2	<8.2	<8.2	<8.2	ND	ND	ND	ND

			Sample	Fluoranthene	Fluorene	Indeno(1.2.3-cd)Pvrene	Naphthalene	Phenanthrene	Pvrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	2300	2300	0.15	3.6		1700	-	-	-	0.038
			PSL-Eco	1	0.6	1	0.6	0.6	1.2	29	1.1		
DP-3.48	1 to 1.5 ft	Not Excavated	22-Sep-05	<0.039	<0.035	<0.036	<0.044	<0.04	<0.041	ND	ND	ND	ND
	5 to 5.5 ft	Not Excavated	22-Sep-05	<0.039	<0.035	<0.036	<0.044	<0.04	<0.041	ND	ND	ND	ND
P5-1	11.5 to 12 ft	Not Excavated	24-Mar-03	<8.3	<8.3	<8.3	<8.3	<8.3	<8.3	ND	ND	ND	ND
Compressor House	e and Lath Buil	Iding AOI											
MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07	<1.4	<0.13	<0.13	<1.4	<1.4	<1.4			ND	ND
	5.5 to 6 ft	Not Excavated	29-Sep-07	<0.085	<0.085	<0.085	<0.085	<0.085	<0.085			0.022	0.022
OUE-DP-032	0 to 0.5 ft	Not Excavated	25-Jun-10		<0.027	0.0057 J							
	0.5 to 1.7 ft	Not Excavated	25-Jun-10		<0.0058	<0.0058							
	2 to 3.5 ft	Not Excavated	25-Jun-10		<0.0061	<0.0061							
OUE-DP-033	0 to 0.5 ft	Not Excavated	29-Jun-10		<0.34	<0.34							
	0.5 to 1.5 ft	Not Excavated	29-Jun-10		<0.0071	<0.0071							
	4 to 5 ft	Not Excavated	29-Jun-10		<0.0066	<0.0066							
OUE-DP-034	0 to 1 ft	Not Excavated	25-Jun-10		0.017 J	<0.058							
	1 to 2 ft	Not Excavated	25-Jun-10		0.0019 J	0.0037 J							
	3 to 4.5 ft	Not Excavated	25-Jun-10		<0.0057	<0.0057							
OUE-DP-035	0 to 0.5 ft	Not Excavated	25-Jun-10		0.012 J	0.0058 J							
	0.5 to 1.5 ft	Not Excavated	25-Jun-10		0.032	0.0035 J							
	3 to 4.5 ft	Not Excavated	25-Jun-10		<0.03	<0.03							
Power House and	Fuel Barn AOI		•										
DP-4.16	1 to 1.5 ft	Not Excavated	05-Jun-06	<0.032	<0.03	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
DP-4.17	2.1 to 2.6 ft	Not Excavated	05-Jun-06	0.69	<0.03	0.072	0.25	0.46	0.74	0.91	2.2 [PSL-Eco]	2.2	0.15 [PSL-HH]
	2.6 to 3.1 ft	Not Excavated	05-Jun-06	<0.032	<0.03	<0.029	<0.033	<0.031	0.037 J	ND	0.037	0.037	ND
DP-4.18	1.6 to 2.1 ft	Not Excavated	05-Jun-06	0.13 J	<0.06	<0.057	<0.067	0.097 J	0.12 J	0.097	0.30	0.27	0.00054
DP-4.19	1 to 1.5 ft	Not Excavated	05-Jun-06	0.047 J	<0.03	<0.029	<0.034	0.054 J	0.063 J	0.054	0.18	0.19	0.027
DP-4.22	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.032	<0.03	<0.029	<0.034	<0.031	<0.034	ND	ND	ND	ND
DP-4.23	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.096	<0.091	<0.087	<0.1	<0.095	<0.1	ND	ND	ND	ND
DP-4.24	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.014	<0.017	<0.013	<0.018	<0.016	<0.012	ND	ND	ND	ND
DP-5.59	0.5 to 1 ft	Not Excavated	20-Oct-05	<0.038	<0.034	<0.035	<0.043	<0.039	<0.04	ND	ND	ND	ND
DP-5.71	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.16	<0.15	<0.14	<0.17	<0.16	<0.17	ND	ND	ND	ND
DP-5.72	0 to 0.5 ft	Not Excavated	06-Jun-06	<0.032	<0.03	<0.029	<0.034	<0.031	<0.034	ND	ND	ND	ND
HA-4.57	1.7 to 2.2 ft	Not Excavated	01-Aug-06	<0.066	<0.066	<0.066	<0.066	<0.066	<0.066	ND	ND	ND	ND
HA-4.58	1 to 1.5 ft	Not Excavated	01-Aug-06	<0.067 [<0.066]	<0.067 [<0.066]	<0.067 [<0.066]	<0.067 [<0.066]	<0.067 [<0.066]	<0.067 [<0.066]	ND [ND]	ND [ND]	ND [ND]	ND [ND]
HA-4.59	4 to 4.5 ft	Not Excavated	01-Aug-06	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	ND	ND	ND	ND
HA-4.60	3 to 3.5 ft	Not Excavated	01-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND

			Sample	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Less strend ID	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	2300	2300	0.15	3.6		1700				0.038
			PSL-Eco	1	0.6	1	0.6	0.6	1.2	29	1.1		
HA-4.61	4 to 4.5 ft	Not Excavated	01-Aug-06	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	ND	ND	ND	ND
HA-4.62	1 to 1.5 ft	Not Excavated	01-Aug-06	0.042 J	<0.067	<0.067	<0.067	<0.067	0.037 J	ND	0.16	0.12	0.0054
HA-4.63	1 to 1.5 ft	Not Excavated	23-Aug-06	<0.066	<0.066	<0.066	<0.066	<0.066	<0.066	ND	ND	ND	ND
HA-4.66	6 to 6.5 ft	Not Excavated	09-Aug-06	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	ND	ND	ND	ND
HA-4.67	6 to 6.5 ft	Not Excavated	09-Aug-06	0.15 J	<0.2	<0.2	<0.2	0.14 J	0.095 J	0.21	0.51	0.57	0.055 [PSL-HH]
HA-4.68	5 to 5.5 ft	Not Excavated	08-Aug-06	<0.67	<0.67	<0.67	<0.67	<0.67	<0.67	ND	ND	ND	ND
HA-4.77	6 to 6.5 ft	Not Excavated	07-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
HA-4.78	8 to 8.5 ft	Not Excavated	14-Sep-06	0.012 J	<0.082	<0.082	<0.082	0.011 J	0.012 J	0.011	0.033	0.032	0.000089
HA-4.79	8 to 8.5 ft	Not Excavated	08-Aug-06	<0.066	<0.066	<0.066	<0.066	<0.066	<0.066	ND	ND	ND	ND
HA-4.82	6.5 to 7 ft	Not Excavated	07-Aug-06	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	ND	ND	ND	ND
HA-4.87	4.5 to 5 ft	Not Excavated	07-Aug-06	<0.066	<0.066	<0.066	<0.066	<0.066	<0.066	ND	ND	ND	ND
HA-4.88	4.5 to 5 ft	Not Excavated	07-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
HA-4.90	13.5 to 14 ft	Not Excavated	08-Aug-06	0.18 [2.2] [PSL- Eco]	<0.13 [<0.2]	<0.13 [0.36] [PSL-HH]	0.1 J [<0.2]	0.14 [0.3]	0.18 [2.6] [PSL- Eco]	0.27 [0.43]	0.47 [12]	0.47 [9.8]	0.0063 [1.4] [PSL- HH]
HA-4.145	0.9 to 1.4 ft	Not Excavated	27-Jun-06	0.022 J [0.095]	<0.017 [<0.017]	<0.013 [<0.013]	<0.018 [0.024 J]	0.019 J [0.061 J]	0.018 J [0.09]	0.019 [0.085]	0.040 [0.29]	0.037 [0.25]	ND [0.019]
HA-4.146	2.1 to 2.6 ft	Not Excavated	27-Jun-06	0.015 J	<0.017	<0.013	<0.018	0.018 J	<0.012	0.018	0.015	0.018	ND
HA-4.147	1.2 to 1.7 ft	Not Excavated	27-Jun-06	0.18	<0.017	0.077	<0.018	0.075	0.18	0.10	1.2 [PSL-Eco]	1.1	0.20 [PSL-HH]
HA-4.148	0.7 to 1.2 ft	Not Excavated	27-Jun-06	0.12	<0.017	0.016 J	0.042 J	0.12	0.14	0.16	0.50	0.50	0.049 [PSL-HH]
HSA-4.2	2 to 2.5 ft	Not Excavated	24-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
	3.5 to 4 ft	Not Excavated	24-Jan-06	0.02 J	<0.017	<0.013	<0.018	0.019 J	0.017 J	0.019	0.051	0.050	0.0014
HSA-4.3	2 to 2.5 ft	Not Excavated	24-Jan-06	40 [PSL-Eco]	1.3 J [PSL- Eco]	7.3 [PSL-HH,PSL-Eco]	1.3 J [PSL-Eco]	29 [PSL-Eco]	50 [PSL-Eco]	37 [PSL-Eco]	204 [PSL-Eco]	199	27 [PSL-HH]
	3.5 to 4 ft	Not Excavated	24-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
HSA-4.4	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.033	<0.031	<0.04	<0.03	<0.031	<0.03	ND	ND	ND	ND
	6 to 6.5 ft	Not Excavated	23-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.032	<0.031	<0.039	<0.03	<0.03	<0.03	ND	ND	ND	ND
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.032	<0.031	<0.04	<0.03	<0.03	<0.03	ND	ND	ND	ND
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.064	<0.061	<0.078	<0.06	<0.06	<0.059	ND	ND	ND	ND
HSA-4.5	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.29	<0.33	<0.26	<0.36	<0.33	<0.25	ND	ND	ND	ND
	6 to 6.5 ft	Not Excavated	23-Jan-06	<0.044	<0.051	<0.04	<0.055	<0.05	<0.038	ND	0.052	0.052	0.00052
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.059	<0.068	<0.053	<0.074	<0.066	0.058 J	ND	0.058	0.058	ND
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND

			Sample	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Less strend D	Depth		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	2300	2300	0.15	3.6		1700				0.038
			PSL-Eco	1	0.6	1	0.6	0.6	1.2	29	1.1		
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.032	<0.031	<0.04	<0.03	<0.03	<0.03	ND	ND	ND	ND
	31 to 31.5 ft	Not Excavated	24-Jan-06	<0.032	<0.031	<0.039	<0.03	<0.03	<0.03	ND	ND	ND	ND
HSA-4.6	2 to 2.5 ft	Not Excavated	23-Jan-06	< 0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.18	<0.17	<0.16	<0.21	<0.15	<0.12	ND	ND	ND	ND
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.033	<0.031	<0.04	<0.03	<0.031	<0.03	ND	ND	ND	ND
	31 to 31.5 ft	Not Excavated	24-Jan-06	<0.064	<0.061	<0.078	<0.06	<0.06	<0.059	ND	ND	ND	ND
MW-4.5	0 to 0.5 ft	Not Excavated	28-Sep-07	0.066 J	<0.21	<0.21	<0.21	0.06 J	0.057 J	0.060	0.12	0.12	ND
	8.5 to 9 ft	Not Excavated	28-Sep-07	<0.087	<0.087	<0.087	<0.087	<0.087	<0.087	ND	0.056	0.056	0.056 [PSL-HH]
OUE-DP-036	1 to 2 ft	Not Excavated	22-Jun-10										
	3 to 4 ft	Not Excavated	22-Jun-10										
	5 to 7 ft	Not Excavated	22-Jun-10										
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10		<0.084							ND	
	3 to 4 ft	Not Excavated	22-Jun-10										
	5 to 7 ft	Not Excavated	22-Jun-10										
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10										
	6.5 to 8 ft	Not Excavated	25-Jun-10										
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	0.12	0.12	0.012
	12 to 12.5 ft	Not Excavated	20-Jul-04	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04	<0.066	<0.066	<0.066	<0.066	<0.066	<0.066	ND	ND	ND	ND
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04	<0.068	<0.068	<0.068	<0.068	<0.068	<0.068	ND	0.11	0.11	0.011
HA-4.95	2 to 2.5 ft	Not Excavated	22-Aug-06	0.031 J	<0.067	<0.067	<0.067	0.018 J	0.028 J	0.018	0.059	0.046	ND
HA-4.96	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	0.036	0.036	0.0014
HA-4.97	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
HA-4.98	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	0.013 J	ND	0.013	0.013	ND
HA-4.100	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.068	<0.068	<0.068	0.011 J	<0.068	<0.068	0.011	ND	ND	ND
HA-4.101	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
HA-4.102	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.066	<0.066	<0.066	<0.066	<0.066	<0.066	ND	ND	ND	ND
HA-4.103	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
HA-4.105	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
HA-4.106	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.068	<0.068	<0.068	<0.068	<0.068	<0.068	ND	ND	ND	ND

			Sample	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Leastion ID	Depth	Execution Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bgs)	Excavation Status	PSL-HH	2300	2300	0.15	3.6		1700				0.038
			PSL-Eco	1	0.6	1	0.6	0.6	1.2	29	1.1	-	
HA-4.156	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.066	<0.066	<0.066	<0.066	<0.066	<0.066	ND	ND	ND	ND
HA-4.157	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.068	<0.068	<0.068	<0.068	<0.068	<0.068	ND	ND	ND	ND
MW-4.6	0 to 0.5 ft	Not Excavated	28-Sep-07	0.16	<0.14	<0.14	<0.14	0.1 J	0.11 J	0.10	0.36	0.30	0.0051
	4 to 4.5 ft	Not Excavated	28-Sep-07	0.065 J	<0.16	<0.16	<0.16	0.045 J	0.075 J	0.045	0.36	0.34	0.045 [PSL-HH]
OUE-DP-041	0 to 0.5 ft	Not Excavated	27-Sep-10		<0.0056	<0.0056							
	0.5 to 1 ft	Not Excavated	27-Sep-10		<0.0055	0.0021 J							
OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10		<0.0057	0.005 J							
	1.5 to 3 ft	Not Excavated	24-Sep-10		<0.0059	0.0083							
	4 to 4.5 ft	Not Excavated	24-Sep-10		<0.0062	0.01							
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10		0.0012 J	0.0097							
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10		<0.0052	0.0015 J							
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10		<0.0053	0.0011 J							
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10		<0.0053	0.0012 J							
Pond 8 Fill AOI													
HSA-6.29	2 to 2.5 ft	Not Excavated	18-Jan-06	<0.097	<0.092	<0.12	<0.09	<0.091	<0.089	ND	ND	ND	ND
	6 to 6.5 ft	Not Excavated	18-Jan-06	<0.032	<0.031	<0.039	<0.03	<0.03	<0.03	ND	ND	ND	ND
	11 to 11.5 ft	Not Excavated	18-Jan-06	<0.032	<0.031	<0.039	<0.03	<0.03	<0.03	ND	ND	ND	ND
	16 to 16.5 ft	Not Excavated	18-Jan-06	<0.032	<0.03	<0.039	<0.03	<0.03	<0.029	ND	ND	ND	ND
	20.5 to 21 ft	Not Excavated	19-Jan-06	0.064 J	<0.031	<0.04	<0.031	0.033 J	<0.03	0.033	0.064	0.033	ND
HSA-6.30	2 to 2.5 ft	Not Excavated	19-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
	5.5 to 6 ft	Not Excavated	19-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
	6 to 6.5 ft	Not Excavated	19-Jan-06	<0.033	<0.031	<0.04	<0.031	<0.031	<0.03	ND	ND	ND	ND
	11 to 11.5 ft	Not Excavated	19-Jan-06	<0.032	<0.031	<0.04	<0.03	<0.031	<0.03	ND	ND	ND	ND
	16 to 16.5 ft	Not Excavated	19-Jan-06	<0.033	<0.031	<0.04	<0.03	<0.031	<0.03	ND	ND	ND	ND
P6-TP3	4 to 4.5 ft	Not Excavated	18-Dec-03	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
P6-TP6	10 to 10.5 ft	Not Excavated	19-Dec-03	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND
P6-TP8	8 to 8.5 ft	Not Excavated	19-Dec-03	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	ND	ND	ND	ND

	Durit	E a continu	Sample Date / Analyte	2-MethyInaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(It bgs)	Status	PSL-HH	310	3400		17000	0.15	0.038
			PSL-Eco		5	0.6	0.6	1	1
Water Treatmen	t and Truck Du	mp AOI							•
FL-CS-001	2 to 2.5 ft	Not Excavated	19-Jun-07		< 0.033	<0.033	<0.033	<0.033	<0.033
FL-CS-002	2.5 to 3 ft	Not Excavated	19-Jun-07		< 0.037	0.012 J	<0.037	0.0077 J	<0.037
FL-CS-003	2.5 to 3 ft	Not Excavated	19-Jun-07		0.0023 J	0.0054 J	0.0062 J	0.016	0.014
FL-CS-004	2.5 to 3 ft	Not Excavated	19-Jun-07		< 0.032	< 0.032	<0.032	0.01 J	0.0094 J
FL-CS-005	2.5 to 3 ft	Not Excavated	19-Jun-07		<0.037	< 0.037	<0.037	0.0074 J	0.0072 J
FL-CS-006	2.5 to 3 ft	Not Excavated	19-Jun-07		< 0.0065	< 0.0065	<0.0065	<0.0065	<0.0065
FL-CS-007	6 to 6.5 ft	Not Excavated	19-Jun-07		0.0055 J	0.0011 J	0.0034 J	0.0036 J	0.0022 J
FL-CS-008	2.5 to 3 ft	Not Excavated	20-Jun-07		0.0017 J	0.0044 J	0.0042 J	0.0055 J	0.0052 J
FL-CS-009	2.5 to 3 ft	Not Excavated	20-Jun-07		0.0082	0.008	0.021	0.047	0.042 [PSL-HH]
FL-CS-010	2.5 to 3 ft	Not Excavated	20-Jun-07		0.014	0.0076	0.013	0.018	0.015
FL-CS-011	6.5 to 7 ft	EXCAVATED	22-Jun-07		0.33	0.083 J	0.38	0.31 [PSL-HH]	0.19 [PSL-HH]
FL-CS-012	6.5 to 7 ft	EXCAVATED	22-Jun-07		<2.9	<2.9	<2.9	0.46 J [PSL-HH]	<2.9
FL-CS-013	6.5 to 7 ft	Not Excavated	22-Jun-07		0.0073 J	0.088	0.1	0.21 [PSL-HH]	0.2 [PSL-HH]
FL-CS-014	6.5 to 7 ft	Not Excavated	22-Jun-07		0.0067 J	0.14	0.16	0.42 [PSL-HH]	0.42 [PSL-HH]
FL-CS-015	6.5 to 7 ft	Not Excavated	22-Jun-07		0.0056 J	0.026	0.011	0.0087	0.012
FL-CS-016	5.5 to 6 ft	Not Excavated	22-Jun-07		0.0018 J	0.012	0.0065 J	0.01	0.015
FL-CS-017	4 to 4.5 ft	Not Excavated	11-Jul-07		<0.044	0.031 J	0.017 J	0.059	0.05 [PSL-HH]
FL-CS-018	4 to 4.5 ft	Not Excavated	11-Jul-07		0.078	0.026 J	0.057	0.082	0.063 [PSL-HH]
FL-CS-019	3.5 to 4 ft	Not Excavated	11-Jul-07		<0.012	0.0028 J	<0.012	0.017	0.016
FL-CS-020	3.5 to 4 ft	Not Excavated	11-Jul-07		< 0.062	< 0.062	<0.062	<0.062	<0.062
FL-CS-021	3.5 to 4 ft	Not Excavated	11-Jul-07		<0.012	0.0078 J	0.0064 J	0.015	0.019
FL-CS-022	3 to 3.5 ft	Not Excavated	11-Jul-07		< 0.0058	0.0013 J	<0.0058	0.0029 J	0.0031 J
FL-CS-023	4.5 to 5.5 ft	Not Excavated	11-Jul-07		0.0039 J	0.0075	0.011	0.025	0.021
FL-CS-024	4.5 to 5.5 ft	Not Excavated	11-Jul-07		<0.014	0.0034 J	0.0095 J	0.033	0.027
FL-CS-025	4.5 to 5.5 ft	Not Excavated	11-Jul-07		< 0.034	< 0.034	<0.034	<0.034	<0.034
FL-CS-026	5 to 5.5 ft	Not Excavated	11-Jul-07		<0.11	<0.11	<0.11	<0.11	<0.11
FL-CS-028	3.5 to 4 ft	Not Excavated	10-Aug-07		< 0.034	0.023 J	0.016 J	0.079	0.1 [PSL-HH]
FL-CS-029	5 to 5.5 ft	Not Excavated	10-Aug-07		< 0.0075	0.001 J	<0.0075	0.0029 J	0.0033 J
FL-CS-030	4.5 to 5 ft	Not Excavated	10-Aug-07		< 0.0067	0.007	0.005 J	0.015	0.019
FL-CS-031	4.5 to 5 ft	Not Excavated	10-Aug-07		<0.047	0.042 J	0.026 J	0.081	0.077 [PSL-HH]
OUE-DP-001	0 to 1 ft	Not Excavated	24-Jun-10	0.0025 J	< 0.0054	0.0018 J	0.0012 J	0.003 J	0.0024 J
	1 to 2 ft	Not Excavated	24-Jun-10	0.0015 J	< 0.0056	0.008	0.0032 J	0.014	0.012
	4 to 5 ft	Not Excavated	24-Jun-10	< 0.0063	< 0.0063	0.0092	0.011	0.063	0.046 [PSL-HH]
OUE-DP-002	0 to 1 ft	Not Excavated	24-Jun-10	0.0011 J	< 0.0055	0.014	0.0066	0.047	0.054 [PSL-HH]
	1 to 2 ft	Not Excavated	24-Jun-10	0.0016 J	< 0.0064	< 0.0064	< 0.0064	0.0024 J	0.0024 J
	4 to 5 ft	Not Excavated	24-Jun-10	< 0.0063	< 0.0063	< 0.0063	<0.0063	<0.0063	<0.0063
OUE-DP-004	0 to 1 ft	Not Excavated	23-Jun-10	0.0072 J	<0.011	0.0034 J	0.0023 J	0.004 J	<0.011
	1 to 2 ft	Not Excavated	23-Jun-10	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49
	3 to 4 ft	Not Excavated	23-Jun-10	<0.24	<0.24	<0.24	<0.24	<0.24	<0.24
OUE-DP-012	13.5 to 14.5 ft	Not Excavated	22-Jun-10	<0.21 b/UJ	0.057 Jb	<0.21 b/UJ	0.066 Jb	<0.21 b/UJ	<0.21 b/UJ
OUE-DP-013	5 to 6 ft	Not Excavated	22-Jun-10	0.0018 J	0.0012 J	<0.0057	0.0024 J	0.0056 J	0.0042 J

	Donth	Execution	Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene
Location ID	(ft bgs)	Statue	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	310	3400		17000	0.15	0.038
			PSL-Eco		5	0.6	0.6	1	1
OUE-DP-059	2 to 3 ft	Not Excavated	06-Nov-10	< 0.0054	< 0.0054	0.0015 J	<0.0054	0.0043 J	0.0043 J
	5 to 6 ft	Not Excavated	06-Nov-10	<0.0062	< 0.0062	< 0.0062	<0.0062	0.0016 J	0.0021 J
	6.5 to 7.5 ft	Not Excavated	06-Nov-10	< 0.0064	< 0.0064	< 0.0064	<0.0064	<0.0064	<0.0064
OUE-DP-060	2 to 3 ft	Not Excavated	06-Nov-10	<0.0058	<0.0058	0.0014 J	<0.0058	0.0061	0.0081
	5 to 6 ft	Not Excavated	06-Nov-10	<0.0056	< 0.0056	< 0.0056	< 0.0056	<0.0056	<0.0056
	7 to 8 ft	Not Excavated	06-Nov-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-064	0 to 0.5 ft	Not Excavated	27-Oct-10	0.004 J	<0.0058	0.0052 J	0.0032 J	0.0064	0.0087
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	0.004 J	< 0.0059	0.0038 J	0.0018 J	0.0044 J	0.0066
	3 to 4 ft	Not Excavated	27-Oct-10	0.0019 J	< 0.0065	0.0048 J	0.0026 J	0.006 J	0.0097
OUE-DP-065	0 to 0.5 ft	Not Excavated	27-Oct-10	< 0.0056	< 0.0056	< 0.0056	< 0.0056	<0.0056	0.0025 J
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	0.0013 J	0.015	0.0019 J	0.11	0.71 [PSL-HH]	0.32 [PSL-HH]
	3 to 4 ft	Not Excavated	27-Oct-10	0.0017 J	< 0.0085	<0.0085	<0.0085	0.0037 J	0.0025 J
OUE-DP-066	0 to 0.5 ft	Not Excavated	27-Oct-10	0.0034 J	< 0.006	0.0026 J	0.002 J	0.0038 J	0.0037 J
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	0.0044 J	< 0.0069	0.0038 J	0.0068 J	0.022	0.019
	3 to 4 ft	Not Excavated	27-Oct-10	< 0.0074	< 0.0074	0.0018 J	< 0.0074	<0.0074	0.0015 J
OUE-DP-084	0 to 1 ft	Not Excavated	03-Nov-10	<0.0057	0.0015 J	0.057	0.054	0.086	0.047 [PSL-HH]
	2.5 to 3.5 ft	Not Excavated	03-Nov-10	0.0051 J	0.0031 J	0.029	0.014	0.049	0.054 [PSL-HH]
	6.5 to 7.5 ft	Not Excavated	03-Nov-10	< 0.0065	< 0.0065	< 0.0065	<0.0065	<0.0065	<0.0065
	8.5 to 9.5 ft	Not Excavated	03-Nov-10	< 0.0057	< 0.0057	< 0.0057	< 0.0057	<0.0057	< 0.0057
OUE-DP-085	0 to 1 ft	Not Excavated	03-Nov-10	<0.0058	<0.0058	<0.0058	<0.0058	0.0022 J	0.004 J
	2.5 to 3.5 ft	Not Excavated	03-Nov-10	0.0055 J	0.013	0.05	0.075	0.26 [PSL-HH]	0.29 [PSL-HH]
	6.5 to 7.5 ft	Not Excavated	03-Nov-10	< 0.0066	< 0.0066	< 0.0066	<0.0066	< 0.0066	0.0033 J
	8.5 to 9 ft	Not Excavated	03-Nov-10	<0.0062	< 0.0062	< 0.0062	< 0.0062	<0.0062	<0.0062
OUE-DP-091	6 to 7 ft	Not Excavated	05-Nov-10	< 0.0079	< 0.0079	0.0033 J	0.0026 J	0.0079 J	0.0071 J
OUE-DP-092	5.5 to 6 ft	Not Excavated	05-Nov-10	<0.0094 J/UB	0.002 J	0.0044 J	0.0039 J	0.005 J	0.0076 J
OUE-DP-099	0 to 0.5 ft	Not Excavated	14-Dec-10	0.0098 J/nQnV	0.0044 J/nQnV	0.044	0.043	0.17 [PSL-HH]	0.17 [PSL-HH]
	0.5 to 1.5 ft	Not Excavated	14-Dec-10	0.026 J/nQnV	<0.071	0.22	0.16	1.1 [PSL-HH,PSL-Eco]	1.1 [PSL-HH,PSL-Eco]
	2.5 to 3.5 ft	Not Excavated	14-Dec-10	<0.0065	< 0.0065	< 0.0065	<0.0065	<0.0065	< 0.0065
OUE-DP-100	0 to 0.5 ft	Not Excavated	14-Dec-10	< 0.0062	< 0.0062	< 0.0062	< 0.0062	0.0015 J/nQnV	0.0017 J/nQnV
	0.5 to 1.5 ft	Not Excavated	14-Dec-10	< 0.0062	< 0.0062	< 0.0062	< 0.0062	<0.0062	< 0.0062
	2.5 to 3.5 ft	Not Excavated	14-Dec-10	0.04 J/nQnV	0.038 J/nQnV	0.18	0.3	0.87 [PSL-HH]	0.89 [PSL-HH]
FL-CS-027	5 to 5.5 ft	Not Excavated	11-Jul-07		< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.0054
OUA-TP-028	0 to 0.4 ft	Not Excavated	18-Apr-07		<0.056	< 0.056	<0.056	<0.056	<0.056
OUE-DP-003	0 to 1 ft	Not Excavated	24-Jun-10	0.015 J	< 0.029	< 0.029	< 0.029	0.0062 J	<0.029
	1 to 2 ft	Not Excavated	24-Jun-10	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053
	4 to 5 ft	Not Excavated	24-Jun-10	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.0054
OUE-DP-058	1 to 2 ft	Not Excavated	06-Nov-10	<0.0063 J/UB	< 0.0063	0.0022 J	0.0013 J	0.0055 J	0.0058 J
	5 to 6 ft	Not Excavated	06-Nov-10	<0.0063 J/UB	< 0.0063	0.0031 J	0.006 J	0.0074	0.0065
	6 to 7 ft	Not Excavated	06-Nov-10	<0.0061	< 0.0061	0.0014 J	0.0022 J	0.013	0.016
OUE-HA- 001ABCD	0 to 0.5 ft	Not Excavated	25-Jun-10	0.0022 J	<0.0052	<0.0052	<0.0052	0.0016 J	0.0012 J
OUE-HA- 002ABCD	0 to 0.5 ft	Not Excavated	25-Jun-10	0.0067 J	<0.015	<0.015	<0.015	0.0072 J	0.0054 J

Location ID	Danith	Furnation	Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	310	3400		17000	0.15	0.038
			PSL-Eco		5	0.6	0.6	1	1
Sawmill #1 AOI									
OUE-DP-018	5 to 6 ft	Not Excavated	22-Jun-10	0.0024 J	0.0016 J	0.0017 J	0.0018 J	0.0035 J	0.0035 J
	6 to 7 ft	Not Excavated	22-Jun-10	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012
OUE-DP-019	2 to 2.5 ft	Not Excavated	21-Jun-10	<0.059 Jb/UB	0.017 Jb	<0.059 b/UJ	<0.059 b/UJ	0.013 Jb	<0.059 b/UJ
OUE-DP-024	2 to 2.5 ft	Not Excavated	22-Jun-10	< 0.059	0.013 J	0.053 J	0.061	0.17 [PSL-HH]	0.19 [PSL-HH]
	3.5 to 4 ft	Not Excavated	04-Nov-10	<0.55	< 0.55	<0.55	<0.55	0.23 J [PSL-HH]	0.21 J [PSL-HH]
	5 to 6 ft	Not Excavated	22-Jun-10	<0.0059 b/UJ	<0.0059 b/UJ	<0.0059 b/UJ	<0.0059 b/UJ	0.0027 Jb	0.0043 Jb
OUE-DP-025	3.2 to 3.7 ft	Not Excavated	04-Nov-10	<1.1	<1.1	<1.1	<1.1	0.29 J [PSL-HH]	0.33 J [PSL-HH]
	6 to 7 ft	Not Excavated	04-Nov-10	< 0.0059	< 0.0059	< 0.0059	< 0.0059	0.0084	0.003 J
OUE-DP-026	0 to 0.5 ft	Not Excavated	25-Jun-10	0.011	0.002 J	0.0078	0.014	0.031	0.019
	0.5 to 2 ft	Not Excavated	25-Jun-10	0.0036 J	0.0027 J	0.0039 J	0.013	0.026	0.02
	2 to 3.5 ft	Not Excavated	25-Jun-10	0.066	0.1	0.18	0.52	0.94 [PSL-HH]	1.1 [PSL-HH,PSL-Eco]
OUE-DP-028	0 to 0.5 ft	Not Excavated	21-Jun-10	0.0032 J	<0.01	0.0024 J	<0.01	0.003 J	<0.01
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011
OUE-DP-030	0 to 0.5 ft	Not Excavated	21-Jun-10	0.0028 J	< 0.0051	<0.0051	0.0011 J	<0.0051	<0.0051
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	0.0012 J	< 0.0053	< 0.0053	<0.0053	0.0011 J	<0.0053
OUE-DP-031	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	0.01 J	<0.016	<0.016	<0.016	<0.016	<0.016
OUE-DP-071	2.2 to 2.7 ft	Not Excavated	04-Nov-10	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4
	3 to 3.5 ft	Not Excavated	03-Nov-10	0.0015 J	0.0019 J	<0.0057	0.0018 J	0.0071	0.0048 J
	5.5 to 6.5 ft	Not Excavated	03-Nov-10	<0.0062	< 0.0062	< 0.0062	<0.0062	<0.0062	<0.0062
OUE-DP-072	2.5 to 3 ft	Not Excavated	04-Nov-10	<0.0057	< 0.0057	<0.0057	<0.0057	<0.0057	<0.0057
	3.5 to 4 ft	Not Excavated	04-Nov-10	<0.0059	< 0.0059	<0.0059	<0.0059	<0.0059	<0.0059
OUE-DP-073	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.0022 J	0.0058 J	0.12	0.078	0.27 [PSL-HH]	0.34 [PSL-HH]
	2 to 3 ft	Not Excavated	04-Nov-10	0.059 J	0.065	0.81	0.87 [PSL-Eco]	3.6 [PSL-HH,PSL-Eco]	5.6 [PSL-HH,PSL-Eco]
	3 to 4 ft	Not Excavated	04-Nov-10	0.0042 J	<0.021	0.024	0.03	0.074	0.14 [PSL-HH]
OUE-DP-074	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.0015 J	0.0013 J	0.0052 J	0.0064	0.037	0.028
	2 to 3 ft	Not Excavated	04-Nov-10	0.017 J	0.011 J	0.31	0.24	1.1 [PSL-HH,PSL-Eco]	1.8 [PSL-HH,PSL-Eco]
	3 to 4 ft	Not Excavated	04-Nov-10	<0.0059	< 0.0059	0.0037 J	0.0026 J	0.011	0.02
OUE-DP-075	0.5 to 1.5 ft	Not Excavated	04-Nov-10	< 0.0054	< 0.0054	<0.0054	<0.0054	0.0029 J	0.0042 J
	2 to 3 ft	Not Excavated	04-Nov-10	0.037 J	0.045 J	0.22	0.42	0.96 [PSL-HH]	1.4 [PSL-HH,PSL-Eco]
	3 to 4 ft	Not Excavated	04-Nov-10	<0.0055	<0.0055	0.0081	0.011	0.032	0.055 [PSL-HH]
Compressor Hou	use and Lath E	Building AOI							
MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07		<0.13	<0.13	<0.13	<0.13	0.067 J/J [PSL-HH]
	5.5 to 6 ft	Not Excavated	29-Sep-07		<0.0064	<0.0064	<0.0064	<0.0064	<0.0064
OUC-HA-051	0 to 0.5 ft	Not Excavated	24-Nov-09		<0.0059	0.0048 J	0.0041 J	0.0046 J	0.0056 J
	4 to 5 ft	Not Excavated	24-Nov-09		<0.012	0.0064 J	0.0076 J	0.015	0.015

	Donth	Execution	Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene
Location ID	(ft bas)	Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(PSL-HH	310	3400		17000	0.15	0.038
			PSL-Eco		5	0.6	0.6	1	1
OUC-HA-052	0 to 0.5 ft	Not Excavated	24-Nov-09		0.0018 J	0.0034 J	0.0061	0.0053 J	0.006 J
	4 to 5 ft	Not Excavated	24-Nov-09		<0.035	0.017 J	0.019 J	0.046	0.057 [PSL-HH]
OUC-HA-053	0 to 0.5 ft	Not Excavated	24-Nov-09		<0.012	0.005 J	0.0046 J	0.0061 J	0.007 J
	4 to 5 ft	Not Excavated	24-Nov-09		<0.073	0.041 J	0.062 J	0.2 [PSL-HH]	0.17 [PSL-HH]
OUC-TP-001	7 to 7.5 ft	Not Excavated	10-Jul-08		<0.0061	<0.0061	<0.0061	0.0012 J	0.002 J
OUE-DP-032	0 to 0.5 ft	Not Excavated	25-Jun-10	0.0087 J	<0.027	0.0058 J	<0.027	0.007 J	0.0076 J
	0.5 to 1.7 ft	Not Excavated	25-Jun-10	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058
	2 to 3.5 ft	Not Excavated	25-Jun-10	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061
OUE-DP-033	0 to 0.5 ft	Not Excavated	29-Jun-10	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34
	0.5 to 1.5 ft	Not Excavated	29-Jun-10	<0.0071 J/UB	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071
	4 to 5 ft	Not Excavated	29-Jun-10	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066
OUE-DP-034	0 to 1 ft	Not Excavated	25-Jun-10	0.028 J	<0.058	<0.058	<0.058	0.017 J	<0.058
	1 to 2 ft	Not Excavated	25-Jun-10	0.0022 J	<0.0066	0.0043 J	0.0019 J	0.0037 J	0.0043 J
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-035	0 to 0.5 ft	Not Excavated	25-Jun-10	0.027	<0.017	0.0059 J	0.004 J	0.012 J	0.014 J
	0.5 to 1.5 ft	Not Excavated	25-Jun-10	0.054	0.0046 J	<0.011	0.0026 J	0.0083 J	0.01 J
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
OUE-DP-067	2 to 3 ft	Not Excavated	04-Nov-10	0.003 J	<0.0061	0.0023 J	0.0039 J	0.0076	0.01
	4 to 5 ft	Not Excavated	04-Nov-10	0.0098 J	<0.012	0.0026 J	0.004 J	0.007 J	<0.012
R37-CS-001	9 to 9.5 ft	Not Excavated	10-Jun-08		<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b
R37-CS-002	7 to 7.5 ft	Not Excavated	10-Jun-08		<0.0058 b	<0.0058 b	<0.0058 b	<0.0058 b	<0.0058 b
R37-CS-010	7 to 7.5 ft	Not Excavated	23-Jun-08		<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b

	Donth	Execution	Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene
Location ID	(ft bgs)	Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	310	3400		17000	0.15	0.038
			PSL-Eco		5	0.6	0.6	1	1
R37-CS-011	7.5 to 8 ft	Not Excavated	24-Jun-08		<0.0059 b	<0.0059 b	<0.0059 b	0.0011 Jb	0.001 Jb
R37-CS-012	7.5 to 8 ft	Not Excavated	24-Jun-08		<0.0062 b	<0.0062 b	<0.0062 b	0.00096 Jb	<0.0062 b
R37-CS-013	9.5 to 10 ft	Not Excavated	24-Jun-08		<0.0061 b	<0.0061 b	<0.0061 b	<0.0061 b	<0.0061 b
R37-CS-014	8.5 to 9 ft	Not Excavated	24-Jun-08		<0.0058 b	0.0046 Jb	0.0065 b	0.0043 Jb	0.0047 Jb
R37-CS-017	9 to 9.5 ft	Not Excavated	10-Jul-08		<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
R37-CS-018	7.5 to 8 ft	Not Excavated	10-Jul-08		< 0.0057	0.00087 J	0.00096 J	0.0015 J	0.0016 J
Power House an	nd Fuel Barn A	DI							
HA-4.70	3.5 to 4 ft	Not Excavated	13-Sep-06		0.0034 J	0.018	0.0067	0.0064 J	0.006 J
HA-4.71	6 to 6.5 ft	Not Excavated	13-Sep-06		0.019	0.026	< 0.0067	<0.0067	<0.0067
HA-4.72	8 to 8.5 ft	Not Excavated	13-Sep-06		0.0015 J	0.0021 J	0.0041 J	0.01	0.0081
HA-4.73	8 to 8.5 ft	Not Excavated	13-Sep-06		<0.006	<0.006	<0.006	0.0023 J	0.0028 J
HA-4.74	8 to 8.5 ft	Not Excavated	13-Sep-06		0.0034 J	0.0072 J	0.0045 J	0.012	0.011
HA-4.76	3.5 to 4 ft	Not Excavated	13-Sep-06		< 0.007	< 0.007	0.0013 J	0.0035 J	0.0034 J
HA-4.80	6 to 6.5 ft	Not Excavated	13-Sep-06		0.0015 J	0.0023 J	0.0012 J	0.0032 J	0.0039 J
HA-4.81	8 to 8.5 ft	Not Excavated	13-Sep-06		<0.017	<0.017	<0.017	0.013 J	0.025
HA-4.83	4 to 4.5 ft	Not Excavated	13-Sep-06		0.0074 J	0.012 J	0.013 J	0.027 J	0.02 J
HA-4.84	6 to 6.5 ft	Not Excavated	13-Sep-06		0.0024 J	0.0017 J	0.0014 J	0.0047 J	0.0068 J
HA-4.85	7 to 7.5 ft	Not Excavated	13-Sep-06		< 0.006	< 0.006	<0.006	0.0015 J	0.0015 J
HA-4.86	7 to 7.5 ft	Not Excavated	13-Sep-06		< 0.0066	< 0.0066	<0.0066	<0.0066	<0.0066
OUE-DP-036	1 to 2 ft	Not Excavated	22-Jun-10	0.014	0.0033 J	0.032	0.014	0.03	0.025
	3 to 4 ft	Not Excavated	22-Jun-10	0.0016 J	< 0.0069	0.011	0.0065 J	0.035	0.035
	5 to 7 ft	Not Excavated	22-Jun-10	<0.0065	< 0.0065	< 0.0065	<0.0065	<0.0065	<0.0065
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10	0.017	0.0018 J	0.016	0.013	0.039	0.035
	3 to 4 ft	Not Excavated	22-Jun-10	0.0068	0.0013 J	0.016	0.034	0.09	0.067 [PSL-HH]
	5 to 7 ft	Not Excavated	22-Jun-10	<0.0066	< 0.0066	0.0027 J	0.002 J	0.013	0.011
OUE-DP-040	0.2 to 0.7 ft	Not Excavated	22-Jun-10	<0.012	<0.012	<0.012	<0.012	0.0047 J	0.0044 J
	0.7 to 1.7 ft	Not Excavated	22-Jun-10	<0.011	<0.011	<0.011	<0.011	0.0078 J	0.0085 J
	1.7 to 2.7 ft	Not Excavated	22-Jun-10	<0.0063	< 0.0063	0.0048 J	0.0028 J	0.013	0.016
OUE-DP-046	3.5 to 4 ft	Not Excavated	22-Jun-10	0.0062 J	0.0019 J	0.005 J	0.0086	0.036	0.028
	5 to 6 ft	Not Excavated	22-Jun-10	0.012	<0.0068	0.0046 J	0.0058 J	0.021	0.02
OUE-DP-047	5.5 to 6.5 ft	Not Excavated	22-Jun-10	0.0035 J	< 0.0076	0.0025 J	0.0026 J	0.0073 J	0.0067 J
	11.5 to 12.5 ft	Not Excavated	22-Jun-10	0.0023 J	< 0.0099	< 0.0099	<0.0099	0.0021 J	<0.0099

	Donth	Execution	Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene
Location ID	(ft bac)	Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	310	3400		17000	0.15	0.038
			PSL-Eco		5	0.6	0.6	1	1
OUE-DP-077	12.5 to 13 ft	Not Excavated	02-Nov-10	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	0.0032 J
	15 to 16 ft	Not Excavated	02-Nov-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-078	2.2 to 2.7 ft	Not Excavated	04-Nov-10	<0.0084 J/UB	< 0.0084	<0.0084	<0.0084	0.043	0.028
	5 to 5.5 ft	Not Excavated	04-Nov-10	< 0.0084	<0.0084	0.002 J	<0.0084	0.0038 J	0.0062 J
OUE-HA-016	0 to 0.5 ft	Not Excavated	24-Jun-10	< 0.0054	< 0.0054	0.0019 J	<0.0054	0.0037 J	0.0038 J
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.011	0.006 J	0.049	0.045	0.097	0.14 [PSL-HH]
	4 to 5 ft	Not Excavated	24-Jun-10	< 0.0093	0.32	0.0029 J	0.0071 J	<0.0093	<0.0093
OUE-HA-017	0 to 0.5 ft	Not Excavated	24-Jun-10	0.014	0.0022 J	0.005 J	0.0039 J	0.0034 J	<0.0054
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.019	0.0032 J	0.0097	0.0066	0.02	0.019
	4 to 5 ft	Not Excavated	24-Jun-10	< 0.0059	0.0015 J	<0.0059	< 0.0059	<0.0059	< 0.0059
OUE-HA-018	0 to 0.5 ft	Not Excavated	24-Jun-10	0.0022 J	< 0.0063	0.0028 J	0.0017 J	0.0054 J	0.0059 J
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.012 J	0.012 J	0.086	0.08	0.25 [PSL-HH]	0.29 [PSL-HH]
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0059	< 0.0059	0.017	0.022	0.09	0.079 [PSL-HH]
OUE-HA-020	0 to 0.5 ft	Not Excavated	24-Jun-10	<0.0055	0.0011 J	0.0026 J	0.005 J	0.036	0.015
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.0032 J	0.087	0.011	0.023	0.061	0.039 [PSL-HH]
	4 to 5 ft	Not Excavated	24-Jun-10	0.0034 J	< 0.0064	0.0059 J	0.0056 J	0.025	0.022
OUE-HA-023A	11 to 12 ft	Not Excavated	26-Jun-10	<0.0077	<0.0077	<0.0077	<0.0077	<0.0077	<0.0077
	13 to 14 ft	Not Excavated	26-Jun-10	<0.0061	< 0.0061	<0.0061	<0.0061	<0.0061	<0.0061
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10	<0.0071	<0.0071	<0.0071	0.0077	0.002 J	<0.0071
	6.5 to 8 ft	Not Excavated	25-Jun-10	0.0048 J	< 0.0084	<0.0084	<0.0084	<0.0084	<0.0084
OUE-HA-024	10 to 11 ft	Not Excavated	26-Jun-10	0.0032 J	0.0018 J	0.0087	0.0038 J	0.012	0.016
	11 to 12 ft	Not Excavated	26-Jun-10	<0.0061	<0.0061	0.0018 J	<0.0061	0.0033 J	0.0039 J
OUE-HA-034	0 to 0.5 ft	Not Excavated	12-Nov-10	0.0027 J	< 0.0097	<0.0097	<0.0097	0.0021 J	0.0028 J
	0.5 to 1.5 ft	Not Excavated	12-Nov-10	0.0048 J	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087
	3 to 4 ft	Not Excavated	12-Nov-10	0.0016 J	< 0.0067	0.013	0.0062 J	0.034	0.04 [PSL-HH]
OUE-HA-035	0 to 0.5 ft	Not Excavated	13-Nov-10	<0.0085	<0.0085	0.0049 J	0.0034 J	0.009	0.0096
	0.5 to 1.5 ft	Not Excavated	13-Nov-10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	2.5 to 3 ft	Not Excavated	13-Nov-10	< 0.0094	< 0.0094	< 0.0094	<0.0094	<0.0094	<0.0094

	Dopth	Execution	Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene
Location ID	(ft bgs)	Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bys)	Status	PSL-HH	310	3400		17000	0.15	0.038
			PSL-Eco		5	0.6	0.6	1	1
OUE-HA-036	0 to 0.5 ft	Not Excavated	13-Nov-10	<0.006	<0.006	< 0.006	<0.006	<0.006	<0.006
	0.5 to 1.5 ft	Not Excavated	13-Nov-10	0.0015 J	< 0.0073	0.0053 J	0.0046 J	0.016	0.017
OUE-HA-037	0 to 0.5 ft	Not Excavated	14-Nov-10	0.0078 J	0.0023 J	0.018	0.012	0.028	0.042 [PSL-HH]
	0.5 to 1.5 ft	Not Excavated	14-Nov-10	0.009	0.011	0.053	0.041	0.13	0.17 [PSL-HH]
	2 to 2.5 ft	Not Excavated	14-Nov-10	0.035	0.003 J	0.023	0.017	0.05	0.062 [PSL-HH]
OUE-HA-038	0 to 0.5 ft	Not Excavated	14-Nov-10	0.0017 Jb	0.0019 Jb	0.0025 Jb	0.0056 Jb	0.018 b	0.014 b
	0.5 to 1.5 ft	Not Excavated	14-Nov-10	<0.0062 NDb	0.0038 Jb	0.0053 Jb	0.0069 b	0.028 b	0.022 b
OUE-HA-039	0 to 0.5 ft	Not Excavated	16-Nov-10	0.0055 J	<0.016	0.0033 J	<0.016	0.0063 J	0.0076 J
	0.5 to 1.5 ft	Not Excavated	16-Nov-10	0.025	0.0017 J	0.01	0.011	0.019	0.016
	3 to 3.5 ft	Not Excavated	16-Nov-10	0.0085 J	<0.0086	0.0037 J	0.0026 J	0.0029 J	0.0021 J
OUE-DP-041	0 to 0.5 ft	Not Excavated	27-Sep-10	<0.0056	< 0.0056	< 0.0056	<0.0056	0.0015 J	0.0015 J
	0.5 to 1 ft	Not Excavated	27-Sep-10	<0.0055	< 0.0055	<0.0055	<0.0055	0.0044 J	0.0044 J
OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10	<0.0057	<0.0057	<0.0057	<0.0057	0.0023 J	0.005 J
	1.5 to 3 ft	Not Excavated	24-Sep-10	< 0.0059	< 0.0059	< 0.0059	0.0015 J	0.0047 J	0.0074
	4 to 4.5 ft	Not Excavated	24-Sep-10	<0.0062	< 0.0062	0.0018 J	0.0018 J	0.0062	0.009
OUE-HA-013	0 to 0.5 ft	Not Excavated	24-Jun-10	<0.0069	< 0.0069	< 0.0069	<0.0069	<0.0069	<0.0069
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	0.0022 J	< 0.0056	0.0032 J	0.0031 J	0.0082	0.0077
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	0.002 J	< 0.0052	<0.0052	<0.0052	0.0016 J	<0.0052
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	0.0067	< 0.0053	0.0017 J	0.0012 J	0.0022 J	0.0011 J
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	0.0082	<0.0053	0.0014 J	0.0014 J	0.0052 J	0.0027 J

	Danth	Execution	Sample Date / Analyte	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene
Location ID	(ft bgc)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	0.15		0.38	3.8	0.015
			PSL-Eco	1	1	1	1	1
Water Treatmen	t and Truck Du	Imp AOI						
FL-CS-001	2 to 2.5 ft	Not Excavated	19-Jun-07	0.013 J	0.0053 J	0.0062 J	0.005 J	<0.033
FL-CS-002	2.5 to 3 ft	Not Excavated	19-Jun-07	0.0085 J	0.0048 J	0.012 J	0.0077 J	<0.037
FL-CS-003	2.5 to 3 ft	Not Excavated	19-Jun-07	0.025	0.011 J	0.0084 J	0.031	0.0022 J
FL-CS-004	2.5 to 3 ft	Not Excavated	19-Jun-07	0.014 J	0.0087 J	<0.032	0.014 J	<0.032
FL-CS-005	2.5 to 3 ft	Not Excavated	19-Jun-07	0.011 J	0.009 J	<0.037	0.0089 J	<0.037
FL-CS-006	2.5 to 3 ft	Not Excavated	19-Jun-07	0.00093 J	<0.0065	<0.0065	0.00083 J	<0.0065
FL-CS-007	6 to 6.5 ft	Not Excavated	19-Jun-07	0.0021 J	0.0021 J	<0.0063	0.0075	<0.0063
FL-CS-008	2.5 to 3 ft	Not Excavated	20-Jun-07	0.0084	0.0049 J	0.0024 J	0.013	0.001 J
FL-CS-009	2.5 to 3 ft	Not Excavated	20-Jun-07	0.062	0.019	0.027	0.06	0.0049 J
FL-CS-010	2.5 to 3 ft	Not Excavated	20-Jun-07	0.022	0.0093	0.007	0.033	0.0024 J
FL-CS-011	6.5 to 7 ft	EXCAVATED	22-Jun-07	0.16 [PSL-HH]	0.08 J	0.059 J	0.65	<0.15
FL-CS-012	6.5 to 7 ft	EXCAVATED	22-Jun-07	<2.9	<2.9	<2.9	1.9 J [PSL-Eco]	<2.9
FL-CS-013	6.5 to 7 ft	Not Excavated	22-Jun-07	0.24 [PSL-HH]	0.19	0.084	0.25	0.028 J [PSL-HH]
FL-CS-014	6.5 to 7 ft	Not Excavated	22-Jun-07	0.42 [PSL-HH]	0.24	0.17	0.51	0.066 [PSL-HH]
FL-CS-015	6.5 to 7 ft	Not Excavated	22-Jun-07	0.016	0.016	0.0047 J	0.012	0.0014 J
FL-CS-016	5.5 to 6 ft	Not Excavated	22-Jun-07	0.019	0.022	0.0089	0.015	0.0031 J
FL-CS-017	4 to 4.5 ft	Not Excavated	11-Jul-07	0.12	0.034 J	0.032 J	0.085	<0.044
FL-CS-018	4 to 4.5 ft	Not Excavated	11-Jul-07	0.063	0.023 J	0.012 J	0.15	0.0075 J
FL-CS-019	3.5 to 4 ft	Not Excavated	11-Jul-07	0.025	0.012 J	0.0086 J	0.034	0.004 J
FL-CS-020	3.5 to 4 ft	Not Excavated	11-Jul-07	<0.062	<0.062	<0.062	<0.062	<0.062
FL-CS-021	3.5 to 4 ft	Not Excavated	11-Jul-07	0.029	0.016	0.0059 J	0.02	<0.012
FL-CS-022	3 to 3.5 ft	Not Excavated	11-Jul-07	0.0058 J	0.0018 J	0.0019 J	0.0061	<0.0058
FL-CS-023	4.5 to 5.5 ft	Not Excavated	11-Jul-07	0.037	0.016	0.011	0.04	0.0052 J
FL-CS-024	4.5 to 5.5 ft	Not Excavated	11-Jul-07	0.051	0.022	0.015	0.063	<0.014
FL-CS-025	4.5 to 5.5 ft	Not Excavated	11-Jul-07	<0.034	<0.034	<0.034	< 0.034	< 0.034
FL-CS-026	5 to 5.5 ft	Not Excavated	11-Jul-07	<0.11	<0.11	<0.11	<0.11	<0.11
FL-CS-028	3.5 to 4 ft	Not Excavated	10-Aug-07	0.11	0.07	0.044	0.088	0.048 [PSL-HH]
FL-CS-029	5 to 5.5 ft	Not Excavated	10-Aug-07	0.0043 J	0.0042 J	<0.0075	0.0032 J	<0.0075
FL-CS-030	4.5 to 5 ft	Not Excavated	10-Aug-07	0.024	0.018	0.0096	0.016	0.0097
FL-CS-031	4.5 to 5 ft	Not Excavated	10-Aug-07	0.13	0.031 J	0.042 J	0.095	0.0097 J
OUE-DP-001	0 to 1 ft	Not Excavated	24-Jun-10	0.0072	0.0048 J	0.0012 J	0.0098	<0.0054
	1 to 2 ft	Not Excavated	24-Jun-10	0.021	0.0088	0.0048 J	0.021	0.0021 J
	4 to 5 ft	Not Excavated	24-Jun-10	0.052	0.018	0.019	0.056	0.0069
OUE-DP-002	0 to 1 ft	Not Excavated	24-Jun-10	0.063	0.031	0.02	0.046	0.009
	1 to 2 ft	Not Excavated	24-Jun-10	0.0029 J	0.0016 J	<0.0064	0.0028 J	<0.0064
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063
OUE-DP-004	0 to 1 ft	Not Excavated	23-Jun-10	<0.011	0.0035 J	0.011 J	0.012	<0.011
	1 to 2 ft	Not Excavated	23-Jun-10	<0.49	<0.49	<0.49	0.83	<0.49
	3 to 4 ft	Not Excavated	23-Jun-10	0.062 J	<0.24	<0.24	0.2 J	<0.24
OUE-DP-012	13.5 to 14.5 ft	Not Excavated	22-Jun-10	0.048 Jb	<0.21 b/UJ	<0.21 b/UJ	0.3 b/J	<0.21 b/UJ
OUE-DP-013	5 to 6 ft	Not Excavated	22-Jun-10	0.0058	0.0029 J	0.0014 J	0.012	<0.0057

	Donth	Execution	Sample Date / Analyte	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene
Location ID	(ft bgs)	Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	0.15		0.38	3.8	0.015
			PSL-Eco	1	1	1	1	1
OUE-DP-059	2 to 3 ft	Not Excavated	06-Nov-10	0.0069	0.0035 J	0.0019 J	0.0063	<0.0054
	5 to 6 ft	Not Excavated	06-Nov-10	0.0025 J	0.0019 J	<0.0062	0.002 J	<0.0062
	6.5 to 7.5 ft	Not Excavated	06-Nov-10	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064
OUE-DP-060	2 to 3 ft	Not Excavated	06-Nov-10	0.0087	0.005 J	0.0027 J	0.0084	<0.0058
	5 to 6 ft	Not Excavated	06-Nov-10	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056
	7 to 8 ft	Not Excavated	06-Nov-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-064	0 to 0.5 ft	Not Excavated	27-Oct-10	0.015	0.0055 J	0.0042 J	0.015	0.004 J
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	0.01	0.0047 J	0.0043 J	0.0099	0.0033 J
	3 to 4 ft	Not Excavated	27-Oct-10	0.012	0.0063 J	0.0053 J	0.01	0.0039 J
OUE-DP-065	0 to 0.5 ft	Not Excavated	27-Oct-10	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	0.53 [PSL-HH]	0.15	0.17	1.1 [PSL-Eco]	0.053 [PSL-HH]
	3 to 4 ft	Not Excavated	27-Oct-10	0.0047 J	0.0023 J	<0.0085	0.0067 J	<0.0085
OUE-DP-066	0 to 0.5 ft	Not Excavated	27-Oct-10	0.01	0.0046 J	0.0019 J	0.012	<0.006
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	0.033	0.011	0.009	0.027	0.0033 J
	3 to 4 ft	Not Excavated	27-Oct-10	0.0028 J	0.0028 J	< 0.0074	0.0024 J	<0.0074
OUE-DP-084	0 to 1 ft	Not Excavated	03-Nov-10	0.19 [PSL-HH]	0.025	0.066	0.36	0.009
	2.5 to 3.5 ft	Not Excavated	03-Nov-10	0.063	0.022	0.031	0.049	0.0084
	6.5 to 7.5 ft	Not Excavated	03-Nov-10	<0.0065	<0.0065	< 0.0065	<0.0065	< 0.0065
	8.5 to 9.5 ft	Not Excavated	03-Nov-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-085	0 to 1 ft	Not Excavated	03-Nov-10	0.0058	0.0012 J	0.0016 J	0.0049 J	0.0029 J
	2.5 to 3.5 ft	Not Excavated	03-Nov-10	0.36 [PSL-HH]	0.079	0.11	0.25	0.022 [PSL-HH]
	6.5 to 7.5 ft	Not Excavated	03-Nov-10	<0.0066	<0.0066	<0.0066	0.0022 J	0.003 J
	8.5 to 9 ft	Not Excavated	03-Nov-10	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062
OUE-DP-091	6 to 7 ft	Not Excavated	05-Nov-10	0.012 /J	0.0071 J	0.0025 J	0.011 /J	<0.0079
OUE-DP-092	5.5 to 6 ft	Not Excavated	05-Nov-10	0.0099	0.0064 J	0.0021 J	0.012	<0.0094
OUE-DP-099	0 to 0.5 ft	Not Excavated	14-Dec-10	0.21 [PSL-HH]	0.059	0.073	0.21	0.015
	0.5 to 1.5 ft	Not Excavated	14-Dec-10	1.3 [PSL-HH,PSL-Eco-	0.25	0.39 [PSL-HH]	1.1 [PSL-Eco]	0.067 J/nQnV [PSL-HH]
	2.5 to 3.5 ft	Not Excavated	14-Dec-10	<0.0065	<0.0065	< 0.0065	< 0.0065	< 0.0065
OUE-DP-100	0 to 0.5 ft	Not Excavated	14-Dec-10	0.0035 J/nQnV	0.0018 J/nQnV	<0.0062	0.0032 J/nQnV	<0.0062
	0.5 to 1.5 ft	Not Excavated	14-Dec-10	< 0.0062	<0.0062	<0.0062	<0.0062	<0.0062
	2.5 to 3.5 ft	Not Excavated	14-Dec-10	0.89 [PSL-HH]	0.48	0.33	0.95	0.11 [PSL-HH]
FL-CS-027	5 to 5.5 ft	Not Excavated	11-Jul-07	0.0016 J	<0.0054	<0.0054	<0.0054	<0.0054
OUA-TP-028	0 to 0.4 ft	Not Excavated	18-Apr-07	<0.056	<0.056	<0.056	<0.056	<0.056
OUE-DP-003	0 to 1 ft	Not Excavated	24-Jun-10	0.023 J	0.0086 J	<0.029	0.04	<0.029
	1 to 2 ft	Not Excavated	24-Jun-10	0.0012 J	<0.0053	<0.0053	0.0014 J	<0.0053
	4 to 5 ft	Not Excavated	24-Jun-10	< 0.0054	<0.0054	< 0.0054	< 0.0054	< 0.0054
OUE-DP-058	1 to 2 ft	Not Excavated	06-Nov-10	0.0096	0.0061 J	0.0023 J	0.0083	<0.0063
	5 to 6 ft	Not Excavated	06-Nov-10	0.012	0.0047 J	0.0037 J	0.012	0.0013 J
	6 to 7 ft	Not Excavated	06-Nov-10	0.019	0.01	0.0052 J	0.013	0.0026 J
OUE-HA- 001ABCD	0 to 0.5 ft	Not Excavated	25-Jun-10	0.0059	<0.0052	<0.0052	0.0083	<0.0052
OUE-HA- 002ABCD	0 to 0.5 ft	Not Excavated	25-Jun-10	<0.015	0.007 J	<0.015	0.038	<0.015

	Danth	Execution	Sample Date / Analyte	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene
Location ID	Depth (the brock)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	0.15		0.38	3.8	0.015
			PSL-Eco	1	1	1	1	1
Sawmill #1 AOI								
OUE-DP-018	5 to 6 ft	Not Excavated	22-Jun-10	0.0095	0.008	0.0025 J	0.013	<0.0067
	6 to 7 ft	Not Excavated	22-Jun-10	0.0039 J	0.0028 J	<0.012	0.011 J	<0.012
OUE-DP-019	2 to 2.5 ft	Not Excavated	21-Jun-10	<0.059 b/UJ	<0.059 b/UJ	<0.059 b/UJ	0.015 Jb	<0.059 b/UJ
OUE-DP-024	2 to 2.5 ft	Not Excavated	22-Jun-10	0.15	0.1	0.14	0.14	<0.059
	3.5 to 4 ft	Not Excavated	04-Nov-10	0.16 J [PSL-HH]	<0.55	0.16 J	1	<0.55
	5 to 6 ft	Not Excavated	22-Jun-10	0.0024 Jb	0.0014 Jb	<0.0059 b/UJ	0.011 b/J	<0.0059 b/UJ
OUE-DP-025	3.2 to 3.7 ft	Not Excavated	04-Nov-10	<1.1	<1.1	0.24 J	1.2 [PSL-Eco]	<1.1
	6 to 7 ft	Not Excavated	04-Nov-10	0.003 J	<0.0059	<0.0059	0.019	<0.0059
OUE-DP-026	0 to 0.5 ft	Not Excavated	25-Jun-10	0.081	0.0053 J	0.017	0.09	0.0027 J
	0.5 to 2 ft	Not Excavated	25-Jun-10	0.048	0.014	0.014	0.047	0.0042 J
	2 to 3.5 ft	Not Excavated	25-Jun-10	0.96 [PSL-HH]	0.77	0.36	0.97	0.16 [PSL-HH]
OUE-DP-028	0 to 0.5 ft	Not Excavated	21-Jun-10	0.006 J	<0.01	<0.01	0.0089 J	<0.01
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.011	<0.011	<0.011	0.0038 J	<0.011
OUE-DP-030	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.0051	<0.0051	<0.0051	0.0019 J	<0.0051
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	0.0014 J	<0.0053	< 0.0053	0.0022 J	<0.0053
OUE-DP-031	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.011	<0.011	<0.011	<0.011	<0.011
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.016	<0.016	<0.016	0.029	<0.016
OUE-DP-071	2.2 to 2.7 ft	Not Excavated	04-Nov-10	<1.4	<1.4	<1.4	1.3 J [PSL-Eco]	<1.4
	3 to 3.5 ft	Not Excavated	03-Nov-10	<0.0057	<0.0057	<0.0057	0.02	<0.0057
	5.5 to 6.5 ft	Not Excavated	03-Nov-10	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062
OUE-DP-072	2.5 to 3 ft	Not Excavated	04-Nov-10	<0.0057	<0.0057	<0.0057	0.002 J	<0.0057
	3.5 to 4 ft	Not Excavated	04-Nov-10	<0.0059	<0.0059	<0.0059	<0.0059	< 0.0059
OUE-DP-073	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.32 [PSL-HH]	0.13	0.089	0.28	0.041 [PSL-HH]
	2 to 3 ft	Not Excavated	04-Nov-10	5.6 [PSL-HH,PSL-Eco-	2.1 [PSL-Eco]	1.7 [PSL-HH,PSL-Eco]	3.9 [PSL-HH,PSL-Eco]	0.58 [PSL-HH]
	3 to 4 ft	Not Excavated	04-Nov-10	0.13	0.06	0.05	0.087	0.013 J
OUE-DP-074	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.12	0.011	0.029	0.076	0.0033 J
	2 to 3 ft	Not Excavated	04-Nov-10	1.9 [PSL-HH,PSL-Eco-	0.54	0.61 [PSL-HH]	1.3 [PSL-Eco]	0.21 [PSL-HH]
	3 to 4 ft	Not Excavated	04-Nov-10	0.019	0.0097	0.0073	0.016	0.0026 J
OUE-DP-075	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.0069	0.0055	0.002 J	0.0051 J	<0.0054
	2 to 3 ft	Not Excavated	04-Nov-10	1.4 [PSL-HH,PSL-Eco-	1.2 [PSL-Eco]	0.36	1	0.22 [PSL-HH]
	3 to 4 ft	Not Excavated	04-Nov-10	0.052	0.033	0.018	0.037	0.0076
Compressor Ho	use and Lath E	Building AOI						
MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07	0.12 J/J	<0.13	<0.13	0.048 J	<0.13
	5.5 to 6 ft	Not Excavated	29-Sep-07	0.0012 J/J	0.00066 J	<0.0064	0.0014 J	<0.0064
OUC-HA-051	0 to 0.5 ft	Not Excavated	24-Nov-09	0.01	0.0026 J	0.0036 J	0.013	<0.0059
	4 to 5 ft	Not Excavated	24-Nov-09	0.029	0.0088 J	0.0063 J	0.033	<0.012

Location ID	Depth	Excavation	Sample Date / Analyte Units	Benzo(b)fluoranthene mg/kg	Benzo(g,h,i)perylene mg/kg	Benzo(k)fluoranthene mg/kg	Chrysene mg/kg	Dibenz(a,h)anthracene mg/kg
	(it bgs)	Status	PSL-HH	0.15		0.38	3.8	0.015
			PSL-Eco	1	1	1	1	1
OUC-HA-052	0 to 0.5 ft	Not Excavated	24-Nov-09	0.0092	0.0032 J	0.0056 J	0.013	<0.006
	4 to 5 ft	Not Excavated	24-Nov-09	0.071	0.027 J	0.04	0.097	<0.035
OUC-HA-053	0 to 0.5 ft	Not Excavated	24-Nov-09	0.012 J	0.0045 J	0.0044 J	0.016	<0.012
	4 to 5 ft	Not Excavated	24-Nov-09	0.21 [PSL-HH]	0.081	0.069 J	0.2	0.023 J [PSL-HH]
OUC-TP-001	7 to 7.5 ft	Not Excavated	10-Jul-08	0.0019 J	<0.0061	0.0023 J	0.0044 J	<0.0061
OUE-DP-032	0 to 0.5 ft	Not Excavated	25-Jun-10	0.023 J	0.0098 J	0.0058 J	0.023 J	<0.027
	0.5 to 1.7 ft	Not Excavated	25-Jun-10	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058
	2 to 3.5 ft	Not Excavated	25-Jun-10	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061
OUE-DP-033	0 to 0.5 ft	Not Excavated	29-Jun-10	<0.34	<0.34	<0.34	<0.34	<0.34
-	0.5 to 1.5 ft	Not Excavated	29-Jun-10	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071
	4 to 5 ft	Not Excavated	29-Jun-10	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066
OUE-DP-034	0 to 1 ft	Not Excavated	25-Jun-10	0.03 J	<0.058	<0.058	0.074	<0.058
	1 to 2 ft	Not Excavated	25-Jun-10	0.0096	0.0052 J	0.0025 J	0.0084	<0.0066
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-035	0 to 0.5 ft	Not Excavated	25-Jun-10	0.031	0.011 J	0.0044 J	0.064	<0.017
	0.5 to 1.5 ft	Not Excavated	25-Jun-10	0.022	0.006 J	<0.011	0.038	0.0021 J
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.03	<0.03	<0.03	0.011 J	<0.03
OUE-DP-067	2 to 3 ft	Not Excavated	04-Nov-10	0.019	0.0039 J	0.0052 J	0.014	<0.0061
	4 to 5 ft	Not Excavated	04-Nov-10	<0.012	0.0042 J	<0.012	0.016	<0.012
R37-CS-001	9 to 9.5 ft	Not Excavated	10-Jun-08	<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b
R37-CS-002	7 to 7.5 ft	Not Excavated	10-Jun-08	<0.0058 b	<0.0058 b	<0.0058 b	<0.0058 b	<0.0058 b
R37-CS-010	7 to 7.5 ft	Not Excavated	23-Jun-08	<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b

	Denth	Furneration	Sample Date / Analyte	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene
Location ID	Depth (ft hga)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	0.15		0.38	3.8	0.015
			PSL-Eco	1	1	1	1	1
R37-CS-011	7.5 to 8 ft	Not Excavated	24-Jun-08	<0.0059 b	0.0015 Jb	<0.0059 b	0.0024 Jb	<0.0059 b
R37-CS-012	7.5 to 8 ft	Not Excavated	24-Jun-08	0.0023 Jb	<0.0062 b	<0.0062 b	0.0017 Jb	<0.0062 b
R37-CS-013	9.5 to 10 ft	Not Excavated	24-Jun-08	<0.0061 b	0.00088 Jb	<0.0061 b	0.00093 Jb	<0.0061 b
R37-CS-014	8.5 to 9 ft	Not Excavated	24-Jun-08	0.013 b	0.0048 Jb	0.0034 Jb	0.0093 b	<0.0058 b
R37-CS-017	9 to 9.5 ft	Not Excavated	10-Jul-08	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
R37-CS-018	7.5 to 8 ft	Not Excavated	10-Jul-08	0.0034 J	0.002 J	<0.0057	0.0043 J	<0.0057
Power House an	nd Fuel Barn AG	DI						
HA-4.70	3.5 to 4 ft	Not Excavated	13-Sep-06	0.01	0.011	0.0045 J	0.025	0.0027 J
HA-4.71	6 to 6.5 ft	Not Excavated	13-Sep-06	<0.0067	<0.0067	<0.0067	<0.0067	<0.0067
HA-4.72	8 to 8.5 ft	Not Excavated	13-Sep-06	0.0059 J	0.0076	0.0068 J	0.012	0.0029 J
HA-4.73	8 to 8.5 ft	Not Excavated	13-Sep-06	0.0034 J	0.0096	0.0032 J	0.0049 J	0.0015 J
HA-4.74	8 to 8.5 ft	Not Excavated	13-Sep-06	0.015	0.0094	0.0096	0.021	<0.0073
HA-4.76	3.5 to 4 ft	Not Excavated	13-Sep-06	0.0043 J	0.0035 J	0.0028 J	0.012	0.0019 J
HA-4.80	6 to 6.5 ft	Not Excavated	13-Sep-06	0.0046 J	0.0078	0.0053 J	0.0052 J	0.0017 J
HA-4.81	8 to 8.5 ft	Not Excavated	13-Sep-06	0.016 J	0.02	0.012 J	0.041	0.0073 J
HA-4.83	4 to 4.5 ft	Not Excavated	13-Sep-06	0.027 J	0.023 J	<0.029	0.048	<0.029
HA-4.84	6 to 6.5 ft	Not Excavated	13-Sep-06	0.0067 J	0.0094	0.0056 J	0.0088	0.0026 J
HA-4.85	7 to 7.5 ft	Not Excavated	13-Sep-06	0.0022 J	0.014	0.0019 J	0.0027 J	0.0021 J
HA-4.86	7 to 7.5 ft	Not Excavated	13-Sep-06	0.00079 J	0.0016 J	<0.0066	0.0015 J	<0.0066
OUE-DP-036	1 to 2 ft	Not Excavated	22-Jun-10	0.056	0.015	0.015 J	0.052	0.0038 J
	3 to 4 ft	Not Excavated	22-Jun-10	0.044	0.014	0.012	0.04	0.0044 J
	5 to 7 ft	Not Excavated	22-Jun-10	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10	0.049	0.021	0.012	0.046	0.004 J
	3 to 4 ft	Not Excavated	22-Jun-10	0.094	0.023	0.024	0.09	0.0079
	5 to 7 ft	Not Excavated	22-Jun-10	0.012	0.0066 J	0.0038 J	0.014	0.0015 J
OUE-DP-040	0.2 to 0.7 ft	Not Excavated	22-Jun-10	0.0061 J	0.0033 J	<0.012	0.0056 J	<0.012
	0.7 to 1.7 ft	Not Excavated	22-Jun-10	0.011 J	0.0064 J	0.0035 J	0.0099 J	<0.011
	1.7 to 2.7 ft	Not Excavated	22-Jun-10	0.018	0.0095	0.0064	0.017	0.002 J
OUE-DP-046	3.5 to 4 ft	Not Excavated	22-Jun-10	0.045	0.016	0.016	0.045	0.0052 J
	5 to 6 ft	Not Excavated	22-Jun-10	0.035	0.013	0.01	0.031	0.0038 J
OUE-DP-047	5.5 to 6.5 ft	Not Excavated	22-Jun-10	0.019	0.0092	0.0038 J	0.016	0.0017 J
	11.5 to 12.5 ft	Not Excavated	22-Jun-10	0.0027 J	<0.0099	<0.0099	0.0028 J	<0.0099

	Donth	Execution	Sample Date / Analyte	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene
Location ID	(ft bgs)	Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bys)	Status	PSL-HH	0.15		0.38	3.8	0.015
			PSL-Eco	1	1	1	1	1
OUE-DP-077	12.5 to 13 ft	Not Excavated	02-Nov-10	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068
	15 to 16 ft	Not Excavated	02-Nov-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-078	2.2 to 2.7 ft	Not Excavated	04-Nov-10	0.073	0.013	0.025	0.059	0.0059 J
	5 to 5.5 ft	Not Excavated	04-Nov-10	0.0075 J	0.0035 J	0.004 J	0.0069 J	<0.0084
OUE-HA-016	0 to 0.5 ft	Not Excavated	24-Jun-10	0.0095	0.0043 J	0.002 J	0.0081	<0.0054
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.19 [PSL-HH]	0.078	0.054	0.18	0.022 [PSL-HH]
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093
OUE-HA-017	0 to 0.5 ft	Not Excavated	24-Jun-10	0.0075	0.0014 J	<0.0054	0.011	<0.0054
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.033	0.0061 J	0.0061	0.026	0.0017 J
	4 to 5 ft	Not Excavated	24-Jun-10	< 0.0059	<0.0059	<0.0059	<0.0059	<0.0059
OUE-HA-018	0 to 0.5 ft	Not Excavated	24-Jun-10	0.0099	0.0042 J	0.0023 J	0.0095	<0.0063
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.4 [PSL-HH]	0.27	0.11	0.32	0.051 [PSL-HH]
	4 to 5 ft	Not Excavated	24-Jun-10	0.088	0.048	0.027	0.11	0.014
OUE-HA-020	0 to 0.5 ft	Not Excavated	24-Jun-10	0.037	0.0058	0.0095	0.07	0.0022 J
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.12	0.013	0.027	0.13	0.006
	4 to 5 ft	Not Excavated	24-Jun-10	0.036	0.014	0.0099	0.031	0.0039 J
OUE-HA-023A	11 to 12 ft	Not Excavated	26-Jun-10	<0.0077	<0.0077	<0.0077	<0.0077	<0.0077
	13 to 14 ft	Not Excavated	26-Jun-10	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10	0.0042 J	0.0019 J	<0.0071	0.0037 J	<0.0071
	6.5 to 8 ft	Not Excavated	25-Jun-10	<0.0084	<0.0084	<0.0084	<0.0084	<0.0084
OUE-HA-024	10 to 11 ft	Not Excavated	26-Jun-10	0.023	0.0071	0.0079	0.021	0.0017 J
	11 to 12 ft	Not Excavated	26-Jun-10	0.0056 J	0.0038 J	0.0018 J	0.0048 J	<0.0061
OUE-HA-034	0 to 0.5 ft	Not Excavated	12-Nov-10	0.0034 J	0.0048 J	<0.0097	0.0037 J	<0.0097
	0.5 to 1.5 ft	Not Excavated	12-Nov-10	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087
	3 to 4 ft	Not Excavated	12-Nov-10	0.053	0.03	0.014	0.044	0.0064 J
OUE-HA-035	0 to 0.5 ft	Not Excavated	13-Nov-10	0.014	0.0083 J	0.0059 J	0.011	<0.0085
	0.5 to 1.5 ft	Not Excavated	13-Nov-10	<0.01	0.0021 J	<0.01	<0.01	<0.01
	2.5 to 3 ft	Not Excavated	13-Nov-10	<0.0094	<0.0094	<0.0094	<0.0094	<0.0094

	Donth	Execution	Sample Date / Analyte	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene
Location ID	(ft hgo)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	0.15		0.38	3.8	0.015
			PSL-Eco	1	1	1	1	1
OUE-HA-036	0 to 0.5 ft	Not Excavated	13-Nov-10	<0.006	<0.006	<0.006	<0.006	<0.006
	0.5 to 1.5 ft	Not Excavated	13-Nov-10	0.022	0.011	0.0089	0.022	0.002 J
OUE-HA-037	0 to 0.5 ft	Not Excavated	14-Nov-10	0.074	0.024	0.0085	0.043	0.01
	0.5 to 1.5 ft	Not Excavated	14-Nov-10	0.26 [PSL-HH]	0.11	0.081	0.17	0.029 [PSL-HH]
	2 to 2.5 ft	Not Excavated	14-Nov-10	0.12	0.04	0.025	0.071	0.011
OUE-HA-038	0 to 0.5 ft	Not Excavated	14-Nov-10	0.036 b	0.0084 b	0.011 b	0.029 b	0.0026 Jb
	0.5 to 1.5 ft	Not Excavated	14-Nov-10	0.078 b	0.0098 b	0.019 b	0.056 b	0.0037 Jb
OUE-HA-039	0 to 0.5 ft	Not Excavated	16-Nov-10	0.018	0.0038 J	0.004 J	0.029	<0.016
	0.5 to 1.5 ft	Not Excavated	16-Nov-10	0.048	0.0039 J	0.011	0.031	0.0015 J
	3 to 3.5 ft	Not Excavated	16-Nov-10	0.0056 J	<0.0086	<0.0086	0.0047 J	<0.0086
OUE-DP-041	0 to 0.5 ft	Not Excavated	27-Sep-10	0.0036 J	0.002 J	<0.0056	0.0045 J	<0.0056
	0.5 to 1 ft	Not Excavated	27-Sep-10	0.0074	0.003 J	0.0026 J	0.0083	<0.0055
OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10	0.0061	0.0053 J	0.0012 J	0.0039 J	0.0033 J
	1.5 to 3 ft	Not Excavated	24-Sep-10	0.01	0.01	0.002 J	0.0062	0.0041 J
	4 to 4.5 ft	Not Excavated	24-Sep-10	0.017	0.018	0.0044 J	0.0098	0.0023 J
OUE-HA-013	0 to 0.5 ft	Not Excavated	24-Jun-10	0.0015 J	<0.0069	<0.0069	0.0015 J	<0.0069
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	0.021	0.014	0.0048 J	0.016	0.0015 J
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	0.0032 J	0.0023 J	<0.0052	0.0039 J	<0.0052
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	0.0041 J	0.0023 J	<0.0053	0.0061	<0.0053
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	0.0056	0.0021 J	0.0011 J	0.016	<0.0053

			Sample Date / Analyte	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)	Status	PSL-HH	2300	2300	0.15	3.6	
			PSL-Eco	1	0.6	1	0.6	0.6
Water Treatmen	t and Truck Du	imp AOI						
FL-CS-001	2 to 2.5 ft	Not Excavated	19-Jun-07	0.0092 J	<0.033	<0.033	<0.033	0.011 J
FL-CS-002	2.5 to 3 ft	Not Excavated	19-Jun-07	0.043	0.0075 J	<0.037	0.065	0.063
FL-CS-003	2.5 to 3 ft	Not Excavated	19-Jun-07	0.05	0.0041 J	0.0074 J	0.016	0.054
FL-CS-004	2.5 to 3 ft	Not Excavated	19-Jun-07	0.021 J	<0.032	0.0037 J	<0.032	0.018 J
FL-CS-005	2.5 to 3 ft	Not Excavated	19-Jun-07	0.02 J	0.0061 J	0.0052 J	0.012 J	0.032 J
FL-CS-006	2.5 to 3 ft	Not Excavated	19-Jun-07	0.0037 J	0.001 J	<0.0065	0.007	0.0066
FL-CS-007	6 to 6.5 ft	Not Excavated	19-Jun-07	0.0039 J	0.0068	0.0011 J	0.0018 J	0.021
FL-CS-008	2.5 to 3 ft	Not Excavated	20-Jun-07	0.022	0.0033 J	0.0029 J	0.014	0.029
FL-CS-009	2.5 to 3 ft	Not Excavated	20-Jun-07	0.14	0.0085	0.016	0.02	0.1
FL-CS-010	2.5 to 3 ft	Not Excavated	20-Jun-07	0.05	0.017	0.0062 J	0.02	0.078
FL-CS-011	6.5 to 7 ft	EXCAVATED	22-Jun-07	0.23	0.47	<0.15	0.061 J	1.6 [PSL-Eco]
FL-CS-012	6.5 to 7 ft	EXCAVATED	22-Jun-07	2.1 J [PSL-Eco]	<2.9	<2.9	1 J [PSL-Eco]	1.7 J [PSL-Eco]
FL-CS-013	6.5 to 7 ft	Not Excavated	22-Jun-07	0.53	0.029 J	0.13	0.16	0.47
FL-CS-014	6.5 to 7 ft	Not Excavated	22-Jun-07	0.75	0.045	0.21 [PSL-HH]	0.033	0.6
FL-CS-015	6.5 to 7 ft	Not Excavated	22-Jun-07	0.054	0.0059 J	0.0094	0.096	0.051
FL-CS-016	5.5 to 6 ft	Not Excavated	22-Jun-07	0.041	0.0026 J	0.014	0.061	0.032
FL-CS-017	4 to 4.5 ft	Not Excavated	11-Jul-07	0.15	0.0098 J	0.027 J	0.094	0.12
FL-CS-018	4 to 4.5 ft	Not Excavated	11-Jul-07	0.098	0.11	0.011 J	0.025 J	0.32
FL-CS-019	3.5 to 4 ft	Not Excavated	11-Jul-07	0.039	<0.012	0.0084 J	0.002 J	0.016
FL-CS-020	3.5 to 4 ft	Not Excavated	11-Jul-07	0.014 J	<0.062	<0.062	<0.062	0.0091 J
FL-CS-021	3.5 to 4 ft	Not Excavated	11-Jul-07	0.041	0.0035 J	0.0086 J	0.025	0.032
FL-CS-022	3 to 3.5 ft	Not Excavated	11-Jul-07	0.009	0.0017 J	0.0011 J	0.0047 J	0.011
FL-CS-023	4.5 to 5.5 ft	Not Excavated	11-Jul-07	0.068	0.0082	0.012	0.014	0.051
FL-CS-024	4.5 to 5.5 ft	Not Excavated	11-Jul-07	0.072	0.0041 J	0.013 J	0.0051 J	0.029
FL-CS-025	4.5 to 5.5 ft	Not Excavated	11-Jul-07	<0.034	<0.034	<0.034	<0.034	<0.034
FL-CS-026	5 to 5.5 ft	Not Excavated	11-Jul-07	<0.11	<0.11	<0.11	<0.11	<0.11
FL-CS-028	3.5 to 4 ft	Not Excavated	10-Aug-07	0.14	<0.034	0.08	0.0088 J	0.058
FL-CS-029	5 to 5.5 ft	Not Excavated	10-Aug-07	0.0077	<0.0075	0.0089	0.0014 J	0.0041 J
FL-CS-030	4.5 to 5 ft	Not Excavated	10-Aug-07	0.031	0.0016 J	0.018	0.014	0.019
FL-CS-031	4.5 to 5 ft	Not Excavated	10-Aug-07	0.24	0.012 J	0.026 J	0.091	0.14
OUE-DP-001	0 to 1 ft	Not Excavated	24-Jun-10	0.011	<0.0054	0.0021 J	0.0024 J	0.01
	1 to 2 ft	Not Excavated	24-Jun-10	0.025	<0.0056	0.0068	0.0036 J	0.013
	4 to 5 ft	Not Excavated	24-Jun-10	0.1	0.0014 J	0.022	0.0015 J	0.032
OUE-DP-002	0 to 1 ft	Not Excavated	24-Jun-10	0.068	<0.0055	0.03	0.0017 J	0.01
	1 to 2 ft	Not Excavated	24-Jun-10	0.0035 J	0.0013 J	<0.0064	0.0022 J	0.0029 J
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063
OUE-DP-004	0 to 1 ft	Not Excavated	23-Jun-10	0.019	0.0034 J	<0.011	0.015	0.018
	1 to 2 ft	Not Excavated	23-Jun-10	0.2 J	<0.49	<0.49	<0.49	<0.49
	3 to 4 ft	Not Excavated	23-Jun-10	0.12 J	<0.24	<0.24	0.051 J	<0.24
OUE-DP-012	13.5 to 14.5 ft	Not Excavated	22-Jun-10	0.11 Jb	0.28 b/J	<0.21 b/UJ	<0.21 b/UJ	0.82 b/J [PSL-Eco]
OUE-DP-013	5 to 6 ft	Not Excavated	22-Jun-10	0.0092	0.0016 J	0.0018 J	0.0022 J	0.011

Denth		Sample Date /	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	
Location ID	Depth	Excavation	Units	ma/ka	ma/ka	Indeno(1,2,3-cd)Pyrene Naphthalene Imag/kg mg/kg 0.15 3.6 1 0.6 4 0.0027 J <0.0054 2 0.0013 J <0.0062 J/UB 4 <0.0064 <0.0064 8 0.0045 J <0.0058 6 <0.0056 <0.0056 7 <0.0057 <0.0057 J 0.0061 0.0065 9 0.0052 J 0.0056 9 0.0056 <0.0056 9 0.0056 <0.0056 9 0.0056 <0.0056 9 0.0056 <0.0056 9 0.0056 <0.0056 9 0.0067 0.0081 16 <0.0056 <0.0056 10 0.0063 J 10 0.01 0.0063 J 11 0.021 0.0063 J 12 0.0023 <0.0057 13 0.021 0.0028	ma/ka	
	(ft bgs)	Status	PSI-HH	2300	2300	0.15	3.6	
			PSL-Eco	1	0.6	1	0.6	0.6
OUE-DP-059	2 to 3 ft	Not Excavated	06-Nov-10	0.008	<0.0054	0.0027 J	<0.0054	0.0045 J
	5 to 6 ft	Not Excavated	06-Nov-10	0.0043 J	<0.0062	0.0013 J	<0.0062 J/UB	0.0034 J
	6.5 to 7.5 ft	Not Excavated	06-Nov-10	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064
OUE-DP-060	2 to 3 ft	Not Excavated	06-Nov-10	0.0089	<0.0058	0.0045 J	<0.0058	0.0041 J
	5 to 6 ft	Not Excavated	06-Nov-10	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056
	7 to 8 ft	Not Excavated	06-Nov-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-064	0 to 0.5 ft	Not Excavated	27-Oct-10	0.029	0.0017 J	0.0061	0.0065	0.02
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	0.015	< 0.0059	0.0052 J	0.0056 J	0.0092
	3 to 4 ft	Not Excavated	27-Oct-10	0.022	< 0.0065	0.0067	0.0081	0.015
OUE-DP-065	0 to 0.5 ft	Not Excavated	27-Oct-10	<0.0056	< 0.0056	< 0.0056	<0.0056	0.0015 J
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	1.3 [PSL-Eco]	0.007	0.15	0.0014 J	0.26
	3 to 4 ft	Not Excavated	27-Oct-10	0.0079 J	<0.0085	0.0018 J	0.006 J	0.0064 J
OUE-DP-066	0 to 0.5 ft	Not Excavated	27-Oct-10	0.017	0.0018 J	0.003 J	0.0047 J	0.016
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	0.049	0.0018 J	0.01	0.0062 J	0.021
	3 to 4 ft	Not Excavated	27-Oct-10	0.0057 J	< 0.0074	0.002 J	0.0063 J	0.0058 J
OUE-DP-084	0 to 1 ft	Not Excavated	03-Nov-10	1.3 [PSL-Eco]	0.0022 J	0.03	<0.0057	0.04
	2.5 to 3.5 ft	Not Excavated	03-Nov-10	0.12	0.0051 J	0.021	0.028	0.051
	6.5 to 7.5 ft	Not Excavated	03-Nov-10	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065
	8.5 to 9.5 ft	Not Excavated	03-Nov-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-085	0 to 1 ft	Not Excavated	03-Nov-10	0.0072	<0.0058	0.003 J	<0.0058	0.0036 J
	2.5 to 3.5 ft	Not Excavated	03-Nov-10	0.39	0.019	0.081	0.012	0.21
	6.5 to 7.5 ft	Not Excavated	03-Nov-10	0.0013 J	<0.0066	0.0026 J	<0.0066	<0.0066
	8.5 to 9 ft	Not Excavated	03-Nov-10	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062
OUE-DP-091	6 to 7 ft	Not Excavated	05-Nov-10	0.013 /J	<0.0079 J/UB	0.0046 J	<0.0079 J/UB	0.01 /J
OUE-DP-092	5.5 to 6 ft	Not Excavated	05-Nov-10	0.012	<0.0094 J/UB	0.0035 J	<0.011 /UB	0.01
OUE-DP-099	0 to 0.5 ft	Not Excavated	14-Dec-10	0.31	0.015	0.059	0.018	0.21
	0.5 to 1.5 ft	Not Excavated	14-Dec-10	1.4 [PSL-Eco]	0.043 J/nQnV	0.25 [PSL-HH]	0.082	0.55
	2.5 to 3.5 ft	Not Excavated	14-Dec-10	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065
OUE-DP-100	0 to 0.5 ft	Not Excavated	14-Dec-10	0.0047 J/nQnV	<0.0062	0.0014 J/nQnV	<0.0062	0.003 J/nQnV
	0.5 to 1.5 ft	Not Excavated	14-Dec-10	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062
	2.5 to 3.5 ft	Not Excavated	14-Dec-10	1.6 [PSL-Eco]	0.16	0.43 [PSL-HH]	0.057 J/nQnV	1.4 [PSL-Eco]
FL-CS-027	5 to 5.5 ft	Not Excavated	11-Jul-07	0.001 J	<0.0054	<0.0054	<0.0054	<0.0054
OUA-TP-028	0 to 0.4 ft	Not Excavated	18-Apr-07	0.017 J	<0.056	<0.056	<0.056	0.019 J
OUE-DP-003	0 to 1 ft	Not Excavated	24-Jun-10	0.037	<0.029	<0.029	0.017 J	0.035
	1 to 2 ft	Not Excavated	24-Jun-10	0.0016 J	<0.0053	<0.0053	<0.0053	<0.0053
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054
OUE-DP-058	1 to 2 ft	Not Excavated	06-Nov-10	0.014	<0.0063	0.0033 J	<0.0063 J/UB	0.0072
	5 to 6 ft	Not Excavated	06-Nov-10	0.015	<0.0063 J/UB	0.0037 J	<0.0063 J/UB	0.011
	6 to 7 ft	Not Excavated	06-Nov-10	0.028	<0.0061	0.0086	<0.0061	0.012
OUE-HA- 001ABCD	0 to 0.5 ft	Not Excavated	25-Jun-10	0.0058	<0.0052	<0.0052	0.0019 J	0.012
OUE-HA- 002ABCD	0 to 0.5 ft	Not Excavated	25-Jun-10	0.014 J	<0.015	<0.015	<0.015	0.028

	David	F	Sample Date / Analyte	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	2300	2300	0.15	3.6	
			PSL-Eco	1	0.6	1	0.6	0.6
Sawmill #1 AOI								
OUE-DP-018	5 to 6 ft	Not Excavated	22-Jun-10	0.0084	0.0054 J	0.0054 J	0.0041 J	0.013
	6 to 7 ft	Not Excavated	22-Jun-10	0.0039 J	0.0043 J	<0.012	<0.012	0.008 J
OUE-DP-019	2 to 2.5 ft	Not Excavated	21-Jun-10	0.036 Jb	<0.059 b/UJ	<0.059 b/UJ	<0.059 Jb/UB	0.041 Jb
OUE-DP-024	2 to 2.5 ft	Not Excavated	22-Jun-10	0.28	0.029 J	<0.059	0.03 J	0.12
	3.5 to 4 ft	Not Excavated	04-Nov-10	0.56	0.85 [PSL-Eco]	<0.55	<0.55	<0.55
	5 to 6 ft	Not Excavated	22-Jun-10	0.0052 Jb	0.0049 Jb	<0.0059 b/UJ	<0.0059 b/UJ	<0.0059 b/UJ
OUE-DP-025	3.2 to 3.7 ft	Not Excavated	04-Nov-10	0.82 J	1.5 [PSL-Eco]	<1.1	<1.1	1.7 [PSL-Eco]
	6 to 7 ft	Not Excavated	04-Nov-10	0.0042 J	0.0052 J	< 0.0059	< 0.0059	< 0.0059
OUE-DP-026	0 to 0.5 ft	Not Excavated	25-Jun-10	0.082	0.0062	0.0063	0.012	0.039
	0.5 to 2 ft	Not Excavated	25-Jun-10	0.055	0.0067	0.011	0.0031 J	0.029
	2 to 3.5 ft	Not Excavated	25-Jun-10	1.7 [PSL-Eco]	0.24	0.6 [PSL-HH]	0.033 J	2 [PSL-Eco]
OUE-DP-028	0 to 0.5 ft	Not Excavated	21-Jun-10	0.023	<0.01	<0.01	0.0076 J	0.018
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.011	<0.011	<0.011	<0.011	0.0079 J
OUE-DP-030	0 to 0.5 ft	Not Excavated	21-Jun-10	0.0064	<0.0051	<0.0051	0.0029 J	0.0063
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	0.0052 J	<0.0053	<0.0053	0.0019 J	0.0056
OUE-DP-031	0 to 0.5 ft	Not Excavated	21-Jun-10	0.0045 J	<0.011	<0.011	<0.011	0.0058 J
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	0.014 J	<0.016	<0.016	0.0062 J	0.016 J
OUE-DP-071	2.2 to 2.7 ft	Not Excavated	04-Nov-10	<1.4	0.34 J	<1.4	<1.4	1.1 J [PSL-Eco]
	3 to 3.5 ft	Not Excavated	03-Nov-10	0.0061	0.012	<0.0057	<0.0057	0.0061
	5.5 to 6.5 ft	Not Excavated	03-Nov-10	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062
OUE-DP-072	2.5 to 3 ft	Not Excavated	04-Nov-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
	3.5 to 4 ft	Not Excavated	04-Nov-10	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059
OUE-DP-073	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.38	0.0086	0.11	0.0025 J	0.06
	2 to 3 ft	Not Excavated	04-Nov-10	5.6 [PSL-Eco]	0.16	1.9 [PSL-HH,PSL-Eco]	0.09	1.7 [PSL-Eco]
	3 to 4 ft	Not Excavated	04-Nov-10	0.1	0.0042 J	0.041	0.0046 J	0.057
OUE-DP-074	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.091	0.0024 J	0.0077	0.0015 J	0.013
	2 to 3 ft	Not Excavated	04-Nov-10	1.3 [PSL-Eco]	0.035	0.51 [PSL-HH]	0.019 J	0.41
	3 to 4 ft	Not Excavated	04-Nov-10	0.014	<0.0059	0.0074	<0.0059	0.0044 J
OUE-DP-075	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.0058	<0.0054	0.0036 J	0.0011 J	0.0045 J
	2 to 3 ft	Not Excavated	04-Nov-10	1.6 [PSL-Eco]	0.13 J	0.87 [PSL-HH]	0.044 J	1.4 [PSL-Eco]
	3 to 4 ft	Not Excavated	04-Nov-10	0.05	<0.0055	0.026	<0.0055	0.014
Compressor Ho	use and Lath E	uilding AOI						
MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07	<0.13	<0.13	<0.13	<0.13	0.068 J
	5.5 to 6 ft	Not Excavated	29-Sep-07	0.00089 J	<0.0064	<0.0064	0.0013 J	0.0014 J
OUC-HA-051	0 to 0.5 ft	Not Excavated	24-Nov-09	0.018	0.0046 J	0.0023 J	0.011	0.025
	4 to 5 ft	Not Excavated	24-Nov-09	0.042	0.0053 J	0.006 J	0.015	0.038

			Sample Date / Analyte	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene
Location ID	Depth (ft bgs)	Excavation	Units	mg/kg	mg/kg	Iorene Indeno(1,2,3-cd)Pyrene Naphthalene 1g/kg mg/kg mg/kg 2300 0.15 3.6 0.6 1 0.6 0035 J 0.0028 J 0.011 .009 J 0.019 J 0.017 J 0071 J 0.0033 J 0.014 .016 J 0.07 J 0.017 J .0061 <0.0061 <0.0061 .0027 0.0057 J 0.0095 J .0061 <0.0061 <0.0058 .00061 <0.0061 <0.0058 .00061 <0.0061 <0.0061 <0.0071 <0.0071 <0.0078 .00071 <0.0071 <0.0071 <0.0066 <0.0066 <0.0066 .0071 <0.0057 <0.0057 .00057 <0.0057 <0.0057 .00057 <0.0057 <0.0057 .00057 <0.0057 <0.0057 .0019 J 0.0057 <0.0057 .002 0.0035 J 0.01 J	mg/kg	
	(it bgs)	Status	PSL-HH	2300	2300	0.15	3.6	
			PSL-Eco	1	0.6	1	0.6	0.6
OUC-HA-052	0 to 0.5 ft	Not Excavated	24-Nov-09	0.016	0.0035 J	0.0028 J	0.011	0.026
	4 to 5 ft	Not Excavated	24-Nov-09	0.11	0.009 J	0.019 J	0.017 J	0.065
OUC-HA-053	0 to 0.5 ft	Not Excavated	24-Nov-09	0.024	0.0071 J	0.0033 J	0.014	0.033
	4 to 5 ft	Not Excavated	24-Nov-09	0.42	0.016 J	0.07 J	0.017 J	0.22
OUC-TP-001	7 to 7.5 ft	Not Excavated	10-Jul-08	0.0016 J	<0.0061	<0.0061	<0.0061	0.0016 J
OUE-DP-032	0 to 0.5 ft	Not Excavated	25-Jun-10	0.041	<0.027	0.0057 J	0.0095 J	0.026 J
	0.5 to 1.7 ft	Not Excavated	25-Jun-10	<0.0058	<0.0058	<0.0058	<0.0058	0.0014 J
	2 to 3.5 ft	Not Excavated	25-Jun-10	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061
OUE-DP-033	0 to 0.5 ft	Not Excavated	29-Jun-10	<0.34	<0.34	<0.34	<0.34	<0.34
	0.5 to 1.5 ft	Not Excavated	29-Jun-10	<0.0071	<0.0071	<0.0071	<0.0071 J/UB	<0.0071
	4 to 5 ft	Not Excavated	29-Jun-10	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066
OUE-DP-034	0 to 1 ft	Not Excavated	25-Jun-10	0.032 J	0.017 J	<0.058	0.026 J	0.12
	1 to 2 ft	Not Excavated	25-Jun-10	0.018	0.0019 J	0.0037 J	0.026	0.019
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-035	0 to 0.5 ft	Not Excavated	25-Jun-10	0.027	0.012 J	0.0058 J	0.02	0.064
	0.5 to 1.5 ft	Not Excavated	25-Jun-10	0.021	0.032	0.0035 J	0.01 J	0.1
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.03	<0.03	<0.03	<0.03	0.007 J
OUE-DP-067	2 to 3 ft	Not Excavated	04-Nov-10	0.014	0.0017 J	0.0032 J	0.0029 J	0.012
	4 to 5 ft	Not Excavated	04-Nov-10	0.015	<0.012	0.0035 J	0.0053 J	0.015
R37-CS-001	9 to 9.5 ft	Not Excavated	10-Jun-08	<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b
R37-CS-002	7 to 7.5 ft	Not Excavated	10-Jun-08	<0.0058 b	<0.0058 b	<0.0058 b	<0.0058 b	<0.0058 b
R37-CS-010	7 to 7.5 ft	Not Excavated	23-Jun-08	<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b	<0.0059 b

Depth		F	Sample Date / Analyte	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	2300	2300	0.15	3.6	
			PSL-Eco	1	0.6	1	0.6	0.6
R37-CS-011	7.5 to 8 ft	Not Excavated	24-Jun-08	0.0024 Jb	<0.0059 b	<0.0059 b	0.0013 Jb	0.0021 Jb
R37-CS-012	7.5 to 8 ft	Not Excavated	24-Jun-08	0.0026 Jb	<0.0062 b	<0.0062 b	<0.0062 b	0.0018 Jb
R37-CS-013	9.5 to 10 ft	Not Excavated	24-Jun-08	0.0013 Jb	<0.0061 b	<0.0061 b	0.0014 Jb	0.0019 Jb
R37-CS-014	8.5 to 9 ft	Not Excavated	24-Jun-08	0.016 b	0.0021 Jb	0.0031 Jb	0.011 b	0.016 b
R37-CS-017	9 to 9.5 ft	Not Excavated	10-Jul-08	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
R37-CS-018	7.5 to 8 ft	Not Excavated	10-Jul-08	0.0037 J	<0.0057	0.0011 J	0.0035 J	0.0051 J
Power House an	d Fuel Barn A	01						
HA-4.70	3.5 to 4 ft	Not Excavated	13-Sep-06	0.044	0.0074	0.0055 J	0.0023 J	0.057
HA-4.71	6 to 6.5 ft	Not Excavated	13-Sep-06	0.08	0.019	<0.0067	0.09	0.098
HA-4.72	8 to 8.5 ft	Not Excavated	13-Sep-06	0.016	0.0017 J	0.006 J	0.0025 J	0.016
HA-4.73	8 to 8.5 ft	Not Excavated	13-Sep-06	0.0037 J	<0.006	0.0063	<0.006	0.0035 J
HA-4.74	8 to 8.5 ft	Not Excavated	13-Sep-06	0.033	0.0047 J	0.0063 J	0.018	0.031
HA-4.76	3.5 to 4 ft	Not Excavated	13-Sep-06	0.0058 J	0.0028 J	0.0023 J	0.0024 J	0.015
HA-4.80	6 to 6.5 ft	Not Excavated	13-Sep-06	0.0064	0.002 J	0.0056 J	0.0054 J	0.0065
HA-4.81	8 to 8.5 ft	Not Excavated	13-Sep-06	0.0049 J	<0.017	0.0064 J	<0.017	0.0027 J
HA-4.83	4 to 4.5 ft	Not Excavated	13-Sep-06	0.068	0.033	0.015 J	0.068	0.086
HA-4.84	6 to 6.5 ft	Not Excavated	13-Sep-06	0.0079 J	0.0023 J	0.0077 J	0.0053 J	0.0072 J
HA-4.85	7 to 7.5 ft	Not Excavated	13-Sep-06	0.0024 J	<0.006	0.0076	<0.006	0.0031 J
HA-4.86	7 to 7.5 ft	Not Excavated	13-Sep-06	0.0022 J	<0.0066	<0.0066	<0.0066	0.0016 J
OUE-DP-036	1 to 2 ft	Not Excavated	22-Jun-10	0.13	0.0055 J	0.014	0.096	0.12
	3 to 4 ft	Not Excavated	22-Jun-10	0.053	0.0024 J	0.014	0.014	0.023
	5 to 7 ft	Not Excavated	22-Jun-10	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10	0.098	0.0052 J	0.014	0.068	0.073
	3 to 4 ft	Not Excavated	22-Jun-10	0.17	0.0055 J	0.026	0.0078	0.13
	5 to 7 ft	Not Excavated	22-Jun-10	0.018	<0.0066	0.005 J	0.0018 J	0.0076
OUE-DP-040	0.2 to 0.7 ft	Not Excavated	22-Jun-10	0.0063 J	<0.012	0.0027 J	<0.012	0.0059 J
	0.7 to 1.7 ft	Not Excavated	22-Jun-10	0.011	<0.011	0.005 J	<0.011	0.0079 J
	1.7 to 2.7 ft	Not Excavated	22-Jun-10	0.026	<0.0063	0.0083	0.0024 J	0.015
OUE-DP-046	3.5 to 4 ft	Not Excavated	22-Jun-10	0.078	0.0024 J	0.015	0.014	0.034
	5 to 6 ft	Not Excavated	22-Jun-10	0.045	0.0025 J	0.011	0.029	0.026
OUE-DP-047	5.5 to 6.5 ft	Not Excavated	22-Jun-10	0.028	<0.0076	0.0069 J	0.02	0.026
	11.5 to 12.5 ft	Not Excavated	22-Jun-10	0.0036 J	<0.0099	<0.0099	0.0092 J	0.0035 J

	Depth	Excavation	Sample Date / Analyte	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene
Location ID	(ft bas)	Statue	Units	mg/kg	mg/kg	mg/kg	mg/kg	Phenanthrene mg/kg 0.6 <0.0068 <0.0057 0.0091 0.0088 0.007 0.18 0.032 0.036 0.037 0.017 0.43 0.0075 0.0091 0.19 0.036 J <0.0061 0.0051 J 0.0051 J 0.0051 J 0.0054 J 0.0047 J 0.037 0.016 <0.016
	(it bgs)	otatus	PSL-HH	2300	2300	0.15	3.6	
			PSL-Eco	1	0.6	1	0.6	0.6
OUE-DP-077	12.5 to 13 ft	Not Excavated	02-Nov-10	<0.0068	<0.0068	0.0027 J	0.0016 J	<0.0068
	15 to 16 ft	Not Excavated	02-Nov-10	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
OUE-DP-078	2.2 to 2.7 ft	Not Excavated	04-Nov-10	0.054	<0.0084 J/UB	0.014	<0.0084 J/UB	0.0091
	5 to 5.5 ft	Not Excavated	04-Nov-10	0.012	<0.0084 J/UB	0.0029 J	<0.0084 J/UB	0.0088
OUE-HA-016	0 to 0.5 ft	Not Excavated	24-Jun-10	0.011	<0.0054	0.0032 J	0.0019 J	0.007
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.36	0.01	0.077	0.046	0.18
	4 to 5 ft	Not Excavated	24-Jun-10	0.012	0.0041 J	<0.0093	0.0033 J	0.032
OUE-HA-017	0 to 0.5 ft	Not Excavated	24-Jun-10	0.024	0.0048 J	<0.0054	0.025	0.036
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.045	0.0052 J	0.0052 J	0.033	0.034
	4 to 5 ft	Not Excavated	24-Jun-10	0.0014 J	<0.0059	<0.0059	0.0013 J	0.0014 J
OUE-HA-018	0 to 0.5 ft	Not Excavated	24-Jun-10	0.023	<0.0063	0.0033 J	0.021	0.017
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.73	0.029	0.22 [PSL-HH]	0.046	0.43
	4 to 5 ft	Not Excavated	24-Jun-10	0.15	0.0033 J	0.049	0.0047 J	0.075
OUE-HA-020	0 to 0.5 ft	Not Excavated	24-Jun-10	0.13	0.0018 J	0.0071	<0.0055	0.0091
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.29	0.1	0.016	0.0033 J	0.19
	4 to 5 ft	Not Excavated	24-Jun-10	0.049	0.0017 J	0.014	0.016	0.031
OUE-HA-023A	11 to 12 ft	Not Excavated	26-Jun-10	0.0023 J	<0.0077	<0.0077	0.0073 J	0.0036 J
	13 to 14 ft	Not Excavated	26-Jun-10	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10	0.0022 J	<0.0071	0.0021 J	0.0032 J	0.0051 J
	6.5 to 8 ft	Not Excavated	25-Jun-10	0.0021 J	0.0023 J	<0.0084	0.034	0.0077 J
OUE-HA-024	10 to 11 ft	Not Excavated	26-Jun-10	0.035	0.0037 J	0.0069	0.018	0.024
	11 to 12 ft	Not Excavated	26-Jun-10	0.0059 J	<0.0061	0.0026 J	0.0031 J	0.0045 J
OUE-HA-034	0 to 0.5 ft	Not Excavated	12-Nov-10	0.0065 J	<0.0097	<0.0097	0.028	0.0054 J
	0.5 to 1.5 ft	Not Excavated	12-Nov-10	0.0021 J	<0.0087	<0.0087	0.047	0.0047 J
	3 to 4 ft	Not Excavated	12-Nov-10	0.073	0.0028 J	0.025	0.0078	0.037
OUE-HA-035	0 to 0.5 ft	Not Excavated	13-Nov-10	0.024	0.0021 J	0.006 J	0.0021 J	0.016
	0.5 to 1.5 ft	Not Excavated	13-Nov-10	<0.01	<0.01	<0.01	<0.01	<0.01
	2.5 to 3 ft	Not Excavated	13-Nov-10	<0.0094	<0.0094	<0.0094	<0.0094	<0.0094

	Donth	Execution	Sample Date / Analyte	Fluoranthene	Fluorene	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene
Location ID	(ft bgs)	Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	2300	2300	0.15	3.6	
			PSL-Eco	1	0.6	1	0.6	0.6
OUE-HA-036	0 to 0.5 ft	Not Excavated	13-Nov-10	<0.006	<0.006	<0.006	<0.006	<0.006
	0.5 to 1.5 ft	Not Excavated	13-Nov-10	0.029	0.0018 J	0.0064 J	0.0023 J	0.02
OUE-HA-037	0 to 0.5 ft	Not Excavated	14-Nov-10	0.081	0.0035 J	0.025	0.0077 J	0.038
	0.5 to 1.5 ft	Not Excavated	14-Nov-10	0.43	0.021	0.094	0.019	0.2
	2 to 2.5 ft	Not Excavated	14-Nov-10	0.17	0.0072	0.037	0.036	0.078
OUE-HA-038	0 to 0.5 ft	Not Excavated	14-Nov-10	0.028 b	0.0029 Jb	0.0076 b	0.0037 Jb	0.018 b
	0.5 to 1.5 ft	Not Excavated	14-Nov-10	0.11 b	0.0036 Jb	0.0099 b	<0.0062 NDb	0.012 b
OUE-HA-039	0 to 0.5 ft	Not Excavated	16-Nov-10	0.024	<0.016	<0.016	0.008 J	0.02
	0.5 to 1.5 ft	Not Excavated	16-Nov-10	0.042	0.0066	0.0034 J	0.026	0.042
	3 to 3.5 ft	Not Excavated	16-Nov-10	0.016	0.0024 J	<0.0086	0.048	0.016
OUE-DP-041	0 to 0.5 ft	Not Excavated	27-Sep-10	0.003 J	<0.0056	<0.0056	<0.0056	0.0061
	0.5 to 1 ft	Not Excavated	27-Sep-10	0.0087	<0.0055	0.0021 J	<0.0055	0.0089
OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10	0.0033 J	<0.0057	0.005 J	<0.0057	0.0031 J
	1.5 to 3 ft	Not Excavated	24-Sep-10	0.007	<0.0059	0.0083	<0.0059	0.0042 J
	4 to 4.5 ft	Not Excavated	24-Sep-10	0.01	<0.0062	0.01	0.0016 J	0.0069
OUE-HA-013	0 to 0.5 ft	Not Excavated	24-Jun-10	0.0015 J	<0.0069	<0.0069	<0.0069	0.0025 J
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	0.048	0.0012 J	0.0097	0.0083	0.029
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	0.011	<0.0052	0.0015 J	0.0032 J	0.0078
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	0.021	<0.0053	0.0011 J	0.0093	0.017
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	0.013	<0.0053	0.0012 J	0.0079	0.016

			Sample Date /	Dumana	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T. (.) DAU3	
	Donth	Execution	Analyte	Pyrene	LMW-PAH**	HMW-PAH	Total PAH ²	USEPA B(a)P TEQ
Location ID	(ft bgs)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	1700				0.038
			PSL-Eco	1.2	29	1.1		
Water Treatmen	t and Truck Du	mp AOI						
FL-CS-001	2 to 2.5 ft	Not Excavated	19-Jun-07	0.015 J	0.011	0.054	0.056	0.0020
FL-CS-002	2.5 to 3 ft	Not Excavated	19-Jun-07	0.055	0.15	0.14	0.18	0.0029
FL-CS-003	2.5 to 3 ft	Not Excavated	19-Jun-07	0.054	0.088	0.22	0.24	0.022
FL-CS-004	2.5 to 3 ft	Not Excavated	19-Jun-07	0.033	0.018	0.11	0.11	0.012
FL-CS-005	2.5 to 3 ft	Not Excavated	19-Jun-07	0.032 J	0.050	0.10	0.12	0.0097
FL-CS-006	2.5 to 3 ft	Not Excavated	19-Jun-07	0.0042 J	0.015	0.0097	0.014	0.00010
FL-CS-007	6 to 6.5 ft	Not Excavated	19-Jun-07	0.012	0.040	0.035	0.063	0.0030
FL-CS-008	2.5 to 3 ft	Not Excavated	20-Jun-07	0.026	0.057	0.091	0.11	0.0083
FL-CS-009	2.5 to 3 ft	Not Excavated	20-Jun-07	0.11	0.17	0.53	0.53	0.063 [PSL-HH]
FL-CS-010	2.5 to 3 ft	Not Excavated	20-Jun-07	0.058	0.15	0.22	0.29	0.023
FL-CS-011	6.5 to 7 ft	EXCAVATED	22-Jun-07	0.74	2.9	2.4 [PSL-Eco]	4.7	0.25 [PSL-HH]
FL-CS-012	6.5 to 7 ft	EXCAVATED	22-Jun-07	1.8 J [PSL-Eco]	2.7	6.3 [PSL-Eco]	5.9	0.065 [PSL-HH]
FL-CS-013	6.5 to 7 ft	Not Excavated	22-Jun-07	0.61	0.85	2.5 [PSL-Eco]	2.6	0.30 [PSL-HH]
FL-CS-014	6.5 to 7 ft	Not Excavated	22-Jun-07	0.96	0.98	4.2 [PSL-Eco]	4.4	0.61 [PSL-HH]
FL-CS-015	6.5 to 7 ft	Not Excavated	22-Jun-07	0.042	0.20	0.18	0.22	0.017
FL-CS-016	5.5 to 6 ft	Not Excavated	22-Jun-07	0.032	0.12	0.18	0.19	0.023
FL-CS-017	4 to 4.5 ft	Not Excavated	11-Jul-07	0.15	0.27	0.71	0.73	0.075 [PSL-HH]
FL-CS-018	4 to 4.5 ft	Not Excavated	11-Jul-07	0.19	0.62	0.70	1.1	0.089 [PSL-HH]
FL-CS-019	3.5 to 4 ft	Not Excavated	11-Jul-07	0.047	0.021	0.21	0.19	0.026
FL-CS-020	3.5 to 4 ft	Not Excavated	11-Jul-07	0.024 J	0.0091	0.038	0.033	ND
FL-CS-021	3.5 to 4 ft	Not Excavated	11-Jul-07	0.075	0.075	0.23	0.24	0.025
FL-CS-022	3 to 3.5 ft	Not Excavated	11-Jul-07	0.011	0.019	0.043	0.048	0.0043
FL-CS-023	4.5 to 5.5 ft	Not Excavated	11-Jul-07	0.089	0.096	0.32	0.33	0.035
FL-CS-024	4.5 to 5.5 ft	Not Excavated	11-Jul-07	0.059	0.051	0.36	0.33	0.039 [PSL-HH]
FL-CS-025	4.5 to 5.5 ft	Not Excavated	11-Jul-07	< 0.034	ND	ND	ND	ND
FL-CS-026	5 to 5.5 ft	Not Excavated	11-Jul-07	<0.11	ND	ND	ND	ND
FL-CS-028	3.5 to 4 ft	Not Excavated	10-Aug-07	0.14	0.11	0.90	0.86	0.18 [PSL-HH]
FL-CS-029	5 to 5.5 ft	Not Excavated	10-Aug-07	0.0063 J	0.0065	0.041	0.038	0.0049
FL-CS-030	4.5 to 5 ft	Not Excavated	10-Aug-07	0.027	0.047	0.19	0.19	0.036
FL-CS-031	4.5 to 5 ft	Not Excavated	10-Aug-07	0.24	0.31	0.97	0.95	0.12 [PSL-HH]
OUE-DP-001	0 to 1 ft	Not Excavated	24-Jun-10	0.0096	0.018	0.051	0.053	0.0039
	1 to 2 ft	Not Excavated	24-Jun-10	0.029	0.029	0.14	0.14	0.019
	4 to 5 ft	Not Excavated	24-Jun-10	0.09	0.055	0.47	0.43	0.069 [PSL-HH]
OUE-DP-002	0 to 1 ft	Not Excavated	24-Jun-10	0.077	0.033	0.45	0.41	0.080 [PSL-HH]
	1 to 2 ft	Not Excavated	24-Jun-10	0.0036 J	0.0080	0.019	0.020	0.0030
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0063	ND	ND	ND	ND
OUE-DP-004	0 to 1 ft	Not Excavated	23-Jun-10	0.017	0.049	0.067	0.075	0.0016
	1 to 2 ft	Not Excavated	23-Jun-10	<0.49	ND	1.0	0.83	0.0083
	3 to 4 ft	Not Excavated	23-Jun-10	0.076 J	0.051	0.46	0.34	0.0082
OUE-DP-012	13.5 to 14.5 ft	Not Excavated	22-Jun-10	0.12 Jb	1.2	0.58	1.6	0.0078 /J
OUE-DP-013	5 to 6 ft	Not Excavated	22-Jun-10	0.011	0.020	0.054	0.060	0.0058

			Sample Date /	Burene				
	Donth	Execution	Analyte	Pyrelie	LIVIVV-PAH	HIVIVV-PAH	Total PAH	USEPA B(a)P TEQ
Location ID	(ft bac)	Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	1700				0.038
			PSL-Eco	1.2	29	1.1		
OUE-DP-059	2 to 3 ft	Not Excavated	06-Nov-10	0.0097	0.0060	0.048	0.046	0.0059
	5 to 6 ft	Not Excavated	06-Nov-10	0.0046 J	0.0034	0.020	0.019	0.0027
	6.5 to 7.5 ft	Not Excavated	06-Nov-10	<0.0064	ND	ND	ND	ND
OUE-DP-060	2 to 3 ft	Not Excavated	06-Nov-10	0.014	0.0055	0.066	0.063	0.010
	5 to 6 ft	Not Excavated	06-Nov-10	<0.0056	ND	ND	ND	ND
	7 to 8 ft	Not Excavated	06-Nov-10	<0.0057	ND	ND	ND	ND
OUE-DP-064	0 to 0.5 ft	Not Excavated	27-Oct-10	0.018	0.041	0.11	0.11	0.016
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	0.011	0.024	0.074	0.074	0.012
	3 to 4 ft	Not Excavated	27-Oct-10	0.015	0.032	0.097	0.097	0.017
OUE-DP-065	0 to 0.5 ft	Not Excavated	27-Oct-10	<0.0056	0.0015	0.0025	0.0040	0.0025
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	1.4 [PSL-Eco]	0.40	5.9 [PSL-Eco]	5	0.54 [PSL-HH]
	3 to 4 ft	Not Excavated	27-Oct-10	0.0072 J	0.014	0.037	0.035	0.0036
OUE-DP-066	0 to 0.5 ft	Not Excavated	27-Oct-10	0.014	0.031	0.070	0.075	0.0057
	0.5 to 1.5 ft	Not Excavated	27-Oct-10	0.037	0.044	0.22	0.20	0.023
	3 to 4 ft	Not Excavated	27-Oct-10	0.0044 J	0.014	0.022	0.024	0.0020
OUE-DP-084	0 to 1 ft	Not Excavated	03-Nov-10	0.72	0.15	2.8 [PSL-Eco]	1.7	0.097 [PSL-HH]
	2.5 to 3.5 ft	Not Excavated	03-Nov-10	0.11	0.14	0.53	0.51	0.079 [PSL-HH]
	6.5 to 7.5 ft	Not Excavated	03-Nov-10	<0.0065	ND	ND	ND	ND
	8.5 to 9.5 ft	Not Excavated	03-Nov-10	<0.0057	ND	ND	ND	ND
OUE-DP-085	0 to 1 ft	Not Excavated	03-Nov-10	0.0067	0.0036	0.040	0.036	0.0082
	2.5 to 3.5 ft	Not Excavated	03-Nov-10	0.33	0.38	2.2 [PSL-Eco]	2.1	0.40 [PSL-HH]
	6.5 to 7.5 ft	Not Excavated	03-Nov-10	<0.0066	ND	0.012	0.011	0.0066
	8.5 to 9 ft	Not Excavated	03-Nov-10	<0.0062	ND	ND	ND	ND
OUE-DP-091	6 to 7 ft	Not Excavated	05-Nov-10	0.021 /J	0.016	0.086	0.091 /J	0.0099 /J
OUE-DP-092	5.5 to 6 ft	Not Excavated	05-Nov-10	0.013	0.020	0.072	0.081	0.0098
OUE-DP-099	0 to 0.5 ft	Not Excavated	14-Dec-10	0.4	0.34	1.7[PSL-Eco]	1.7	0.24 [PSL-HH]
	0.5 to 1.5 ft	Not Excavated	14-Dec-10	1.9 [PSL-Eco]	1.1	8.9 [PSL-Eco]	8.4	1.5 [PSL-HH]
	2.5 to 3.5 ft	Not Excavated	14-Dec-10	<0.0065	ND	ND	ND	ND
OUE-DP-100	0 to 0.5 ft	Not Excavated	14-Dec-10	0.0033 J/nQnV	0.0030	0.021	0.019	0.0024
	0.5 to 1.5 ft	Not Excavated	14-Dec-10	<0.0062	ND	ND	ND	ND
	2.5 to 3.5 ft	Not Excavated	14-Dec-10	1.9 [PSL-Eco]	2.2	8.5 [PSL-Eco]	8.9	1.3 [PSL-HH]
FL-CS-027	5 to 5.5 ft	Not Excavated	11-Jul-07	0.00093 J	ND	0.0035	0.0025	0.00016
OUA-TP-028	0 to 0.4 ft	Not Excavated	18-Apr-07	0.04 J	0.019	0.057	0.059	ND
OUE-DP-003	0 to 1 ft	Not Excavated	24-Jun-10	0.024 J	0.067	0.14	0.14	0.0033
	1 to 2 ft	Not Excavated	24-Jun-10	0.0013 J	ND	0.0055	0.0039	0.00013
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0054	ND	ND	ND	ND
OUE-DP-058	1 to 2 ft	Not Excavated	06-Nov-10	0.012	0.011	0.067	0.064	0.0080
	5 to 6 ft	Not Excavated	06-Nov-10	0.017	0.020	0.083	0.090	0.011
	6 to 7 ft	Not Excavated	06-Nov-10	0.029	0.016	0.14	0.13	0.023
OUE-HA- 001ABCD	0 to 0.5 ft	Not Excavated	25-Jun-10	0.0058	0.016	0.029	0.035	0.0020
OUE-HA- 002ABCD	0 to 0.5 ft	Not Excavated	25-Jun-10	0.021	0.035	0.093	0.11	0.0065

			Sample Date /					USEPA B(a)P TEQ ⁴ mg/kg 0.038 0.0057 0.00057 0.0015 /J 0.24 [PSL-HH] 0.28 [PSL-HH] 0.28 [PSL-HH] 0.0049 /J 0.40 [PSL-HH] 0.0049 /J 0.40 [PSL-HH] 0.0035 1.6 [PSL-HH] 0.00038 0.000038 0.000019 0.000029 0.013 0.00029 0.013 0.00029 0.013 0.00029 0.013 0.00029 0.013 0.00029 0.013 0.00029 0.013 0.00057 ND 0.00029 0.013 0.00057 ND 0.00029 0.013 0.00057 ND 0.00029 0.013 0.00057 ND 0.00029 0.013 0.00057 ND 0.00029 0.013 0.00057 ND 0.00057 0.013 0.00057 0.013 0.00057 0.013 0.00057 0.013 0.00057 0.013 0.00057 0.013 0.00057 0.013 0.00057 0.00057 0.013 0.00057 0.00058
	Danth	Encounting	Analyte	Pyrene	LMW-PAH.	HMW-PAH	I otal PAH [°]	USEPA B(a)P TEQ
Location ID	Depth	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(n bgs)	Status	PSL-HH	1700			-	0.038
			PSL-Eco	1.2	29	1.1		
Sawmill #1 AOI								
OUE-DP-018	5 to 6 ft	Not Excavated	22-Jun-10	0.013	0.030	0.067	0.080	0.0057
	6 to 7 ft	Not Excavated	22-Jun-10	0.0086 J	0.012	0.030	0.039	0.00050
OUE-DP-019	2 to 2.5 ft	Not Excavated	21-Jun-10	0.024 Jb	0.058	0.088	0.093	0.0015 /J
OUE-DP-024	2 to 2.5 ft	Not Excavated	22-Jun-10	0.27	0.31	1.4 [PSL-Eco]	1.4	0.24 [PSL-HH]
	3.5 to 4 ft	Not Excavated	04-Nov-10	0.64	0.85	3.0 [PSL-Eco]	3.6	0.28 [PSL-HH]
	5 to 6 ft	Not Excavated	22-Jun-10	0.0079 b/J	0.0049	0.035	0.035	0.0049 /J
OUE-DP-025	3.2 to 3.7 ft	Not Excavated	04-Nov-10	0.78 J	3.2	3.7 [PSL-Eco]	6.0	0.40 [PSL-HH]
	6 to 7 ft	Not Excavated	04-Nov-10	0.0071	0.0052	0.045	0.046	0.0043
OUE-DP-026	0 to 0.5 ft	Not Excavated	25-Jun-10	0.1	0.092	0.43	0.42	0.036
	0.5 to 2 ft	Not Excavated	25-Jun-10	0.083	0.062	0.32	0.32	0.035
	2 to 3.5 ft	Not Excavated	25-Jun-10	2.5 [PSL-Eco]	3.1	10 [PSL-Eco]	11	1.6 [PSL-HH]
OUE-DP-028	0 to 0.5 ft	Not Excavated	21-Jun-10	0.018	0.031	0.059	0.056	0.00099
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.011	0.0079	0.0038	0.012	0.000038
OUE-DP-030	0 to 0.5 ft	Not Excavated	21-Jun-10	0.0059	0.013	0.014	0.015	0.000019
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	0.005 J	0.0087	0.015	0.015	0.00027
OUE-DP-031	0 to 0.5 ft	Not Excavated	21-Jun-10	0.0035 J	0.0058	0.0080	0.0093	ND
	0.5 to 1.5 ft	Not Excavated	21-Jun-10	0.014 J	0.032	0.057	0.059	0.00029
OUE-DP-071	2.2 to 2.7 ft	Not Excavated	04-Nov-10	0.65 J	1.4	2.0 [PSL-Eco]	3.4	0.013
	3 to 3.5 ft	Not Excavated	03-Nov-10	0.011	0.023	0.049	0.063	0.0057
	5.5 to 6.5 ft	Not Excavated	03-Nov-10	< 0.0062	ND	ND	ND	ND
OUE-DP-072	2.5 to 3 ft	Not Excavated	04-Nov-10	0.0013 J	ND	0.0033	0.0033	0.000020
	3.5 to 4 ft	Not Excavated	04-Nov-10	< 0.0059	ND	ND	ND	ND
OUE-DP-073	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.4	0.28	2.4 [PSL-Eco]	2.3	0.46 [PSL-HH]
	2 to 3 ft	Not Excavated	04-Nov-10	7.7 [PSL-Eco]	3.8	38 [PSL-Eco]	36	7.5 [PSL-HH]
	3 to 4 ft	Not Excavated	04-Nov-10	0.13	0.12	0.83	0.84	0.18 [PSL-HH]
OUE-DP-074	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.074	0.031	0.48	0.41	0.051 [PSL-HH]
	2 to 3 ft	Not Excavated	04-Nov-10	2.3 [PSL-Eco]	1.0	12 [PSL-Eco]	11	2.4 [PSL-HH]
	3 to 4 ft	Not Excavated	04-Nov-10	0.019	0.011	0.13	0.12	0.027
OUE-DP-075	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.0053 J	0.0056	0.041	0.040	0.0058
	2 to 3 ft	Not Excavated	04-Nov-10	2.2 [PSL-Eco]	2.3	11 [PSL-Eco]	12	2.0 [PSL-HH]
	3 to 4 ft	Not Excavated	04-Nov-10	0.063	0.033	0.37	0.36	0.076 [PSL-HH]
Compressor Ho	use and Lath E	Building AOI						
MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07	0.054 J	0.068	0.29	0.36	0.080 [PSL-HH]
	5.5 to 6 ft	Not Excavated	29-Sep-07	0.0012 J	0.0027	0.0054	0.0059	0.00013
OUC-HA-051	0 to 0.5 ft	Not Excavated	24-Nov-09	0.028	0.050	0.088	0.11	0.0078
	4 to 5 ft	Not Excavated	24-Nov-09	0.062	0.072	0.220	0.23	0.021

	Depth	Excavation	Sample Date / Analyte	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	(ft bas)	Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	otatus	PSL-HH	1700				0.038
			PSL-Eco	1.2	29	1.1		
OUC-HA-052	0 to 0.5 ft	Not Excavated	24-Nov-09	0.027	0.052	0.088	0.11	0.0084
	4 to 5 ft	Not Excavated	24-Nov-09	0.19	0.13	0.66	0.66	0.076 [PSL-HH]
OUC-HA-053	0 to 0.5 ft	Not Excavated	24-Nov-09	0.03	0.064	0.110	0.13	0.0097
	4 to 5 ft	Not Excavated	24-Nov-09	0.37	0.36	1.8 [PSL-Eco]	1.7	0.25 [PSL-HH]
OUC-TP-001	7 to 7.5 ft	Not Excavated	10-Jul-08	0.0028 J	0.0016	0.016	0.016	0.0026
OUE-DP-032	0 to 0.5 ft	Not Excavated	25-Jun-10	0.024 J	0.05	0.15	0.14	0.012
	0.5 to 1.7 ft	Not Excavated	25-Jun-10	<0.0058	0.0014	ND	0.0014	ND
	2 to 3.5 ft	Not Excavated	25-Jun-10	<0.0061	ND	ND	ND	ND
OUE-DP-033	0 to 0.5 ft	Not Excavated	29-Jun-10	<0.34	ND	ND	ND	ND
	0.5 to 1.5 ft	Not Excavated	29-Jun-10	<0.0071	ND	ND	ND	ND
	4 to 5 ft	Not Excavated	29-Jun-10	<0.0066	ND	ND	ND	ND
OUE-DP-034	0 to 1 ft	Not Excavated	25-Jun-10	0.053 J	0.19	0.21	0.31	0.0054
	1 to 2 ft	Not Excavated	25-Jun-10	0.015	0.055	0.070	0.080	0.00630
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.0057	ND	ND	ND	ND
OUE-DP-035	0 to 0.5 ft	Not Excavated	25-Jun-10	0.044	0.130	0.21	0.27	0.020
	0.5 to 1.5 ft	Not Excavated	25-Jun-10	0.032	0.200	0.14	0.26	0.016
	3 to 4.5 ft	Not Excavated	25-Jun-10	0.0069 J	0.0070	0.018	0.025	0.00011
OUE-DP-067	2 to 3 ft	Not Excavated	04-Nov-10	0.02	0.026	0.097	0.10	0.014
	4 to 5 ft	Not Excavated	04-Nov-10	0.022	0.037	0.068	0.074	0.0012
R37-CS-001	9 to 9.5 ft	Not Excavated	10-Jun-08	<0.0059 b	ND	ND	ND	ND
R37-CS-002	7 to 7.5 ft	Not Excavated	10-Jun-08	<0.0058 b	ND	ND	ND	ND
R37-CS-010	7 to 7.5 ft	Not Excavated	23-Jun-08	<0.0059 b	ND	ND	ND	ND

	Danth	Everyotion	Sample Date / Analyte	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	Depth (# hgs)	Excavation	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	1700				0.038
			PSL-Eco	1.2	29	1.1		
R37-CS-011	7.5 to 8 ft	Not Excavated	24-Jun-08	0.0033 Jb	0.0034	0.012	0.011	0.0011
R37-CS-012	7.5 to 8 ft	Not Excavated	24-Jun-08	0.0046 Jb	0.0018	0.012	0.011	0.00034
R37-CS-013	9.5 to 10 ft	Not Excavated	24-Jun-08	0.0019 Jb	0.0033	0.0050	0.0056	0.000093
R37-CS-014	8.5 to 9 ft	Not Excavated	24-Jun-08	0.018 b	0.040	0.077	0.090	0.0072
R37-CS-017	9 to 9.5 ft	Not Excavated	10-Jul-08	<0.0057	ND	ND	ND	ND
R37-CS-018	7.5 to 8 ft	Not Excavated	10-Jul-08	0.0049 J	0.010	0.023	0.026	0.0022
Power House an	d Fuel Barn AG	DI			• • • • •			
HA-4.70	3.5 to 4 ft	Not Excavated	13-Sep-06	0.056	0.095	0.17	0.22	0.012
HA-4.71	6 to 6.5 ft	Not Excavated	13-Sep-06	<0.0067	0.25	0.080	0.14	ND
HA-4.72	8 to 8.5 ft	Not Excavated	13-Sep-06	0.025	0.028	0.10	0.11	0.014
HA-4.73	8 to 8.5 ft	Not Excavated	13-Sep-06	0.0043 J	0.0035	0.042	0.042	0.0059
HA-4.74	8 to 8.5 ft	Not Excavated	13-Sep-06	0.036	0.069	0.15	0.17	0.016
HA-4.76	3.5 to 4 ft	Not Excavated	13-Sep-06	0.0096	0.022	0.049	0.062	0.0067
HA-4.80	6 to 6.5 ft	Not Excavated	13-Sep-06	0.01	0.019	0.054	0.059	0.0075
HA-4.81	8 to 8.5 ft	Not Excavated	13-Sep-06	0.016 J	0.0027	0.16	0.16	0.038
HA-4.83	4 to 4.5 ft	Not Excavated	13-Sep-06	0.095	0.22	0.32	0.40	0.027
HA-4.84	6 to 6.5 ft	Not Excavated	13-Sep-06	0.0075 J	0.020	0.068	0.072	0.012
HA-4.85	7 to 7.5 ft	Not Excavated	13-Sep-06	0.0025 J	0.0031	0.038	0.039	0.0050
HA-4.86	7 to 7.5 ft	Not Excavated	13-Sep-06	0.0021 J	0.0016	0.0082	0.0076	0.000094
OUE-DP-036	1 to 2 ft	Not Excavated	22-Jun-10	0.11	0.28	0.45	0.071	0.034
	3 to 4 ft	Not Excavated	22-Jun-10	0.056	0.059	0.31	0.30	0.050 [PSL-HH]
	5 to 7 ft	Not Excavated	22-Jun-10	<0.0065	ND	ND	ND	ND
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10	0.11	0.19	0.43	0.44	0.051 [PSL-HH]
	3 to 4 ft	Not Excavated	22-Jun-10	0.18	0.20	0.77	0.79	0.099 [PSL-HH]
	5 to 7 ft	Not Excavated	22-Jun-10	0.023	0.014	0.11	0.10	0.016
OUE-DP-040	0.2 to 0.7 ft	Not Excavated	22-Jun-10	0.0091 J	0.0059	0.042	0.042	0.0058
	0.7 to 1.7 ft	Not Excavated	22-Jun-10	0.014	0.0079	0.077	0.074	0.011
	1.7 to 2.7 ft	Not Excavated	22-Jun-10	0.032	0.025	0.15	0.14	0.023
OUE-DP-046	3.5 to 4 ft	Not Excavated	22-Jun-10	0.073	0.072	0.36	0.33	0.045 [PSL-HH]
	5 to 6 ft	Not Excavated	22-Jun-10	0.04	0.080	0.23	0.22	0.032
OUE-DP-047	5.5 to 6.5 ft	Not Excavated	22-Jun-10	0.019	0.055	0.12	0.12	0.012
	11.5 to 12.5 ft	Not Excavated	22-Jun-10	0.0046 J	0.015	0.016	0.016	0.00051

			Sample Date /	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	Depth	Excavation	Analyte	malka	mallea	mallea	malka	mallea
Location ID	(ft bgs)	Status	Onits	1700	mg/kg	nig/kg	під/кд	nig/kg
			PSL-HH	1700				0.038
	10.5		PSL-ECO	1.2	29	1.1		
OUE-DP-077	12.5 to 13 ft	Not Excavated	02-Nov-10	<0.0068	0.0016	0.0059	0.0059	0.0035
	15 to 16 ft	Not Excavated	02-Nov-10	<0.0057	ND	ND	ND	ND
OUE-DP-078	2.2 to 2.7 ft	Not Excavated	04-Nov-10	0.066	0.0091	0.38	0.34	0.050 [PSL-HH]
	5 to 5.5 ft	Not Excavated	04-Nov-10	0.011	0.011	0.058	0.059	0.0081
OUE-HA-016	0 to 0.5 ft	Not Excavated	24-Jun-10	0.011	0.011	0.057	0.055	0.0057
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.29	0.35	1.5 [PSL-Eco]	0.24	0.18 [PSL-HH]
	4 to 5 ft	Not Excavated	24-Jun-10	0.011	0.37	0.023	0.057	ND
OUE-HA-017	0 to 0.5 ft	Not Excavated	24-Jun-10	0.026	0.091	0.073	0.099	0.0012
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.047	0.11	0.21	0.22	0.027
	4 to 5 ft	Not Excavated	24-Jun-10	0.0013 J	0.0042	0.0027	0.0027	ND
OUE-HA-018	0 to 0.5 ft	Not Excavated	24-Jun-10	0.021	0.045	0.085	0.083	0.0081
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.69	0.70	3.3 [PSL-Eco]	3.2	0.44 [PSL-HH]
	4 to 5 ft	Not Excavated	24-Jun-10	0.18	0.12	0.84	0.80	0.12 [PSL-HH]
OUE-HA-020	0 to 0.5 ft	Not Excavated	24-Jun-10	0.12	0.020	0.43	0.32	0.027
	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.29	0.42	0.99	1.0	0.069 [PSL-HH]
	4 to 5 ft	Not Excavated	24-Jun-10	0.042	0.064	0.25	0.24	0.035
OUE-HA-023A	11 to 12 ft	Not Excavated	26-Jun-10	0.0022 J	0.011	0.0045	0.0058	ND
	13 to 14 ft	Not Excavated	26-Jun-10	<0.0061	ND	ND	ND	ND
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10	0.0027 J	0.016	0.019	0.029	0.00087
	6.5 to 8 ft	Not Excavated	25-Jun-10	0.0023 J	0.049	0.0044	0.012	ND
OUE-HA-024	10 to 11 ft	Not Excavated	26-Jun-10	0.046	0.063	0.18	0.18	0.023
	11 to 12 ft	Not Excavated	26-Jun-10	0.0064	0.0094	0.038	0.039	0.0053
OUE-HA-034	0 to 0.5 ft	Not Excavated	12-Nov-10	0.0065 J	0.036	0.030	0.029	0.0034
	0.5 to 1.5 ft	Not Excavated	12-Nov-10	0.0029 J	0.057	0.0050	0.0076	ND
	3 to 4 ft	Not Excavated	12-Nov-10	0.087	0.068	0.41	0.39	0.059 [PSL-HH]
OUE-HA-035	0 to 0.5 ft	Not Excavated	13-Nov-10	0.02	0.029	0.11	0.11	0.013
	0.5 to 1.5 ft	Not Excavated	13-Nov-10	<0.01	ND	0.0021	0.0021	ND
	2.5 to 3 ft	Not Excavated	13-Nov-10	<0.0094	ND	ND	ND	ND
Table 4-27 Polycyclic Aromatic Hydrocarbons Detected in Soil

	Donth	Execution	Sample Date / Analyte	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	(ft bgs)	Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)	Status	PSL-HH	1700				0.038
			PSL-Eco	1.2	29	1.1		
OUE-HA-036	0 to 0.5 ft	Not Excavated	13-Nov-10	<0.006	ND	ND	ND	ND
	0.5 to 1.5 ft	Not Excavated	13-Nov-10	0.035	0.036	0.17	0.17	0.025
OUE-HA-037	0 to 0.5 ft	Not Excavated	14-Nov-10	0.061	0.089	0.40	0.39	0.066 [PSL-HH]
	0.5 to 1.5 ft	Not Excavated	14-Nov-10	0.29	0.35	1.8 [PSL-Eco]	1.7	0.26 [PSL-HH]
	2 to 2.5 ft	Not Excavated	14-Nov-10	0.095	0.20	0.68	0.64	0.097 [PSL-HH]
OUE-HA-038	0 to 0.5 ft	Not Excavated	14-Nov-10	0.031 b	0.036	0.19	0.19	0.024
	0.5 to 1.5 ft	Not Excavated	14-Nov-10	0.11 b	0.032	0.45	0.36	0.040 [PSL-HH]
OUE-HA-039	0 to 0.5 ft	Not Excavated	16-Nov-10	0.021	0.037	0.11	0.11	0.011
	0.5 to 1.5 ft	Not Excavated	16-Nov-10	0.044	0.12	0.22	0.25	0.026
	3 to 3.5 ft	Not Excavated	16-Nov-10	0.018	0.081	0.049	0.058	0.0030
OUE-DP-041	0 to 0.5 ft	Not Excavated	27-Sep-10	0.0035 J	0.0061	0.020	0.023	0.0021
	0.5 to 1 ft	Not Excavated	27-Sep-10	0.0078	0.0089	0.049	0.049	0.0061
OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10	0.0029 J	0.0031	0.038	0.038	0.0098
	1.5 to 3 ft	Not Excavated	24-Sep-10	0.0067	0.0057	0.066	0.065	0.014
	4 to 4.5 ft	Not Excavated	24-Sep-10	0.013	0.012	0.10	0.10	0.015
OUE-HA-013	0 to 0.5 ft	Not Excavated	24-Jun-10	<0.0069	0.0025	0.0045	0.0055	0.00017
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	0.039	0.047	0.17	0.16	0.014
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	0.0077	0.013	0.031	0.028	0.00067
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	0.016	0.036	0.054	0.053	0.0019
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	0.015	0.035	0.062	0.068	0.0042

	_		Sample Date / Analyte	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone	4-Methyl-2-Pentanone
Location ID	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)		PSL-HH	62	780	2.4	28000	5300
			PSL-Eco			20		
Water Treatmen	t and Truck Du	Imp AOI						
HA-4.137	2.3 to 2.8 ft	Not Excavated	08-Aug-06					
HA-4.138	7.3 to 7.8 ft	Not Excavated	08-Aug-06					
HA-4.139	6.2 to 6.7 ft	Not Excavated	08-Aug-06					
HA-4.140	1 to 1.5 ft	Not Excavated	08-Aug-06					
HA-4.141	1.1 to 1.6 ft	Not Excavated	08-Aug-06					
HA-4.142	1.7 to 2.2 ft	Not Excavated	08-Aug-06					
HA-4.143	0.5 to 1 ft	Not Excavated	29-Jun-06	<0.00028	<0.00027	<0.00036	<0.00089	<0.00041
HA-4.160	2.7 to 3.2 ft	Not Excavated	08-Aug-06					
OUE-DP-003	1 to 2 ft	Not Excavated	24-Jun-10	<0.0059	<0.0059	<0.36	<0.012	<0.012
OUE-DP-009	4 to 3 ft	Not Excavated	24-Jun-10	<0.0052	<0.0053	<0.0053	<0.011/UB	<0.01
OUE-DP-010	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.0052	<0.0052	<0.38	<0.0099	<0.009
OUE-DP-011	5.6 to 6.5 ft	Not Excavated	29-Jun-10	<0.0051	<0.0051	<0.0051	<0.01.1/UB	<0.01
OUE-DP-058	1 to 2 ft	Not Excavated	06-Nov-10	<0.0072	<0.0072	<0.0072	<0.014	<0.014
	5 to 6 ft	Not Excavated	06-Nov-10	< 0.0054	<0.0054	<0.0054	<0.011	<0.011
	6 to 7 ft	Not Excavated	06-Nov-10	<0.0055	<0.0055	<0.0055	<0.011	<0.011
P4-11	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.0051	<0.0051	<0.0051	<0.01	<0.01
P4-12	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.0049	<0.0049	<0.0049	<0.0098	<0.0098
HA-4.42	0.5 to 1 ft	Not Excavated	11-Jul-06	<0.00048	<0.00048	<0.00059	<0.0005	<0.00013
HA-4.43	0.1 to 0.6 ft	Not Excavated	11-Jul-06	<0.00048	<0.00048	<0.00059	<0.0005	<0.00013
HA-4.46	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.00043	<0.00044	<0.00053	<0.00045	<0.00012
HA-4.119	0.5 to 1 ft	Not Excavated	28-Jun-06	<0.00029	<0.00028	<0.00064	<0.00098	<0.00013
HA-4.120	0.5 to 1 ft	EXCAVATED	29-Jun-06	0.00042 J [<0.00022]	<0.00032 [<0.00021]	<0.00044 [<0.00049]	0.0022 J [0.001 J]	<0.0005 [<0.00095]
MW-4.2	2.5 to 3 ft	Not Excavated	16-Dec-03	<0.0045	<0.0045	<0.0045	<0.0091	<0.0091
OUE-DP-001	1 to 2 ft	Not Excavated	24-Jun-10	<0.0052	<0.0052	<0.0052	0.00089 J	<0.01
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0059	<0.0059	<0.0059	<0.012	<0.012
OUE-DP-002	1 to 2 ft	Not Excavated	24-Jun-10	<0.0082	<0.0082	<0.0082	0.033 /J	<0.016
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0056	<0.0056	<0.0056	0.0064 J	<0.011
OUE-DP-004	1 to 2 ft	Not Excavated	23-Jun-10	<0.019	<0.019	<0.019	0.017 J	<0.039
	3 to 4 ft	Not Excavated	23-Jun-10	<0.017	<0.017	<0.017	<0.034	<0.034
OUE-DP-059	2 to 3 ft	Not Excavated	06-Nov-10	<0.005	<0.005	<0.005	<0.01	<0.01
	5 to 6 ft	Not Excavated	06-Nov-10	<0.0053	<0.0053	<0.0053	0.0015 J	<0.011
	6.5 to 7.5 ft	Not Excavated	06-Nov-10	<0.0066	<0.0066	<0.0066	0.0087 J	<0.013
OUE-DP-060	2 to 3 ft	Not Excavated	06-Nov-10	<0.005	<0.005	<0.005	<0.01	<0.01
	5 to 6 ft	Not Excavated	06-Nov-10	<0.0047	<0.0047	<0.0047	0.0026 J	0.00055 J
	7 to 8 ft	Not Excavated	06-Nov-10	<0.0047	<0.0047	<0.0047	<0.0095	<0.0095
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05	<0.0008	<0.00075	<0.00057	<0.002	<0.0016
HA-4.44	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.00058	<0.00059	<0.00072	0.0018 J	<0.00016
HA-4.45	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.00049	<0.0005	<0.00061	<0.00051	<0.00014

			Sample Date / Analyte	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone	4-Methyl-2-Pentanone
Location ID	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)		PSL-HH	62	780	2.4	28000	5300
			PSL-Eco			20	-	-
HA-4.47	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.00088	<0.0009	<0.0011	0.0048 J	0.00045 J
HA-4.48	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.00048	<0.00049	<0.0006	<0.0005	<0.00013
HA-4.121	0.5 to 1 ft	EXCAVATED	29-Jun-06	<0.0003	<0.00028	<0.00038	0.002 J	<0.00043
HA-4.144	0.5 to 1 ft	EXCAVATED	29-Jun-06	<0.00039	<0.00037	<0.0005	<0.0012	<0.00057
HA-4.155	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.00045	<0.00046	<0.00056	0.004 J	0.00036 J
Sawmill #1 AOI								
DP-5.54	1 to 1.5 ft	Not Excavated	05-Oct-05	<0.0036	<0.0037	< 0.0034	<0.0038	<0.0031
	5 to 5.5 ft	Not Excavated	05-Oct-05	<0.0017	<0.0018	<0.0016	<0.0018	<0.0015
	10 to 10.5 ft	Not Excavated	05-Oct-05	<0.0016	<0.0017	<0.0016	0.0044 J	<0.0014
DP-5.55	1 to 1.5 ft	Not Excavated	05-Oct-05	<0.0017	<0.0018	<0.0017	<0.0019	<0.0015
DP-5.56	1 to 1.5 ft	Not Excavated	05-Oct-05	<0.0024	<0.0025	<0.0023	<0.0025	<0.0021
DP-5.57	0.5 to 1 ft	Not Excavated	20-Oct-05	<0.00087	<0.001	<0.00049	0.0021 J	<0.00082
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.00069	<0.00065	< 0.00049	<0.0017	<0.0014
DP-ROAD-4.2	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.00073	<0.00068	<0.00052	<0.0018	<0.0015
HA-4.35	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.00041	<0.00042	<0.00051	<0.00043	<0.00011
HA-4.36	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.00045	<0.00046	<0.00056	0.0049 J	<0.00012
HA-4.37	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.0002 [<0.0002]	<0.00019 [<0.0002]	<0.00044 [<0.00045]	<0.00067 [<0.00069]	<0.000086 [<0.000089]
HA-4.38	2.2 to 2.7 ft	Not Excavated	12-Jul-06	<0.00045	<0.00046	<0.00056	<0.00047	<0.00012
HA-4.39	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.00071	<0.00073	<0.00088	0.004 J	0.00022 J
HA-4.40	2.3 to 2.8 ft	Not Excavated	12-Jul-06	<0.00024	<0.00023	<0.00031	<0.00076	<0.00035
HA-4.41	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.00022	<0.00021	<0.0005	<0.00075	<0.000097
HA-4.49	4.5 to 5 ft	Not Excavated	01-Aug-06	<0.006	<0.006	<0.006	0.0034 J	<0.012
HA-4.50	4 to 4.5 ft	Not Excavated	01-Aug-06	<0.008	<0.008	<0.008	<0.016	<0.016
HA-4.51	4 to 4.5 ft	Not Excavated	01-Aug-06	<0.007	<0.007	<0.007	<0.016	<0.016
HA-4.52	2.5 to 3 ft	Not Excavated	01-Aug-06	<0.004	<0.004	<0.004	<0.008	<0.008
HA-4.53	5 to 5.5 ft	Not Excavated	01-Aug-06	<0.005	<0.005	<0.005	<0.011	<0.011
HA-4.54	9 to 9.5 ft	Not Excavated	01-Aug-06	0.00032 J	0.00022 J	<0.004	<0.008	<0.008
HA-4.55	4 to 4.5 ft	Not Excavated	01-Aug-06	<0.005	<0.005	<0.005	<0.011	<0.011
HA-4.56	3.5 to 4 ft	Not Excavated	01-Aug-06	<0.004	<0.004	<0.004	0.0025 J	<0.009
HA-5.84	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.00047 [<0.00043]	<0.00047 [<0.00044]	<0.00058 [<0.00053]	0.0019 J [0.0014 J]	<0.00013 [<0.00012]
HA-5.85	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.00061	<0.00062	<0.00075	0.0037 J	0.00018 J
HA-5.86	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.00024	<0.00023	<0.00054	<0.00082	<0.00011
HA-5.87	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.00042	<0.00043	<0.00052	0.0021 J	0.00013 J
HA-5.88	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.00042	<0.00043	<0.00052	0.0014 J	0.00017 J
HA-5.89	2.5 to 3 ft	Not Excavated	20-Jul-06	<0.00055	<0.00056	<0.00067	0.0033 J	0.00036 J
HA-5.90	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.00048	<0.00049	<0.0006	0.0049 J	0.00023 J
HA-5.91	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.00043	<0.00044	<0.00053	0.0036 J	0.00013 J
MW-4.4	5.6 to 7.1 ft	Not Excavated	16-Dec-03	<0.0047	<0.0047	<0.0047	<0.0094	<0.0094
MW-5.7	4.5 to 6 ft	Not Excavated	15-Dec-03	<0.0048	<0.0048	<0.0048	<0.0096	<0.0096
OUE-CAP-024	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.0066	<0.0066	<0.0066	<0.013	<0.013
OUE-DP-018	6 to 7 ft	Not Excavated	22-Jun-10	<0.0053	<0.0053	<0.0053	0.0061 J	<0.011
	8 to 9 ft	Not Excavated	22-Jun-10	<0.0046	<0.0046	<0.0046	0.0053 J	<0.0091
OUE-DP-026	0.5 to 2 ft	Not Excavated	25-Jun-10	<0.006	<0.006	<0.006	<0.012	<0.012
	2 to 3.5 ft	Not Excavated	25-Jun-10	<0.0058	<0.0058	<0.0058	0.0057 J	<0.012
OUE-DP-028	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.0055	<0.0055	<0.0055	<0.011	<0.011

			Sample Date / Analyte	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone	4-Methyl-2-Pentanone
Location ID	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(π bgs)		PSL-HH	62	780	2.4	28000	5300
			PSL-Eco			20		-
OUE-DP-030	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.0063	<0.0063	<0.0063	<0.013	<0.013
OUE-DP-031	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.0079	<0.0079	<0.0079	<0.013	<0.013
P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.005	<0.005	<0.005	<0.01	<0.01
P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.0053	<0.0053	<0.0053	<0.011	<0.011
SAW MILL	0 to 0.5 ft	Not Excavated	17-Dec-03	<0.005	<0.005	<0.005	<0.01	<0.01
Compressor Ho	use and Lath E	Building AOI		-	•			
MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07	<0.0053	<0.0053	<0.0053	<0.011	<0.011
	5.5 to 6 ft	Not Excavated	29-Sep-07	<0.0057	<0.0057	<0.0057	0.0048 J	<0.011
OUE-DP-032	0.5 to 1.7 ft	Not Excavated	25-Jun-10	<0.0056	<0.0056	<0.39	<0.011	<0.011
	2 to 3.5 ft	Not Excavated	25-Jun-10	<0.0048	<0.0048	<0.4	0.0034 J	<0.0096
OUE-DP-033	0.5 to 1.5 ft	Not Excavated	29-Jun-10	<0.0066	<0.0066	<0.0066	<0.013	<0.013
	4 to 5 ft	Not Excavated	29-Jun-10	<0.0059	<0.0059	<0.43	<0.012	<0.012
OUE-DP-034	1 to 2 ft	Not Excavated	25-Jun-10	<0.0059	<0.0059	<0.0059	0.0056 J	<0.012
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.0051	<0.0051	<0.39	0.0071 J	<0.01
OUE-DP-035	0.5 to 1.5 ft	Not Excavated	25-Jun-10	<0.0043	<0.0043	<0.0043	0.0037 J	<0.0085
	3 to 4.5 ft	Not Excavated	25-Jun-10	<0.005	<0.005	<0.005	0.0048 J	<0.01
Power House an	nd Fuel Barn A	01						
HA-4.95	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0047	<0.0047	<0.0047	0.0035 J	<0.0094
HA-4.96	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0047	<0.0047	<0.0047	0.0098	<0.0094
HA-4.97	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0048	<0.0048	<0.0048	0.003 J	<0.0096
HA-4.98	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0045	<0.0045	<0.0045	<0.0089	<0.0089
HA-4.100	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0045	<0.0045	<0.0045	<0.0091	<0.0091
HA-4.101	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0049	<0.0049	<0.0049	0.0043 J	<0.0098
HA-4.102	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0046	<0.0046	<0.0046	0.0047 J	<0.0093
HA-4.103	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.005	<0.005	<0.005	0.0026 J	<0.01
HA-4.105	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0048	<0.0048	<0.0048	0.0061 J	<0.0096
HA-4.106	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0045	<0.0045	<0.0045	<0.0089	<0.0089
HA-4.118A	0.5 to 1 ft	Not Excavated	07-Aug-06	<0.0003	<0.00028	<0.00066	<0.001	<0.00013
HA-4.156	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0046	<0.0046	<0.0046	0.0058 J	<0.0093
HA-4.157	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.005	<0.005	<0.005	0.0032 J	<0.01
MW-4.6	0 to 0.5 ft	Not Excavated	28-Sep-07	<0.0065	<0.0065	<0.0065	<0.013	<0.013
	4 to 4.5 ft	Not Excavated	28-Sep-07	<0.0059	<0.0059	<0.0059	<0.012	<0.012
OUE-DP-041	0.5 to 1 ft	Not Excavated	27-Sep-10	<0.0044 NDb	<0.0044 NDb	<0.37	<0.0087 NDb	<0.0087 NDb
OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10	<0.0052 NDb	<0.0052 NDb	<0.0052 NDb	<0.01 NDb	<0.01 NDb
	1.5 to 3 ft	Not Excavated	24-Sep-10	<0.0053 NDb	<0.0053 NDb	<0.0053 NDb	<0.011 NDb	<0.011 NDb
	4 to 4.5 ft	Not Excavated	24-Sep-10	<0.007 NDb	<0.007 NDb	<0.41	<0.014 NDb	<0.014 NDb
OUE-HA-013	0.5 to 1.5 ft	Not Excavated	24-Jun-10	<0.0082	<0.0082	<0.0082	<0.016	<0.016
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0071	<0.0071	<0.0071	0.0018 J	<0.014
P4-PH1	3 to 3.5 ft	Not Excavated	20-Jul-04	<0.01	<0.01	<0.01	<0.021	<0.021
DP-4.22	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00028	<0.00026	<0.00035	<0.00088	<0.0004
DP-4.23	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00029	<0.00027	<0.00037	<0.00091	<0.00042
DP-4.24	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00032	<0.0003	<0.00041	0.0056 J	<0.00046
DP-5.59	0.5 to 1 ft	Not Excavated	20-Oct-05	<0.00083	<0.00099	<0.00046	<0.0012	<0.00078

			Sample Date / Analyte	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone	4-Methyl-2-Pentanone
Location ID	Depth (ft bgs)	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)		PSL-HH	62	780	2.4	28000	5300
			PSL-Eco			20		-
HA-4.63	1 to 1.5 ft	Not Excavated	23-Aug-06	<0.0049	<0.0049	<0.0049	<0.0098	<0.0098
HA-4.66	6 to 6.5 ft	Not Excavated	09-Aug-06	0.0017 J	0.00086 J	<0.0046	0.0063 J	<0.0093
HA-4.67	6 to 6.5 ft	Not Excavated	09-Aug-06	<0.0051	<0.0051	<0.0051	<0.01	<0.01
HA-4.68	5 to 5.5 ft	Not Excavated	08-Aug-06	<0.0074	<0.0074	<0.0074	<0.015	<0.015
HA-4.70	3.5 to 4 ft	Not Excavated	13-Sep-06	<0.0093	<0.0093	<0.0093	0.0098 J	<0.019
HA-4.71	6 to 6.5 ft	Not Excavated	13-Sep-06	<0.0062	<0.0062	<0.0062	<0.012	<0.012
HA-4.72	8 to 8.5 ft	Not Excavated	13-Sep-06	<0.0069	<0.0069	<0.0069	0.003 J	<0.014
HA-4.73	8 to 8.5 ft	Not Excavated	13-Sep-06	<0.0056	<0.0056	<0.0056	<0.011	<0.011
HA-4.74	8 to 8.5 ft	Not Excavated	13-Sep-06	<0.0092	<0.0092	<0.0092	<0.018	<0.018
HA-4.76	3.5 to 4 ft	Not Excavated	13-Sep-06	<0.0073	<0.0073	<0.0073	0.0096 J	<0.015
HA-4.77	6 to 6.5 ft	Not Excavated	07-Aug-06	0.00064 J	<0.0042	<0.0042	0.0012 J	0.00025 J
HA-4.78	8 to 8.5 ft	Not Excavated	14-Sep-06	<0.0061	<0.0061	<0.0061	0.002 J	<0.012
HA-4.79	8 to 8.5 ft	Not Excavated	08-Aug-06	<0.0049	<0.0049	<0.0049	0.00097 J	<0.0098
HA-4.80	6 to 6.5 ft	Not Excavated	13-Sep-06	<0.0058	<0.0058	<0.0058	0.0019 J	<0.012
HA-4.81	8 to 8.5 ft	Not Excavated	13-Sep-06	<0.0057	<0.0057	<0.0057	0.0011 J	<0.011
HA-4.82	6.5 to 7 ft	Not Excavated	07-Aug-06	0.042	0.012	<0.0054	0.01 J	0.005 J
HA-4.83	4 to 4.5 ft	Not Excavated	13-Sep-06	<0.016	<0.016	<0.016	0.012 J	<0.031
HA-4.84	6 to 6.5 ft	Not Excavated	13-Sep-06	<0.0087	<0.0087	<0.0087	<0.017	<0.017
HA-4.85	7 to 7.5 ft	Not Excavated	13-Sep-06	<0.0057	<0.0057	<0.0057	<0.011	<0.011
HA-4.86	7 to 7.5 ft	Not Excavated	13-Sep-06	<0.0066	<0.0066	<0.0066	<0.013	<0.013
HA-4.87	4.5 to 5 ft	Not Excavated	07-Aug-06	0.0012 J	<0.005	0.00058 J	0.00064 J	0.00035 J
HA-4.88	4.5 to 5 ft	Not Excavated	07-Aug-06	0.0049	0.0015 J	<0.0046	0.0046 J	0.0014 J
HA-4.90	13.5 to 14 ft	Not Excavated	08-Aug-06	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<0.015 [<0.014]	<0.015 [<0.014]
HA-4.108	1 to 1.5 ft	Not Excavated	28-Jun-06	<0.00027 [<0.00047]	<0.00026 [<0.00045]	<0.00061 [<0.0011]	<0.00093 [<0.0016]	<0.00012 [<0.00021]
HA-4.109	1 to 1.5 ft	Not Excavated	28-Jun-06	<0.00022	<0.00021	<0.00049	<0.00074	<0.000095
HA-4.110	1 to 1.5 ft	Not Excavated	28-Jun-06	<0.00021	<0.0002	<0.00046	0.0019 J	<0.00009
HA-4.111	1 to 1.5 ft	Not Excavated	28-Jun-06	<0.00024	<0.00023	<0.00054	<0.00082	<0.00011
HA-4.112	1 to 1.5 ft	Not Excavated	11-Jul-06	<0.00051	<0.00052	<0.00063	0.0024 J	<0.00014
HA-4.113	1 to 1.5 ft	Not Excavated	29-Jun-06	<0.00026	<0.00025	<0.00057	0.0017 J	<0.00011
HA-4.115	1 to 1.5 ft	Not Excavated	11-Jul-06	<0.00044	<0.00045	<0.00055	0.0022 J	<0.00012
HA-4.158	1 to 1.5 ft	Not Excavated	29-Jun-06	<0.00021	<0.00021	<0.00048	0.02	<0.000094

			Sample Date / Analyte	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone	4-Methyl-2-Pentanone
Location ID	Depth (ft bas)	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(11 10 90)		PSL-HH	62	780	2.4	28000	5300
			PSL-Eco			20		
HSA-4.2	2 to 2.5 ft	Not Excavated	24-Jan-06			<0.0081		
	3.5 to 4 ft	Not Excavated	24-Jan-06			<0.0053		
HSA-4.3	2 to 2.5 ft	Not Excavated	24-Jan-06			<0.0046		
	3.5 to 4 ft	Not Excavated	24-Jan-06			<0.0044		
HSA-4.4	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.00041	<0.00041	<0.0005	<0.00042	<0.00011
	6 to 6.5 ft	Not Excavated	23-Jan-06	<0.00053	<0.00054	<0.00066	<0.00056	<0.00015
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.00044	<0.00045	<0.00055	<0.00046	<0.00012
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.00043	<0.00044	<0.00054	<0.00045	<0.00012
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.00048	<0.00049	<0.0006	<0.0005	<0.00013
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.00044	<0.00045	<0.00055	<0.00046	<0.00012
HSA-4.5	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.00045	<0.00046	<0.00056	<0.00047	<0.00012
	6 to 6.5 ft	Not Excavated	23-Jan-06	<0.00044	<0.00045	<0.00055	<0.00046	<0.00012
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.00048	<0.00049	<0.0006	<0.0005	<0.00013
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.00069	<0.00065	<0.00049	<0.0017	<0.0014
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.0007	<0.00066	<0.0005	<0.0018	<0.0014
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.00069	<0.00065	<0.00049	<0.0017	<0.0014
	31 to 31.5 ft	Not Excavated	24-Jan-06	<0.0007	<0.00066	<0.0005	<0.0018	<0.0014
HSA-4.6	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.00066	<0.00062	<0.00047	<0.0016	<0.0013
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.00084	<0.00079	<0.0006	<0.0021	<0.0017
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.00066	<0.00062	<0.00047	0.0025 J	<0.0013
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.001	<0.00095	<0.00072	0.017	<0.0021
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.00066	<0.00062	<0.00047	0.0026 J	<0.0013
	31 to 31.5 ft	Not Excavated	24-Jan-06	<0.00043	<0.00044	<0.00053	0.0038 J	<0.00012
MW-4.1	1 to 1.5 ft	Not Excavated	16-Dec-03	<0.0049	<0.0049	<0.0049	<0.0098	<0.0098
MW-4.5	0 to 0.5 ft	Not Excavated	28-Sep-07	<0.0075	<0.0075	<0.0075	<0.015	<0.015
	8.5 to 9 ft	Not Excavated	28-Sep-07	<0.0057	<0.0057	<0.0057	0.0026 J	<0.011
OUE-DP-036	3 to 4 ft	Not Excavated	22-Jun-10	<0.0075	<0.0075	<0.0075	0.011 J	<0.015
	5 to 7 ft	Not Excavated	22-Jun-10	<0.0062	<0.0062	<0.0062	0.01 J	<0.012
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10	<0.0064	<0.0064	<0.0064	<0.013	<0.013
	5 to 7 ft	Not Excavated	22-Jun-10	<0.0058	<0.0058	<0.0058	0.0081 J	<0.012
OUE-DP-038	0 to 2.5 ft	Not Excavated	22-Jun-10	<0.005	<0.005	<0.005	0.0049 J	<0.01

			Sample Date / Analyte	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	2-Butanone	4-Methyl-2-Pentanone
Location ID	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(n bgs)		PSL-HH	62	780	2.4	28000	5300
			PSL-Eco	-		20	-	
OUE-DP-046	5 to 6 ft	Not Excavated	22-Jun-10	<0.008	<0.008	<0.008	0.006 J	<0.016
OUE-DP-047	6 to 6.5 ft	Not Excavated	22-Jun-10	<0.0077	0.00067 J	<0.0077	<0.017	<0.017
OUE-HA-020	0.5 to 1.5 ft	Not Excavated	24-Jun-10	<0.0076	<0.0076	<0.0076	0.021	<0.015
	4 to 5 ft	Not Excavated	24-Jun-10	<0.012	<0.012	<0.012	0.0078 J	<0.025
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10	<0.0068	<0.0068	<0.0068	0.0064 J	<0.014
	6.5 to 8 ft	Not Excavated	25-Jun-10	<0.0085	<0.0085	<0.0085	0.0038 J	<0.017
OUE-HA-033	0.5 to 1 ft	Not Excavated	13-Nov-10	<0.01	<0.01	<0.01	<0.02	<0.02
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04	<0.0047	<0.0047	<0.0047	<0.0094	<0.0094
	10.5 to 11 ft	Not Excavated	20-Jul-04	<0.0068	<0.0068	<0.0068	<0.014	<0.014
	12 to 12.5 ft	Not Excavated	20-Jul-04	<0.0046	<0.0046	<0.0046	< 0.0093	<0.0093
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04	<0.0048	<0.0048	<0.0048	<0.0096	<0.0096
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04	<0.0047	<0.0047	<0.0047	<0.0094	< 0.0094
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04	<0.0046	<0.0046	<0.0046	<0.0093	<0.0093
	6 to 6.5 ft	Not Excavated	20-Jul-04	<0.0063	<0.0063	<0.0063	<0.013	<0.013
P4-PH2	2 to 2.5 ft	Not Excavated	20-Jul-04	<0.0086	<0.0086	<0.0086	<0.017	<0.017
Pond 8 Fill AOI					•			
HSA-6.29	2 to 2.5 ft	Not Excavated	18-Jan-06	<0.0009	<0.0011	<0.0005	<0.0013	<0.00085
	6 to 6.5 ft	Not Excavated	18-Jan-06	<0.00083	<0.00099	<0.00046	<0.0012	<0.00078
	16 to 16.5 ft	Not Excavated	18-Jan-06	<0.00087	<0.001	<0.00049	0.0021 J	<0.00082
	20.5 to 21 ft	Not Excavated	19-Jan-06	<0.00092	<0.0011	<0.00051	<0.0013	<0.00086
HSA-6.30	5.5 to 6 ft	Not Excavated	19-Jan-06	<0.00079	<0.00095	<0.00044	<0.0011	<0.00074
	6 to 6.5 ft	Not Excavated	19-Jan-06	<0.00083	<0.00099	<0.00046	0.0022 J	<0.00078
	16 to 16.5 ft	Not Excavated	19-Jan-06	<0.0009	<0.0011	<0.0005	<0.0013	<0.00085

			Sample Date /	Acetone	Benzene	Carbon Disulfide	Chloroform	Ethanol	Ethylbenzene		Isopropylhenzene	Methyl n-Butyl Ketone	Methylene Chloride
	Denth		Analyte	Accione	Denzene	Carbon Disunde	Childrenorm	Ethanor	Lutyibenzene	isopropyr alconor	зоргорупостиенте	methyl n-butyl netone	metrylene omonde
Location ID	(ft bgs)	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			PSL-HH	61000	1.1	820	0.29		5.4	990000000	2100	210	11
Water Treatment	and Truck Du	mn AOI	PSL-ECO		0.5		5		5	-			
HA-4 137	2.3 to 2.8 ft	Not Excavated	08-Aug-06		<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000				<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000 [<0.000				
HA-4.138	7.3 to 7.8 ft	Not Excavated	08-Aug-06		<0.00096				<0.00096				
HA-4.139	6.2 to 6.7 ft	Not Excavated	08-Aug-06		<0.0025 [<0.002]				<0.0025 [<0.002]				
HA-4.140	1 to 1.5 ft	Not Excavated	08-Aug-06		<0.00092				<0.00092				
HA-4.141	1.1 to 1.6 ft	Not Excavated	08-Aug-06		<0.00096				<0.00096				
HA-4.142	1.7 to 2.2 ft	Not Excavated	08-Aug-06	-	<0.0011				<0.0011				
HA-4.143	0.5 to 1 ft	Not Excavated	29-Jun-06	<0.0024	<0.00025	<0.0016	<0.00044	<0.071	<0.00022	<0.0098	<0.00033	<0.0012	<0.0018
HA-4.160	2.7 to 3.2 ft	Not Excavated	08-Aug-06		<0.00091				<0.00091				
OUE-DP-003	1 to 2 ft	Not Excavated	24-Jun-10	0.02 J	<0.0059	<0.0059	<0.0059		<0.0059		<0.0059	<0.012	<0.023 Jb/UB
	4 to 5 ft	Not Excavated	24-Jun-10	0.024	<0.0053	<0.0053	<0.0053		<0.0053		<0.0053	<0.011	<0.021 Jb/UB
OUE-DP-009	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.021 J/UB	<0.0052	<0.0052	<0.0052		<0.0052		<0.0052	<0.01	0.0041 Jb
OUE-DP-010	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.02 J/UB	<0.005	<0.005	<0.005		<0.005		<0.005	<0.0099	<0.02
OUE-DP-011	5.6 to 6.5 ft	Not Excavated	29-Jun-10	<0.028 /UB	<0.0051	<0.0051	<0.0051		<0.0051		<0.0051	<0.01	0.0052 Jb
OUE-DP-058	T to 2 It	Not Excavated	06-Nov-10	0.0046 J	<0.0072	<0.0072	<0.0072		<0.0072		<0.0072	<0.014	<0.029
	6 to 7 ft	Not Excavated	06-Nov-10	0.010 5	<0.0055	<0.0054	<0.0055		<0.0055		<0.0055	<0.011	<0.022
P4-11	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.02	<0.0051	<0.0051	<0.0051		<0.0051		<0.0051	<0.01	0.059
P4-12	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.02	< 0.0049	< 0.0049	< 0.0049		<0.0049		< 0.0049	<0.0098	<0.02
HA-4.42	0.5 to 1 ft	Not Excavated	11-Jul-06	0.0021 J	<0.0012	<0.0016	<0.00081	<0.14	<0.00044	<0.011	<0.00045	<0.00022	<0.0023
HA-4.43	0.1 to 0.6 ft	Not Excavated	11-Jul-06	<0.002	<0.0012	<0.0016	<0.00081	<0.14	<0.00044	<0.011	<0.00045	<0.00022	<0.0023
HA-4.46	0.5 to 1 ft	EXCAVATED	11-Jul-06	0.0019 J	<0.001	< 0.0014	< 0.00073	<0.12	<0.0004	< 0.0095	<0.00041	<0.0002	<0.0021
HA-4.119	0.5 to 1 ft	Not Excavated	28-Jun-06	0.0067 J	<0.00024	<0.00023	<0.00026	< 0.039	<0.00044	<0.0041	<0.00033	<0.00037	<0.0031
HA-4.120	0.5 to 1 ft	EXCAVATED	29-Jun-06	0.014 J [0.011 J]	<0.00031 [<0.00018]	<0.0019 [<0.00017]	0.00054 [<0.0002	<0.087 [<0.03]	<0.00026 [<0.00034]	<0.012 [<0.0031]	<0.00041 [<0.00025]	<0.0015 [<0.00028]	<0.0022 [<0.0023]
MW-4.2	2.5 to 3 ft	Not Excavated	16-Dec-03	<0.018	<0.0045	<0.0045	<0.0045		<0.0045		<0.0045	<0.0091	<0.018
OUE-DP-001	1 to 2 ft	Not Excavated	24-Jun-10	0.01 J	<0.0052	<0.0052	<0.0052		<0.0052		<0.0052	<0.01	<0.021 Jb/UB
	4 to 5 ft	Not Excavated	24-Jun-10	0.0054 J	<0.0059	<0.0059	<0.0059		<0.0059		<0.0059	<0.012	<0.023 Jb/UB
OUE-DP-002	1 to 2 ft	Not Excavated	24-Jun-10	0.15 /J	0.00091 J	<0.0082	<0.0082		0.00059 J		<0.0082	<0.016	<0.033 Jb/UB
	4 to 5 ft	Not Excavated	24-Jun-10	0.03	<0.0056	<0.0056	<0.0056		<0.0056		<0.0056	<0.011	<0.022 Jb/UB
OUE-DP-004	1 to 2 ft	Not Excavated	23-Jun-10	0.11	<0.019	<0.019	<0.019		<0.019		<0.019	<0.039	<0.077 Jb/UB
	3 to 4 ft	Not Excavated	23-Jun-10	0.16	<0.017	<0.017	<0.017		<0.017		<0.017	<0.034	<0.068
OUE-DP-059	2 to 3 ft	Not Excavated	06-Nov-10	<0.02	<0.005	<0.005	<0.005		<0.005		<0.005	<0.01	0.00084 J
	5 to 6 ft	Not Excavated	06-Nov-10	0.0066 J	<0.0053	<0.0053	<0.0053		<0.0053		<0.0053	<0.011	<0.021
	6.5 to 7.5 ft	Not Excavated	06-Nov-10	0.039	<0.0066	0.0019 J	<0.0066		<0.0066		<0.0066	<0.013	<0.026
OUE-DP-060	2 to 3 ft	Not Excavated	06-Nov-10	<0.02	<0.005	<0.005	<0.005		<0.005		<0.005	<0.01	<0.02
	5 to 6 ft	Not Excavated	06-Nov-10	0.011 J	<0.0047	<0.0047	<0.0047		<0.0047		<0.0047	<0.0094	<0.019
	7 to 8 ft	Not Excavated	06-Nov-10	0.0059 J	<0.0047	<0.0047	<0.0047		<0.0047		<0.0047	<0.0095	<0.019
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05	0.014 J [PSL-Eco-Sed]	<0.00059	<0.0041	<0.00073	<0.086	0.0013 J	<0.022	<0.00072	<0.00083	0.0022 J
HA-4.44	0.5 to 1 ft	EXCAVATED	11-Jul-06	0.031 [PSL-Eco-Sed]	<0.0014	<0.0019	<0.001	<0.17	<0.00054	<0.013	<0.00056	<0.00027	<0.0028
HA-4.45	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.0021	<0.0012	<0.0016	<0.00084	<0.14	<0.00046	<0.011	<0.00047	<0.00023	<0.0024

			Sample Date / Analyte	Acetone	Benzene	Carbon Disulfide	Chloroform	Ethanol	Ethylbenzene	Isopropyl alcohol	Isopropylbenzene	Methyl n-Butyl Ketone	Methylene Chloride
Location ID	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)		PSL-HH	61000	1.1	820	0.29		5.4	990000000	2100	210	11
			PSL-Eco		0.5		5		5				-
HA-4.47	0.5 to 1 ft	EXCAVATED	11-Jul-06	0.071 [PSL-Eco-Sed]	<0.0022	<0.0029	<0.0015	<0.26	<0.00082	<0.02	<0.00084	<0.00041	<0.0043
HA-4.48	0.5 to 1 ft	EXCAVATED	11-Jul-06	0.0021 J	<0.0012	<0.0016	<0.00083	<0.14	<0.00045	<0.011	<0.00046	<0.00023	<0.0023
HA-4.121	0.5 to 1 ft	EXCAVATED	29-Jun-06	0.021 J [PSL-Eco-Sed]	<0.00027	<0.0017	<0.00047	<0.076	<0.00023	<0.01	<0.00036	<0.0013	<0.002
HA-4.144	0.5 to 1 ft	EXCAVATED	29-Jun-06	<0.0033	<0.00035	<0.0022	<0.00062	<0.099	<0.0003	<0.014	<0.00047	<0.0017	<0.0026
HA-4.155	0.5 to 1 ft	EXCAVATED	11-Jul-06	0.051 [PSL-Eco-Sed]	<0.0011	<0.0015	<0.00077	<0.13	<0.00042	<0.01	<0.00043	<0.00021	<0.0022
Sawmill #1 AOI		I	, i				I	1	1		1		
DP-5.54	1 to 1.5 ft	Not Excavated	05-Oct-05	<0.0037	<0.0037	<0.0031	<0.0036	<0.37	<0.0036	<0.044	<0.0036	<0.0035	<0.0038
	5 to 5.5 ft	Not Excavated	05-Oct-05	<0.0018	<0.0018	<0.0014	<0.0017	<0.18	<0.0017	<0.021	<0.0017	<0.0017	<0.0018
	10 to 10.5 ft	Not Excavated	05-Oct-05	0.035	<0.0017	<0.0014	<0.0016	<0.17	<0.0017	<0.02	<0.0017	<0.0016	<0.0018
DP-5.55	1 to 1.5 ft	Not Excavated	05-Oct-05	0.012 J	<0.0018	<0.0015	<0.0018	<0.18	<0.0018	<0.022	<0.0018	<0.0017	<0.0019
DP-5.56	1 to 1.5 ft	Not Excavated	05-Oct-05	0.0092 J	<0.0025	<0.002	<0.0024	3.6 b	<0.0024	<0.029	<0.0024	<0.0023	<0.0026
DP-5.57	0.5 10 1 11	Not Excavated	20-Oct-05	0.0097 J	<0.001	<0.0036	<0.0011	<0.12	<0.001	<0.014	<0.001	<0.0008	<0.0037
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05	0.014 J	<0.00051	<0.0035	<0.00063	<0.074	0.00096 J	<0.019	<0.00062	<0.00071	0.0021 J
DP-ROAD-4.2	271022#	Not Excavated	24-0ci-05	0.0074 J	<0.00053	<0.0037	<0.00087	<0.078	<0.00038	<0.02	<0.00085	<0.00075	-0.0021 J
HA-4.35	2.7 to 2.2 ft	Not Excavated	12-Jul-06	0.0018 J	<0.001	<0.0014	<0.00071	<0.12	<0.00038	<0.0091	<0.00039	<0.00019	<0.002
HA-4.37	3 to 3.5 ft	Not Excavated	12-Jul-06	0.025 0.0055 J [0.0064 J]	<0.00016 [<0.00017]	<0.00016 [<0.00016]	<0.00017	<0.027 [<0.028]	<0.0003 [<0.00031]	<0.0028 [<0.0029]	<0.00022 [<0.00023]	<0.00021	<0.0022
HA-4.38	2.2 to 2.7 ft	Not Excavated	12-Jul-06	<0.0019	<0.0011	<0.0015	<0.00077	<0.13	< 0.00042	<0.01	< 0.00043	<0.00021	<0.0022
HA-4.39	3 to 3.5 ft	Not Excavated	12-Jul-06	0.083	<0.0017	<0.0023	<0.0012	<0.21	<0.00066	<0.016	<0.00068	<0.00033	< 0.0034
HA-4.40	2.3 to 2.8 ft	Not Excavated	12-Jul-06	<0.002	<0.00021	<0.0013	< 0.00038	<0.06	<0.00018	< 0.0083	<0.00028	<0.001	<0.0016
HA-4.41	3 to 3.5 ft	Not Excavated	12-Jul-06	0.011 J	<0.00019	<0.00018	<0.0002	<0.03	< 0.00034	< 0.0032	<0.00025	<0.00028	<0.0024
HA-4.49	4.5 to 5 ft	Not Excavated	01-Aug-06	0.019 Jb	<0.006	<0.006	< 0.006	<1.2	< 0.006	<0.24	<0.006	<0.012	<0.024
HA-4.50	4 to 4.5 ft	Not Excavated	01-Aug-06	0.015 Jb	<0.008	<0.008	<0.008	<1.6	< 0.008	<0.32	<0.008	<0.016	< 0.032
HA-4.51	4 to 4.5 ft	Not Excavated	01-Aug-06	0.02 Jb	<0.007	<0.007	< 0.007	<1.6	< 0.007	<0.31	<0.007	<0.016	<0.031
HA-4.52	2.5 to 3 ft	Not Excavated	01-Aug-06	<0.018	<0.004	<0.004	< 0.004	<0.88	< 0.004	<0.18	<0.004	<0.008	0.00048 J
HA-4.53	5 to 5.5 ft	Not Excavated	01-Aug-06	0.0069 Jb	< 0.005	<0.005	< 0.005	<1.1	< 0.005	<0.21	<0.005	<0.011	0.00062 J
HA-4.54	9 to 9.5 ft	Not Excavated	01-Aug-06	0.018	<0.004	0.00057 J	< 0.004	<0.89	< 0.004	<0.18	<0.004	<0.008	<0.018
HA-4.55	4 to 4.5 ft	Not Excavated	01-Aug-06	0.0043 Jb	<0.005	<0.005	<0.005	<1.1	<0.005	<0.23	<0.005	<0.011	0.001 J
HA-4.56	3.5 to 4 ft	Not Excavated	01-Aug-06	0.015 Jb	<0.004	<0.004	< 0.004	<0.96	<0.004	<0.19	<0.004	<0.009	0.0005 J
HA-5.84	3 to 3.5 ft	Not Excavated	20-Jul-06	0.0093 J [0.0073 J]	<0.0011 [<0.001]	<0.0015 [<0.0014]	<0.0008 [<0.00073]	<0.14 [<0.12]	<0.00043 [<0.0004]	<0.01 [<0.0095]	<0.00044 [<0.00041]	<0.00022 [<0.0002]	<0.0023 [<0.0021]
HA-5.85	3 to 3.5 ft	Not Excavated	20-Jul-06	0.03	<0.0015	<0.002	<0.001	0.28 J	<0.00057	0.078 J	<0.00058	<0.00029	<0.0029
HA-5.86	2.7 to 3.2 ft	Not Excavated	12-Jul-06	0.0023 J	<0.0002	<0.00019	<0.00022	<0.033	<0.00037	<0.0034	<0.00027	<0.00031	<0.0026
HA-5.87	3 to 3.5 ft	Not Excavated	20-Jul-06	0.0083 J	<0.001	<0.0014	<0.00072	<0.12	<0.00039	<0.0093	<0.0004	<0.0002	<0.002
HA-5.88	3 to 3.5 ft	Not Excavated	20-Jul-06	0.007 J	<0.001	<0.0014	<0.00072	<0.12	<0.00039	<0.0093	<0.0004	<0.0002	<0.002
HA-5.89	2.5 to 3 ft	Not Excavated	20-Jul-06	0.032	<0.0013	<0.0018	< 0.00093	0.34 J	<0.00051	<0.012	<0.00052	<0.00026	<0.0026
HA-5.90	3 to 3.5 ft	Not Excavated	20-Jul-06	0.027	<0.0012	<0.0016	<0.00083	<0.14	<0.00045	<0.011	< 0.00046	<0.00023	<0.0023
HA-5.91	3 to 3.5 ft	Not Excavated	20-Jul-06	0.013 J	<0.001	<0.0014	<0.00073	<0.12	<0.0004	<0.0095	<0.00041	<0.0002	<0.0021
MW-4.4	5.6 to 7.1 ft	Not Excavated	16-Dec-03	<0.019	<0.0047	<0.0047	<0.0047		<0.0047		<0.0047	<0.0094	<0.019
MW-5.7	4.5 to 6 ft	Not Excavated	15-Dec-03	<0.019	<0.0048	<0.0048	<0.0048		<0.0048		<0.0048	<0.0096	<0.019
OUE-CAP-024	0 to 0.5 ft	Not Excavated	21-Jun-10	0.018 J	<0.0066	<0.0066	<0.0066		<0.0066		<0.0066	<0.013	0.0097 Jb
OUE-DP-018	6 to 7 ft	Not Excavated	22-Jun-10	0.026	<0.0053	0.0021 J	<0.0053		<0.0053		<0.0053	<0.011	0.0065 Jb
	8 to 9 ft	Not Excavated	22-Jun-10	0.017 J	<0.0046	0.00091 J	<0.0046		<0.0046		<0.0046	<0.0091	0.0052 Jb
OUE-DP-026	0.5 to 2 ft	Not Excavated	25-Jun-10	0.0098 J	<0.006	<0.006	<0.006		<0.006		<0.006	<0.012	0.0086 Jb
	2 to 3.5 ft	Not Excavated	25-Jun-10	0.023 J	<0.0058	<0.0058	<0.0058		<0.0058		<0.0058	<0.012	0.0046 J
OUE-DP-028	0.5 to 1.5 ft	Not Excavated	21-Jun-10	0.033	<0.0055	< 0.0055	<0.0055		<0.0055		<0.0055	<0.011	0.0073 Jb

<table-container> Image <t< th=""><th></th><th></th><th></th><th>Sample Date / Analyte</th><th>Acetone</th><th>Benzene</th><th>Carbon Disulfide</th><th>Chloroform</th><th>Ethanol</th><th>Ethylbenzene</th><th>Isopropyl alcohol</th><th>Isopropylbenzene</th><th>Methyl n-Butyl Ketone</th><th>Methylene Chloride</th></t<></table-container>				Sample Date / Analyte	Acetone	Benzene	Carbon Disulfide	Chloroform	Ethanol	Ethylbenzene	Isopropyl alcohol	Isopropylbenzene	Methyl n-Butyl Ketone	Methylene Chloride
Physic	Location ID	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NetworkParkaNetworkParkaNetwork <t< th=""><th></th><th>(ft bgs)</th><th></th><th>PSL-HH</th><th>61000</th><th>1.1</th><th>820</th><th>0.29</th><th></th><th>5.4</th><th>990000000</th><th>2100</th><th>210</th><th>11</th></t<>		(ft bgs)		PSL-HH	61000	1.1	820	0.29		5.4	990000000	2100	210	11
Outer of sold Sold means Partial sold Sold means Partial sold means Partia sold means Partial sold means <t< td=""><td></td><td></td><td></td><td>PSL-Eco</td><td></td><td>0.5</td><td>-</td><td>5</td><td></td><td>5</td><td></td><td>-</td><td>-</td><td>-</td></t<>				PSL-Eco		0.5	-	5		5		-	-	-
Def or set in the se	OUE-DP-030	0.5 to 1.5 ft	Not Excavated	21-Jun-10	0.045	<0.0063	< 0.0063	< 0.0063		< 0.0063		< 0.0063	<0.013	0.012 Jb
PACP Objection Section Section <t< td=""><td>OUE-DP-031</td><td>0.5 to 1.5 ft</td><td>Not Excavated</td><td>21-Jun-10</td><td>0.027 J</td><td><0.0064</td><td>< 0.0064</td><td>< 0.0064</td><td></td><td><0.0064</td><td></td><td>< 0.0079</td><td><0.013</td><td>0.0099 Jb</td></t<>	OUE-DP-031	0.5 to 1.5 ft	Not Excavated	21-Jun-10	0.027 J	<0.0064	< 0.0064	< 0.0064		<0.0064		< 0.0079	<0.013	0.0099 Jb
PA10Physical ParticlePhysical Pa	P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.02	<0.005	<0.005	<0.005		<0.005		<0.005	<0.01	<0.02
SMMM SMMMM SMMMMM SMMMMM SMMMMM SMMMMM SMMMMM SMMMMM SMMMMMM SMMMMMM	P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.021	<0.0053	<0.0053	< 0.0053		<0.0053		< 0.0053	<0.011	0.056
UNITY CONTRIPATION CONTRIPACING CONTRIPAC	SAW MILL	0 to 0.5 ft	Not Excavated	17-Dec-03	<0.02	< 0.005	<0.005	< 0.005	-	< 0.005		<0.005	<0.01	0.024
MMA: Optimization	Compressor Hou	use and Lath B	uilding AOI											
8.1 ml1.8 ml convext 1.9 ml convext 2.9 ml convext 2.9 ml convext 	MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07	0.014 J	<0.0053	<0.0053	<0.0053	<1.1	<0.0053	<0.21	<0.0053	<0.011	0.0071 J
OLE-D*		5.5 to 6 ft	Not Excavated	29-Sep-07	0.021 J	<0.0057	<0.0057	<0.0057	<1.1	<0.0057	<0.23	<0.0057	<0.011	<0.023
Image Normal Normal<	OUE-DP-032	0.5 to 1.7 ft	Not Excavated	25-Jun-10	<0.022	<0.0056	<0.0056	<0.0056		<0.0056		<0.0056	<0.011	0.005 Jb
Ohe Def Inf In Fixed and Info and		2 to 3.5 ft	Not Excavated	25-Jun-10	0.034	<0.0048	<0.0048	<0.0048		<0.0048		<0.0048	<0.0096	0.0046 J
Matrix	OUE-DP-033	0.5 to 1.5 ft	Not Excavated	29-Jun-10	<0.026 J/UB	<0.0066	<0.0066	<0.0066		<0.0066		<0.0066	<0.013	<0.026
OHEP 19.28 is Non-Excessional (2.5.4) 0.0169 (2.5) 0.0209 (2.5) <th< td=""><td></td><td>4 to 5 ft</td><td>Not Excavated</td><td>29-Jun-10</td><td><0.023</td><td>< 0.0059</td><td><0.0059</td><td><0.0059</td><td></td><td>< 0.0059</td><td></td><td>< 0.0059</td><td><0.012</td><td>0.005 Jb</td></th<>		4 to 5 ft	Not Excavated	29-Jun-10	<0.023	< 0.0059	<0.0059	<0.0059		< 0.0059		< 0.0059	<0.012	0.005 Jb
3b 4.5.8 No Elsavere	OUE-DP-034	1 to 2 ft	Not Excavated	25-Jun-10	0.016 J	< 0.0059	<0.0059	<0.0059		< 0.0059		<0.0059	<0.012	0.0063 Jb
Olf Dep 16 16 No No Encave S.A.n ⁻¹ O.0074 O.0074 <tho.0074< th=""> O.0074 <tho.0074< th=""></tho.0074<></tho.0074<>		3 to 4.5 ft	Not Excavated	25-Jun-10	0.045	<0.0051	<0.0051	<0.0051		<0.0051		<0.0051	<0.01	0.0084 Jb
Image of the sector Note of the sector Note<	OUE-DP-035	0.5 to 1.5 ft	Not Excavated	25-Jun-10	0.026	<0.0043	0.0029 J	<0.0043		<0.0043		<0.0043	<0.0085	0.0054 Jb
Power Heart Barn AV Image of the source of th		3 to 4.5 ft	Not Excavated	25-Jun-10	0.014 J	< 0.005	<0.005	< 0.005		<0.005		<0.005	<0.01	<0.02
HA-456 2 br 2.54 Mer Exavamed 2 2-Aug.05 0.0071 -0.0077 -0.007 -0.0077 -0.0077 -0.0077 -0.0087 -0.0087 -0.019 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0018	Power House an	d Fuel Barn A	DI	0										
HA-46 Zu 25.5 No. No.Excaves Z-Mag6 0.047 -0.047 -0.0047 -0.0047 -0.0067 -0.0008 -0.0008 -0.0008 -0.0008 -0.0018 <	HA-4.95	2 to 2.5 ft	Not Excavated	22-Aug-06	0.017 J	<0.0047	<0.0047	<0.0047	<0.94	<0.0047	<0.19	<0.0047	<0.0094	0.0013 J
HA-487 Zin ZS 1 Net Excended Zin Qin decimant Qin Q	HA-4.96	2 to 2.5 ft	Not Excavated	22-Aug-06	0.047	<0.0047	<0.0047	<0.0047	<0.94	<0.0047	<0.19	<0.0047	<0.0094	0.00095 J
HA-480 2 20 2.5 N Not Exervantel 22-49,06 0.0007 J -0.0045 -0.0045 -0.0045 -0.015 -0.0045 -0.015 -0.0045 -0.015 -0.0045 -0.015 -0.0045 -0.015 -0.0045 -0.015 -0.0045 -0.0045 -0.015 -0.0045 -0.0045 -0.015 -0.0045	HA-4.97	2 to 2.5 ft	Not Excavated	22-Aug-06	0.016 J	<0.0048	<0.0048	<0.0048	<0.96	<0.0048	<0.19	<0.0048	<0.0096	0.0025 J
HA-4.10 2 20 2.5 1 Not Exexuned 22-40,06 0.00071 d.00054 d.0005 d.00054 d.00055	HA-4.98	2 to 2.5 ft	Not Excavated	22-Aug-06	0.0017 J	<0.0045	<0.0045	<0.0045	<0.89	<0.0045	<0.18	<0.0045	<0.0089	0.0015 J
HA-4.10 2 2 0 2.5 % Not Excavatel 2 2-0xp66 0.0027 -0.0049 -0.0044 -0.0049 -0.0073	HA-4.100	2 to 2.5 ft	Not Excavated	22-Aug-06	0.0097 J	<0.0045	<0.0045	<0.0045	<0.91	<0.0045	<0.18	<0.0045	<0.0091	0.0015 J
Hu-4.102 2 10 2.5 t Not Excavated 2 2-Aug-66 0.007 -0.0066 -0.0066 -0.0037 -0.0066 -0.0067 -0.0068 -0.0082 -0.0082 -0.0082 -0.0082 -0.0082 -0.0082 -0.0082 -0.0082 -0.0082 -0.0088	HA-4.101	2 to 2.5 ft	Not Excavated	22-Aug-06	0.022	<0.0049	<0.0049	< 0.0049	<0.98	<0.0049	<0.2	<0.0049	<0.0098	0.00058 J
HA-4.103 2 to 25.1 Not Excavated 2 2Auge6 0.013 / 4.005 -4.0005 -4.0005 </td <td>HA-4.102</td> <td>2 to 2.5 ft</td> <td>Not Excavated</td> <td>22-Aug-06</td> <td>0.027</td> <td><0.0046</td> <td><0.0046</td> <td><0.0046</td> <td><0.93</td> <td><0.0046</td> <td><0.19</td> <td><0.0046</td> <td><0.0093</td> <td>0.0023 J</td>	HA-4.102	2 to 2.5 ft	Not Excavated	22-Aug-06	0.027	<0.0046	<0.0046	<0.0046	<0.93	<0.0046	<0.19	<0.0046	<0.0093	0.0023 J
Prick-100 2 10 2.5 h Not Excavated 2-2-Aug-06 0.005 < < 0.0048 0.0049 0.0049 0.0049 0.0045 0.0046 0.0045 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0055 0.0055 0.0055 0.0055 0.0056 0.0056 0.0056 0.0057 0.0057 Mb 0.0056 Mb 0.0057 Mb 0.0057 Mb 0	HA-4.103	2 to 2.5 ft	Not Excavated	22-Aug-06	0.013 J	<0.005	<0.005	< 0.005	<1	<0.005	<0.2	<0.005	<0.01	0.0022 J
HA-4.106 2 lo 2.5 k Not Excavated 02-Mode 0.0021 -0.0024 -0.0024 -0.0045 -0.0045 -0.0045 -0.00031 -0.00031 HA-4.1180 0.5 lo 1 k Not Excavated 02-Aug-66 0.00031 -0.00025 -0.00025 -0.00027 -0.0046 -0.00046 -0.0046 -0.00046 -0.00046 -0.0066 -0.0066 -0.0066 -0.0066 -0.0066 -0.0066 -0.0066 -0.0067 -0.0066 -0.0067 -0.0066 -0.002 -0.0058 -0.0066 -0.002 -0.0028 -0.0058 -0.0058 -0.0068 -0.0068 -0.0068 -0.0068 -0.0068 -0.0068 -0.0068 -0.0068 -0.0068 -0.0068 -	HA-4.105	2 to 2.5 ft	Not Excavated	22-Aug-06	0.035	<0.0048	<0.0048	<0.0048	<0.96	<0.0048	<0.19	<0.0048	<0.0096	0.0016 J
HA-4.1184 Ub 101 Not Excavated Ub/000000000000000000000000000000000000	HA-4.106	2 to 2.5 ft	Not Excavated	22-Aug-06	0.002 J	<0.0045	<0.0045	<0.0045	<0.89	<0.0045	<0.18	<0.0045	<0.0089	0.0021 J
Price 19 216 215 Not Excavated 22-Augubb CMU3 Augubb	HA-4.118A	0.5 to 1 ft	Not Excavated	07-Aug-06	0.0094 J	<0.00025	<0.00023	<0.00027	<0.04	<0.00045	<0.0042	<0.00034	<0.00037	<0.0031
HARA, IV Zib St Not Excavate Zib St Not Excavate <thzib st<="" th=""> Not Excavate <thz< td=""><td>HA-4.156</td><td>2 to 2.5 ft</td><td>Not Excavated</td><td>22-Aug-06</td><td>0.03</td><td><0.0046</td><td><0.0046</td><td><0.0046</td><td><0.93</td><td><0.0046</td><td><0.19</td><td><0.0046</td><td><0.0093</td><td>0.0017 J</td></thz<></thzib>	HA-4.156	2 to 2.5 ft	Not Excavated	22-Aug-06	0.03	<0.0046	<0.0046	<0.0046	<0.93	<0.0046	<0.19	<0.0046	<0.0093	0.0017 J
MM-4:0 Other And Exacting of the Exact	HA-4.157	2 10 2.5 11	Not Excavated	22-Aug-06	0.013 3	<0.005	<0.005	<0.005	<1.2	<0.005	<0.2	<0.005	<0.012	<0.02
A for 4 s to Not Excavate 228 Sep.07 0.0041 < 0.0099 < 0.0099 < 0.0099 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0094 < 0.0014 < 0.0024 < 0.0024 < 0.0094 < 0.0094 < 0.0094 < 0.0014 < 0.0024 < 0.0024 < 0.0024 < 0.0024 < 0.0024 < 0.0024 < 0.0024 < 0.0024 < 0.0024 < 0.0024 < 0.0024 < 0.0024 < 0.0025 < 0.0014 < 0.00021 < 0.00052 < 0.0025 > 0.0015 > 0.0011 > 0.0007 > 0.0007 > 0.0007 > 0.0007 > 0.0070 > 0.0071 > 0.0071 > 0.0071 > 0.0071 > 0.0071 > 0.0071 > 0.0071 > 0.0021 > 0.00021 > 0.00071 $>$	10100-4.0	0100.51	NOI Excavaled	20-3ep-07	0.0073 J	<0.0065	<0.0065	<0.0065	<1.5	<0.0065	<0.26	<0.0065	<0.013	<0.026
ODE-DP-241 0.5 to 1t Not Excavated 27-Sep-10 0.007 k b <0.0044 Nbb <0.00052 Nbb <0.00052 Nbb <0.00052 Nbb <0.00052 Nbb <0.00053 Nbb <0.00053 Nbb <0.00053 Nbb <0.00053 Nbb <0.00053 Nbb <0.0005 Nbb <0.0007 Nbb <0.0007 Nbb <0.0007 Nbb <0.0007 Nbb <0.0007 Nbb <0.007 Nbb <0.0007 Nbb <0.0007 Nbb <0.0007 Nbb <0.0007 Nbb		4 to 4.5 ft	Not Excavated	28-Sep-07	0.041	<0.0059	<0.0059	<0.0059	<1.2	<0.0059	<0.24	0.0094	<0.012	<0.024
OUE-DP-042 1 to 1.5 ft Not Excavated 24-Sep 10 0.0077 b $< 0.0052 NDb$ $< 0.0053 NDb$ $< 0.007 NDb$	OUE-DP-041	0.5 to 1 ft	Not Excavated	27-Sep-10	0.076 b	<0.0044 NDb	<0.0044 NDb	<0.0044 NDb		<0.0044 NDb		<0.0044 NDb	<0.0087 NDb	<0.017 NDb
$1.5 ext{ b or L K cavated}$ $24-Sep-10$ $0.12 ext{ b}$ $< 0.0053 ext{ NDb}$ $< 0.007 ext{ NDb}$ $< 0.0075 ext{ NDb}$ $< 0.007 ext{ NDb}$ $< 0.0077 ext{ NDb}$ $< 0.0027 ext{ NDb}$ < 0	OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10	0.077 b	<0.0052 NDb	<0.0052 NDb	<0.0052 NDb		<0.0052 NDb		<0.0052 NDb	<0.01 NDb	<0.021 NDb
4 to 4.5 t Not Excavated 24-Sep-10 0.061 b <0.007 NDb <0.007 NDb <-0.007 NDb <-0.001 NDb <-0.007 NDb <-0.001 NDb <-0.001 NDb <-0.001 NDb <-0.001 NDb <-0.002 NDb <-0.001 NDb <-0.002 NDb <-0.001 NDb <-0.002 NDb <-0.001 NDb <-0.002 NDb <-0.001 NDb <-0.001 NDb <-0.001 NDb <th< td=""><td></td><td>1.5 to 3 ft</td><td>Not Excavated</td><td>24-Sep-10</td><td>0.12 b</td><td><0.0053 NDb</td><td><0.0053 NDb</td><td><0.0053 NDb</td><td></td><td><0.0053 NDb</td><td></td><td><0.0053 NDb</td><td><0.011 NDb</td><td><0.021 NDb</td></th<>		1.5 to 3 ft	Not Excavated	24-Sep-10	0.12 b	<0.0053 NDb	<0.0053 NDb	<0.0053 NDb		<0.0053 NDb		<0.0053 NDb	<0.011 NDb	<0.021 NDb
$0.5 tr 1.5 tr}$ Not Excavate 24-Jun-10 0.00075 J 0.0002 $0.0019 J$ $0.0002 tr$ $0.00002 tr$		4 to 4.5 ft	Not Excavated	24-Sep-10	0.061 b	<0.007 NDb	<0.007 NDb	<0.007 NDb		<0.007 NDb		<0.007 NDb	<0.014 NDb	<0.028 NDb
4 to 5 tt Not Excavated 24-Jun-10 0.0017 J -0.0071 -0.0071 <t< td=""><td>OUE-HA-013</td><td>0.5 to 1.5 ft</td><td>Not Excavated</td><td>24-Jun-10</td><td>0.0075 J</td><td><0.0082</td><td>0.0019 J</td><td><0.0082</td><td></td><td><0.0082</td><td></td><td><0.0082</td><td><0.016</td><td><0.033 Jb/UB</td></t<>	OUE-HA-013	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.0075 J	<0.0082	0.0019 J	<0.0082		<0.0082		<0.0082	<0.016	<0.033 Jb/UB
P4-PH1 3 to 3.5 ft Not Excavated 20-Jul-04 <.0.042 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.021 <.0.021 <.0.021 <.0.010 <.0.01 <.0.01 <.0.01 <.0.01 <.0.01 <.0.021 <.0.021 <.0.013 <.0.011 <.0.021 <.0.012 <.0.0033 <.0.012 <.0.013 <.0.012 <.0.013 <.0.012 <.0.013 <.0.012 <.0.013 <.0.012 <.0.013 <.0.012 <.0.013 <.0.012 <.0.013 <.0.012 <.0.013 <.0.012 <.0.013 <.0.012 <.0.013 <.0.012 <.0.013 <.0.014 <.0.014 <.0.014 <.0.014 <.0.014 <.0.014 <.0.014 <.0.014 <.0.014 <.0.014 <.0.014 <.0.014 <.0.003 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.0014 <.0.00014 <.0.0015 <.0.00		4 to 5 ft	Not Excavated	24-Jun-10	0.017 J	<0.0071	<0.0071	<0.0071		<0.0071		<0.0071	<0.014	<0.028 Jb/UB
DP-4.22 1 to 1.5 ft Not Excavated 06-Jun-06 0.0075 J <0.00025 <0.0015 <0.00043 <0.07 <0.00021 <0.0096 <0.00033 <0.0012 <0.0018 DP-4.23 1 to 1.5 ft Not Excavated 06-Jun-06 0.0043 J <0.0026	P4-PH1	3 to 3.5 ft	Not Excavated	20-Jul-04	<0.042	<0.01	<0.01	<0.01		<0.01		<0.01	<0.021	<0.042
DP-4.23 1 to 1.5 ft Not Excavated 06-Jun-06 0.00043 J <0.0026 <0.0016 <0.00045 <0.0073 <0.00022 <0.01 <0.00034 <0.0012 <0.0019 DP-4.24 1 to 1.5 ft Not Excavated 06-Jun-06 0.042 <0.00029	DP-4.22	1 to 1.5 ft	Not Excavated	06-Jun-06	0.0075 J	<0.00025	<0.0015	<0.00043	<0.07	<0.00021	<0.0096	<0.00033	<0.0012	<0.0018
DP-4.24 1 to 1.5 ft Not Excavated 06-Jun-06 0.042 <0.00029 <0.0018 <0.0005 <0.081 <0.0025 <0.011 <0.00038 <0.0014 <0.0021 DP-5.59 0.5 to 1 ft Not Excavated 20-Oct-05 <0.0028	DP-4.23	1 to 1.5 ft	Not Excavated	06-Jun-06	0.0043 J	<0.00026	<0.0016	<0.00045	<0.073	<0.00022	<0.01	<0.00034	<0.0012	<0.0019
DP-5.59 0.5 to 1 ft Not Excavated 20-Oct-05 <0.0028 <0.00097 <0.0036 <0.0011 <0.12 <0.00097 <0.013 <0.00097 <0.00063 <0.0035	DP-4.24	1 to 1.5 ft	Not Excavated	06-Jun-06	0.042	<0.00029	<0.0018	<0.0005	<0.081	<0.00025	<0.011	<0.00038	<0.0014	<0.0021
	DP-5.59	0.5 to 1 ft	Not Excavated	20-Oct-05	<0.0028	<0.00097	<0.0036	<0.0011	<0.12	<0.00097	<0.013	<0.00097	<0.00063	<0.0035

			Sample Date / Analyte	Acetone	Benzene	Carbon Disulfide	Chloroform	Ethanol	Ethylbenzene	Isopropyl alcohol	Isopropylbenzene	Methyl n-Butyl Ketone	Methylene Chloride
Location ID	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)		PSL-HH	61000	1.1	820	0.29		5.4	990000000	2100	210	11
			PSL-Eco		0.5		5	-	5	-	-	-	-
HA-4.63	1 to 1.5 ft	Not Excavated	23-Aug-06	0.0055 J	<0.0049	<0.0049	<0.0049	<0.98	<0.0049	<0.2	<0.0049	<0.0098	0.0005 J
HA-4.66	6 to 6.5 ft	Not Excavated	09-Aug-06	0.042	<0.0046	<0.0046	<0.0046	0.14 J	<0.0046	<0.19	<0.0046	0.0022 J	0.00038 J
HA-4.67	6 to 6.5 ft	Not Excavated	09-Aug-06	0.0072 J	<0.0051	<0.0051	<0.0051	<1	<0.0051	<0.2	<0.0051	<0.01	<0.02
HA-4.68	5 to 5.5 ft	Not Excavated	08-Aug-06	0.0075 J	<0.0074	<0.0074	<0.0074	<1.5	<0.0074	<0.29	<0.0074	<0.015	<0.029
HA-4.70	3.5 to 4 ft	Not Excavated	13-Sep-06	0.066	<0.0093	0.00061 J	<0.0093	0.09 J	<0.0093	0.024 J	<0.0093	<0.019	<0.037
HA-4.71	6 to 6.5 ft	Not Excavated	13-Sep-06	0.0063 J	<0.0062	<0.0062	<0.0062	<1.2	<0.0062	<0.25	<0.0062	<0.012	<0.025
HA-4.72	8 to 8.5 ft	Not Excavated	13-Sep-06	0.02 J	<0.0069	<0.0069	<0.0069	<1.4	<0.0069	<0.28	<0.0069	<0.014	<0.028
HA-4.73	8 to 8.5 ft	Not Excavated	13-Sep-06	0.016 J	<0.0056	0.00058 J	<0.0056	<1.1	<0.0056	<0.22	<0.0056	<0.011	<0.022
HA-4.74	8 to 8.5 ft	Not Excavated	13-Sep-06	0.017 J	<0.0092	<0.0092	<0.0092	<1.8	<0.0092	<0.37	<0.0092	<0.018	<0.037
HA-4.76	3.5 to 4 ft	Not Excavated	13-Sep-06	0.042	0.00028 J	0.00063 J	<0.0073	<1.5	<0.0073	<0.29	<0.0073	<0.015	<0.029
HA-4.77	6 to 6.5 ft	Not Excavated	07-Aug-06	<0.017	0.00019 J	<0.0042	<0.0042	<0.85	0.00081 J	<0.17	<0.0042	<0.0085	<0.017
HA-4.78	8 to 8.5 ft	Not Excavated	14-Sep-06	0.026	<0.0061	<0.0061	<0.0061	<1.2	<0.0061	0.0087 J	<0.0061	<0.012	<0.024
HA-4.79	8 to 8.5 ft	Not Excavated	08-Aug-06	0.016 J	<0.0049	<0.0049	0.0031 J	<0.98	<0.0049	<0.2	<0.0049	<0.0098	<0.02
HA-4.80	6 to 6.5 ft	Not Excavated	13-Sep-06	0.017 J	<0.0058	0.0015 J	<0.0058	<1.2	<0.0058	<0.23	<0.0058	<0.012	<0.023
HA-4.81	8 to 8.5 ft	Not Excavated	13-Sep-06	0.0067 J	<0.0057	<0.0057	<0.0057	<1.1	<0.0057	<0.23	<0.0057	<0.011	0.00092 J
HA-4.82	6.5 to 7 ft	Not Excavated	07-Aug-06	0.016 J	0.0011 J	0.00073 J	0.00028 J	0.022 J	0.05	<0.22	0.0021 J	<0.011	<0.022
HA-4.83	4 to 4.5 ft	Not Excavated	13-Sep-06	0.067	<0.016	<0.016	<0.016	0.19 J	<0.016	0.024 J	<0.016	<0.031	0.0014 J
HA-4.84	6 to 6.5 ft	Not Excavated	13-Sep-06	0.021 J	<0.0087	<0.0087	<0.0087	<1.7	<0.0087	<0.35	<0.0087	<0.017	<0.035
HA-4.85	7 to 7.5 ft	Not Excavated	13-Sep-06	0.0064 J	<0.0057	<0.0057	<0.0057	<1.1	<0.0057	<0.23	<0.0057	<0.011	<0.023
HA-4.86	7 to 7.5 ft	Not Excavated	13-Sep-06	0.007 J	<0.0066	<0.0066	<0.0066	<1.3	<0.0066	<0.26	<0.0066	<0.013	<0.026
HA-4.87	4.5 to 5 ft	Not Excavated	07-Aug-06	<0.02	<0.005	<0.005	<0.005	<1	0.0023 J	<0.2	<0.005	<0.01	<0.02
HA-4.88	4.5 to 5 ft	Not Excavated	07-Aug-06	0.059	0.00067 J	0.0007 J	0.00028 J	0.023 J	0.0046 J	<0.19	<0.0046	<0.0093	<0.019
HA-4.90	13.5 to 14 ft	Not Excavated	08-Aug-06	<0.029 [<0.029]	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<1.5 [<1.4]	<0.0074 [<0.0071]	<0.29 [<0.29]	<0.0074 [<0.0071]	<0.015 [<0.014]	<0.029 [<0.029]
HA-4.108	1 to 1.5 ft	Not Excavated	28-Jun-06	0.002 J [0.0035 J]	<0.00023 [<0.00039]	<0.00022 [<0.00037]	<0.00025 [<0.00043]	<0.037 [<0.064]	<0.00042 [<0.00073]	<0.0039 [<0.0067]	<0.00031 [<0.00054]	<0.00035 [<0.0006]	<0.0029 [<0.005]
HA-4.109	1 to 1.5 ft	Not Excavated	28-Jun-06	0.015 J	<0.00018	<0.00017	<0.0002	<0.03	<0.00034	<0.0031	<0.00025	<0.00028	<0.0023
HA-4.110	1 to 1.5 ft	Not Excavated	28-Jun-06	0.01 J	<0.00017	<0.00016	<0.00019	<0.028	<0.00032	<0.003	<0.00024	<0.00026	<0.0022
HA-4.111	1 to 1.5 ft	Not Excavated	28-Jun-06	0.0049 J	<0.0002	<0.00019	<0.00022	<0.033	<0.00037	<0.0034	<0.00027	<0.00031	<0.0026
HA-4.112	1 to 1.5 ft	Not Excavated	11-Jul-06	0.024	<0.0013	<0.0017	<0.00088	<0.15	<0.00048	<0.011	<0.00049	<0.00024	<0.0025
HA-4.113	1 to 1.5 ft	Not Excavated	29-Jun-06	0.01 J	<0.00021	<0.0002	<0.00023	<0.035	<0.00039	<0.0037	<0.00029	<0.00033	<0.0027
HA-4.115	1 to 1.5 ft	Not Excavated	11-Jul-06	0.012 J	<0.0011	<0.0015	<0.00076	<0.13	<0.00041	<0.0098	<0.00042	<0.00021	<0.0021
HA-4.158	1 to 1.5 ft	Not Excavated	29-Jun-06	0.091	<0.00018	0.00019 J	<0.0002	<0.029	<0.00033	<0.0031	<0.00024	<0.00027	<0.0023

			Sample Date / Analyte	Acetone	Benzene	Carbon Disulfide	Chloroform	Ethanol	Ethylbenzene	Isopropyl alcohol	Isopropylbenzene	Methyl n-Butyl Ketone	Methylene Chloride
Location ID	Depth (ft has)	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)		PSL-HH	61000	1.1	820	0.29		5.4	990000000	2100	210	11
			PSL-Eco		0.5		5		5	-			-
HSA-4.2	2 to 2.5 ft	Not Excavated	24-Jan-06		<0.0081				<0.0081				
	3.5 to 4 ft	Not Excavated	24-Jan-06		<0.0053				<0.0053				
HSA-4.3	2 to 2.5 ft	Not Excavated	24-Jan-06		<0.0046				<0.0046				
	3.5 to 4 ft	Not Excavated	24-Jan-06		<0.0044				<0.0044				
HSA-4.4	2 to 2.5 ft	Not Excavated	23-Jan-06	0.0067 J	<0.00099	<0.0013	<0.0007	<0.12	<0.00038	<0.009	<0.00039	<0.00019	<0.002
	6 to 6.5 ft	Not Excavated	23-Jan-06	0.0034 J	<0.0013	<0.0018	<0.00091	<0.16	<0.0005	<0.012	<0.00051	<0.00025	<0.0026
	11 to 11.5 ft	Not Excavated	23-Jan-06	0.0056 J	<0.0011	<0.0015	<0.00076	<0.13	<0.00041	<0.0098	<0.00042	<0.00021	<0.0021
	16 to 16.5 ft	Not Excavated	24-Jan-06	0.01 J	<0.0011	<0.0014	<0.00074	<0.13	<0.0004	<0.0096	<0.00041	<0.0002	0.0031 J
	21 to 21.5 ft	Not Excavated	24-Jan-06	0.0082 J	<0.0012	<0.0016	<0.00083	<0.14	<0.00045	<0.011	<0.00046	<0.00023	0.0024 J
	26 to 26.5 ft	Not Excavated	24-Jan-06	0.0074 J	<0.0011	<0.0015	<0.00076	<0.13	<0.00041	<0.0098	<0.00042	<0.00021	0.003 J
HSA-4.5	2 to 2.5 ft	Not Excavated	23-Jan-06	0.0048 J	<0.0011	<0.0015	<0.00077	<0.13	<0.00042	<0.01	<0.00043	<0.00021	<0.0022
	6 to 6.5 ft	Not Excavated	23-Jan-06	0.012 J	<0.0011	<0.0015	<0.00076	<0.13	0.00051 J	<0.0098	<0.00042	<0.00021	0.003 J
	11 to 11.5 ft	Not Excavated	23-Jan-06	0.032	<0.0012	<0.0016	<0.00083	<0.14	0.00073 J	<0.011	<0.00046	<0.00023	<0.0023
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.0015	<0.00051	<0.0035	<0.00063	<0.074	<0.00036	<0.019	<0.00062	<0.00071	0.0018 J
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.0015	<0.00051	<0.0036	<0.00064	<0.075	<0.00037	<0.02	<0.00063	<0.00073	0.0029 J
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.0015	<0.00051	<0.0035	<0.00063	<0.074	<0.00036	<0.019	<0.00062	<0.00071	0.0014 J
	31 to 31.5 ft	Not Excavated	24-Jan-06	0.002 J	<0.00051	<0.0036	<0.00064	<0.075	<0.00037	<0.02	<0.00063	<0.00073	0.0015 J
HSA-4.6	2 to 2.5 ft	Not Excavated	23-Jan-06	0.0035 J	<0.00048	<0.0033	<0.0006	<0.07	<0.00035	<0.018	<0.00059	<0.00068	0.0014 J
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.0018	<0.00061	<0.0043	<0.00077	<0.09	<0.00044	<0.023	<0.00075	<0.00087	0.0017 J
	16 to 16.5 ft	Not Excavated	24-Jan-06	0.0065 J	<0.00048	<0.0033	<0.0006	<0.07	<0.00035	<0.018	<0.00059	<0.00068	0.0017 J
	21 to 21.5 ft	Not Excavated	24-Jan-06	0.085	<0.00074	<0.0051	<0.00092	<0.11	<0.00053	<0.028	<0.0009	<0.001	0.003 J
	26 to 26.5 ft	Not Excavated	24-Jan-06	0.01 J	<0.00048	<0.0033	<0.0006	<0.07	<0.00035	<0.018	<0.00059	<0.00068	0.0021 J
	31 to 31.5 ft	Not Excavated	24-Jan-06	0.015 J	<0.001	<0.0014	<0.00073	<0.12	<0.0004	<0.0095	<0.00041	<0.0002	<0.0021
MW-4.1	1 to 1.5 ft	Not Excavated	16-Dec-03	<0.02	<0.0049	<0.0049	<0.0049		<0.0049		<0.0049	<0.0098	<0.02
MW-4.5	0 to 0.5 ft	Not Excavated	28-Sep-07	0.0057 J	<0.0075	<0.0075	<0.0075	<1.5	<0.0075	<0.3	<0.0075	<0.015	0.0045 J
	8.5 to 9 ft	Not Excavated	28-Sep-07	0.019 J	<0.0057	<0.0057	<0.0057	<1.1	<0.0057	<0.23	<0.0057	<0.011	<0.023
OUE-DP-036	3 to 4 ft	Not Excavated	22-Jun-10	0.031	<0.0075	<0.0075	<0.0075		<0.0075		<0.0075	<0.015	<0.03 Jb/UB
	5 to 7 ft	Not Excavated	22-Jun-10	0.028	<0.0062	<0.0062	<0.0062		<0.0062		<0.0062	<0.012	<0.025 Jb/UB
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10	<0.026	<0.0064	<0.0064	<0.0064		<0.0064		<0.0064	<0.013	<0.026
	5 to 7 ft	Not Excavated	22-Jun-10	0.038	<0.0058	0.00068 J	<0.0058		<0.0058		<0.0058	<0.012	<0.023 Jb/UB
OUE-DP-038	0 to 2.5 ft	Not Excavated	22-Jun-10	0.017 J	<0.005	<0.005	<0.005		<0.005		<0.005	<0.01	<0.02 Jb/UB

			Sample Date /										
			Analyte	Acetone	Benzene	Carbon Disulfide	Chloroform	Ethanol	Ethylbenzene	Isopropyl alcohol	Isopropylbenzene	Methyl n-Butyl Ketone	Methylene Chloride
Location ID	Depth (ft has)	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)		PSL-HH	61000	1.1	820	0.29		5.4	990000000	2100	210	11
			PSL-Eco	-	0.5		5		5	-	-		-
OUE-DP-046	5 to 6 ft	Not Excavated	22-Jun-10	<0.032	<0.008	<0.008	<0.008		<0.008		<0.008	<0.016	0.011 Jb
OUE-DP-047	6 to 6.5 ft	Not Excavated	22-Jun-10	0.026 J	<0.0085	<0.0085	<0.0085		<0.0085		<0.0077	<0.017	<0.034
OUE-HA-020	0.5 to 1.5 ft	Not Excavated	24-Jun-10	0.076	<0.0076	0.0029 J	<0.0076		<0.0076		<0.0076	<0.015	<0.03 Jb/UB
	4 to 5 ft	Not Excavated	24-Jun-10	0.031 /J	<0.012	0.0013 J	<0.012		<0.012		<0.012	<0.025	<0.049 Jb/UB
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10	0.032	<0.0068	<0.0068	<0.0068		<0.0068		<0.0068	<0.014	<0.027
	6.5 to 8 ft	Not Excavated	25-Jun-10	0.028 J	<0.0085	<0.0085	<0.0085		<0.0085		<0.0085	<0.017	0.0091 Jb
OUE-HA-033	0.5 to 1 ft	Not Excavated	13-Nov-10	0.01 J	<0.01	<0.01	<0.01		<0.01		<0.01	<0.02	<0.041
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04	0.026	<0.0047	<0.0047	< 0.0047		<0.0047		<0.0047	<0.0094	<0.019
	10.5 to 11 ft	Not Excavated	20-Jul-04	<0.027	<0.0068	<0.0068	<0.0068		<0.0068		<0.0068	<0.014	<0.027
	12 to 12.5 ft	Not Excavated	20-Jul-04	<0.019	<0.0046	<0.0046	< 0.0046		<0.0046		<0.0046	<0.0093	0.27
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04	<0.019	<0.0048	<0.0048	<0.0048		<0.0048		<0.0048	<0.0096	0.02
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04	<0.019	<0.0047	<0.0047	<0.0047		<0.0047		<0.0047	<0.0094	<0.019
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04	<0.019	<0.0046	<0.0046	< 0.0046		<0.0046		< 0.0046	<0.0093	<0.019
	6 to 6.5 ft	Not Excavated	20-Jul-04	<0.025	< 0.0063	< 0.0063	< 0.0063		< 0.0063		< 0.0063	<0.013	<0.025
P4-PH2	2 to 2.5 ft	Not Excavated	20-Jul-04	<0.034	<0.0086	<0.0086	<0.0086		<0.0086		<0.0086	<0.017	< 0.034
Pond 8 Fill AOI													
HSA-6.29	2 to 2.5 ft	Not Excavated	18-Jan-06	0.0051 J	<0.0011	< 0.0039	<0.0012	<0.13	<0.0011	<0.014	<0.0011	<0.00069	< 0.0039
	6 to 6.5 ft	Not Excavated	18-Jan-06	0.0072 J	<0.00097	< 0.0036	<0.0011	<0.12	<0.00097	<0.013	<0.00097	<0.00063	<0.0035
	16 to 16.5 ft	Not Excavated	18-Jan-06	0.0084 J	<0.001	<0.0038	<0.0011	<0.12	<0.001	<0.014	<0.001	<0.00066	<0.0037
	20.5 to 21 ft	Not Excavated	19-Jan-06	0.0033 J	<0.0011	<0.004	<0.0012	<0.13	<0.0011	<0.014	<0.0011	<0.0007	< 0.0039
HSA-6.30	5.5 to 6 ft	Not Excavated	19-Jan-06	0.053	<0.00092	<0.0034	<0.001	<0.11	<0.00092	0.018 J	<0.00092	<0.0006	<0.0034
	6 to 6.5 ft	Not Excavated	19-Jan-06	0.011 J	<0.00097	<0.0036	<0.0011	<0.12	<0.00097	<0.013	<0.00097	<0.00063	<0.0035
	16 to 16.5 ft	Not Excavated	19-Jan-06	0.0048 J	<0.0011	<0.0039	<0.0012	<0.13	<0.0011	<0.014	<0.0011	<0.00069	< 0.0039

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility Fort Bragg, California

			Sample Date / Analyte	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyl Toluene	sec-Butylbenzene	Tetrachloroethene	Toluene	Xylenes, m,p-	Xylenes, o-	Xylenes, Total ⁵
Location ID	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)		PSL-HH	3.6	240	240	-	220	0.55	5000	630	3800	630
			PSL-Eco	0.6	-	-	-	-	0.2	3	1	-	1
Water Treatment	and Truck Du	mp AOI											
HA-4.137	2.3 to 2.8 ft	Not Excavated	08-Aug-06		-				1	<0.0009 [<0.00096]	<0.0009 [<0.00096]	<0.0009 [<0.00096]	ND [ND]
HA-4.138	7.3 to 7.8 ft	Not Excavated	08-Aug-06							<0.00096	<0.00096	<0.00096	ND
HA-4.139	6.2 to 6.7 ft	Not Excavated	08-Aug-06							<0.0025 [<0.002]	<0.0025 [<0.002]	<0.0025 [<0.002]	ND [ND]
HA-4.140	1 to 1.5 ft	Not Excavated	08-Aug-06							<0.00092	<0.00092	<0.00092	ND
HA-4.141	1.1 to 1.6 ft	Not Excavated	08-Aug-06							< 0.00096	<0.00096	<0.00096	ND
HA-4.142	1.7 to 2.2 ft	Not Excavated	08-Aug-06							<0.0011	<0.0011	<0.0011	ND
HA-4.143	0.5 to 1 ft	Not Excavated	29-Jun-06	<0.00042	<0.00094	<0.00023	<0.00034	<0.00033	<0.00024	<0.00023	<0.00043	<0.00033	ND
HA-4.160	2.7 to 3.2 ft	Not Excavated	08-Aug-06							<0.00091	<0.00091	<0.00091	ND
OUE-DP-003	1 to 2 ft	Not Excavated	24-Jun-10	<0.0059	< 0.0059	<0.0059	<0.0059	<0.0059	<0.0059	< 0.0059	0.00074 J	< 0.0059	0.00074
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	ND
OUE-DP-009	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	ND
OUE-DP-010	6.5 to 7.5 ft	Not Excavated	29-Jun-10	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	ND
OUE-DP-011	5.6 to 6.5 ft	Not Excavated	29-Jun-10	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	ND
OUE-DP-058	1 to 2 ft	Not Excavated	06-Nov-10	<0.0072	<0.0072	<0.0072	<0.0072	<0.0072	0.004 J	<0.0072	<0.0072	<0.0072	ND
	5 t0 6 ft	Not Excavated	06-Nov-10	<0.0054	<0.0054	<0.0054	<0.0054	<0.0055	0.018/J	<0.0054	<0.0054	<0.0054	ND
P4-11	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.0053	<0.0051	<0.0051	<0.0051	<0.0051	<0.0018.5	<0.0055	<0.0051	<0.0051	ND
P4-12	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.0031	<0.0031	<0.0031	<0.0049	<0.0049	<0.0049	<0.0031	<0.0031	<0.0031	ND
HA-4 42	0.5 to 1.ft	Not Excavated	11-Jul-06	<0.000157	<0.00034	<0.00056	<0.00046	<0.00052	<0.0006	<0.0010	<0.00085	<0.00042	ND
HA-4.43	0.1 to 0.6 ft	Not Excavated	11-Jul-06	<0.000057	<0.00034	<0.00056	<0.00046	< 0.00052	<0.0006	<0.0002	<0.00085	<0.00042	ND
HA-4.46	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.000052	<0.00031	<0.0005	<0.00010	<0.00046	<0.00054	<0.00018	<0.00077	<0.00038	ND
HA-4.119	0.5 to 1 ft	Not Excavated	28-Jun-06	<0.00049	<0.0003	<0.00042	<0.00025	<0.00028	<0.0005	<0.00031	<0.00073	<0.00022	ND
HA-4.120	0.5 to 1 ft	EXCAVATED	29-Jun-06	<0.00051 [<0.00037]	<0.0011 [<0.00023]	<0.00029 [<0.00032]	<0.00041 [<0.00019]	<0.0004 [<0.00021]	<0.0003 [<0.00038]	0.00041 J [<0.00024]	<0.00052 [<0.00055]	<0.0004 [<0.00016]	ND [ND]
MW-4.2	2.5 to 3 ft	Not Excavated	16-Dec-03	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	ND
OUE-DP-001	1 to 2 ft	Not Excavated	24-Jun-10	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	0.0095	0.0016 J	0.0011 J	<0.0052	0.0011
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	0.039	<0.0059	<0.0059	<0.0059	ND
OUE-DP-002	1 to 2 ft	Not Excavated	24-Jun-10	<0.0082	<0.0082	<0.0082	<0.0082	<0.0082	<0.0082	<0.0082	<0.0082	<0.0082	ND
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	ND
OUE-DP-004	1 to 2 ft	Not Excavated	23-Jun-10	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	ND
	3 to 4 ft	Not Excavated	23-Jun-10	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	ND
OUE-DP-059	2 to 3 ft	Not Excavated	06-Nov-10	<0.005	<0.005	<0.005	<0.005	<0.005	0.00051 J	<0.005	<0.005	<0.005	ND
	5 to 6 ft	Not Excavated	06-Nov-10	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	ND
	6.5 to 7.5 ft	Not Excavated	06-Nov-10	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	ND
OUE-DP-060	2 to 3 ft	Not Excavated	06-Nov-10	<0.005	<0.005	<0.005	<0.005	<0.005	0.013	<0.005	<0.005	<0.005	ND
	5 to 6 ft	Not Excavated	06-Nov-10	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	ND
	7 to 8 ft	Not Excavated	06-Nov-10	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	ND
DP-ROAD-4.3	1 to 1.5 ft	EXCAVATED	24-Oct-05	<0.00078	<0.00087	<0.00067	<0.0007	<0.00071	<0.00063	0.0013 J	0.0027 J	<0.00034	0.0027
HA-4.44	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.00007	<0.00042	<0.00069	<0.00056	<0.00063	<0.00074	<0.00024	<0.001	<0.00052	ND
HA-4.45	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.000059	<0.00035	<0.00058	<0.00048	<0.00054	<0.00063	<0.00021	<0.00089	<0.00044	ND

Tables 4-23 to 4-43_S4_So_Sed_SW_Data Tables_JAN2013.xlsx

			Sample Date / Analyte	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyl Toluene	sec-Butylbenzene	Tetrachloroethene	Toluene	Xylenes, m,p-	Xylenes, o-	Xylenes, Total ⁵
Location ID	Depth ((t h re)	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)		PSL-HH	3.6	240	240	-	220	0.55	5000	630	3800	630
			PSL-Eco	0.6	-	-		-	0.2	3	1	-	1
HA-4.47	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.00011	<0.00064	<0.001	0.0015 J	<0.00096	<0.0011	0.0007 J	<0.0016	<0.00079	ND
HA-4.48	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.000058	<0.00035	<0.00057	<0.00047	<0.00053	<0.00062	<0.0002	<0.00087	<0.00043	ND
HA-4.121	0.5 to 1 ft	EXCAVATED	29-Jun-06	<0.00044	<0.001	<0.00025	<0.00036	<0.00035	<0.00026	<0.00025	<0.00045	<0.00035	ND
HA-4.144	0.5 to 1 ft	EXCAVATED	29-Jun-06	<0.00058	<0.0013	<0.00033	<0.00047	<0.00046	<0.00034	<0.00033	<0.00059	<0.00045	ND
HA-4.155	0.5 to 1 ft	EXCAVATED	11-Jul-06	<0.000054	<0.00032	<0.00053	<0.00044	<0.00049	<0.00057	<0.00019	<0.00081	<0.0004	ND
Sawmill #1 AOI													
DP-5.54	1 to 1.5 ft	Not Excavated	05-Oct-05	<0.003	<0.0031	<0.0037	<0.0036	<0.0038	<0.0033	<0.0042	<0.0078	<0.0037	ND
	5 to 5.5 ft	Not Excavated	05-Oct-05	<0.0014	<0.0015	<0.0018	<0.0017	<0.0018	<0.0015	<0.002	<0.0037	<0.0018	ND
	10 to 10.5 ft	Not Excavated	05-Oct-05	<0.0014	<0.0014	<0.0017	<0.0016	<0.0017	<0.0015	<0.0019	<0.0036	<0.0017	ND
DP-5.55	1 to 1.5 ft	Not Excavated	05-Oct-05	<0.0015	<0.0015	<0.0018	<0.0018	<0.0018	<0.0016	<0.0021	<0.0038	<0.0018	ND
DP-5.56	1 to 1.5 ft	Not Excavated	05-Oct-05	<0.002	<0.0021	<0.0025	<0.0024	<0.0025	<0.0022	<0.0028	<0.0052	<0.0025	ND
DP-5.57	0.5 to 1 ft	Not Excavated	20-Oct-05	<0.00064	<0.00073	<0.00099	<0.00089	<0.00094	<0.0009	<0.00089	<0.002	<0.00095	ND
DP-ROAD-4.1	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.00067	<0.00074	<0.00057	<0.0006	<0.00061	<0.00054	0.0017 J	0.0025 J	<0.00029	0.0025
DP-ROAD-4.2	1 to 1.5 ft	Not Excavated	24-Oct-05	<0.00071	<0.00079	<0.00061	<0.00063	<0.00065	<0.00057	<0.00044	<0.0011	<0.00031	ND
HA-4.35	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.00005	<0.0003	<0.00049	<0.0004	<0.00045	<0.00053	<0.00017	<0.00074	<0.00037	ND
HA-4.36	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.000054	<0.00032	<0.00053	<0.00044	<0.00049	<0.00057	<0.00019	<0.00081	<0.0004	ND
HA-4.37	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.00033 [<0.00034]	<0.00021 [<0.00021]	<0.00029 [<0.0003]	<0.00017 [<0.00018]	<0.00019 [<0.0002]	<0.00034 [<0.00035]	<0.00021 [<0.00022]	<0.0005 [<0.00051]	<0.00015 [<0.00015]	ND [ND]
HA-4.38	2.2 to 2.7 ft	Not Excavated	12-Jul-06	<0.000054	<0.00032	<0.00053	<0.00044	< 0.00049	<0.00057	0.00075 J	<0.00081	< 0.0004	ND
HA-4.39	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.00086	<0.00051	<0.00084	<0.00069	<0.00077	<0.00091	<0.0003	<0.0013	< 0.00063	ND
HA-4.40	2.3 to 2.8 ft	Not Excavated	12-Jul-06	<0.00035	<0.0008	<0.0002	<0.00029	<0.00028	<0.00021	0.00089 J	<0.00036	<0.00028	ND
HA-4.41	3 to 3.5 ft	Not Excavated	12-Jul-06	<0.00038	<0.00023	<0.00033	<0.00019	<0.00022	<0.00039	<0.00024	<0.00056	<0.00017	ND
HA-4.49	4.5 to 5 ft	Not Excavated	01-Aug-06	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	ND
HA-4.50	4 to 4.5 ft	Not Excavated	01-Aug-06	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	ND
HA-4.51	4 to 4.5 ft	Not Excavated	01-Aug-06	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	ND
HA-4.52	2.5 to 3 ft	Not Excavated	01-Aug-06	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	ND
HA-4.53	5 to 5.5 ft	Not Excavated	01-Aug-06	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	ND
HA-4.54	9 to 9.5 ft	Not Excavated	01-Aug-06	< 0.004	<0.004	<0.004	<0.004	<0.004	<0.004	0.00027 J	<0.004	< 0.004	ND
HA-4.55	4 to 4.5 ft	Not Excavated	01-Aug-06	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.00069 J	<0.005	<0.005	ND
HA-4.56	3.5 to 4 ft	Not Excavated	01-Aug-06	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	ND
HA-5.84	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.000056 [<0.000052]	<0.00034 [<0.00031]	<0.00055 [<0.0005]	<0.00045 [<0.00041]	<0.00051 [<0.00046]	<0.00059 [<0.00054]	<0.0002 [<0.00018]	<0.00084 [<0.00077]	<0.00042 [<0.00038]	ND [ND]
HA-5.85	3 to 3.5 ft	Not Excavated	20-Jul-06	0.00085 J	<0.00044	<0.00072	<0.00059	<0.00066	<0.00078	0.0011 J	<0.0011	<0.00054	ND
HA-5.86	2.7 to 3.2 ft	Not Excavated	12-Jul-06	<0.00041	<0.00025	<0.00035	<0.00021	<0.00024	<0.00042	<0.00026	<0.00061	<0.00018	ND
HA-5.87	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.000051	<0.0003	<0.0005	<0.00041	<0.00046	<0.00053	<0.00018	<0.00076	<0.00037	ND
HA-5.88	3 to 3.5 ft	Not Excavated	20-Jul-06	0.007	<0.0003	<0.0005	<0.00041	<0.00046	<0.00053	<0.00018	<0.00076	<0.00037	ND
HA-5.89	2.5 to 3 ft	Not Excavated	20-Jul-06	<0.000066	<0.00039	<0.00064	<0.00053	<0.00059	<0.00069	0.00028 J	<0.00098	<0.00049	ND
HA-5.90	3 to 3.5 ft	Not Excavated	20-Jul-06	0.0011 J	<0.00035	<0.00057	<0.00047	<0.00053	<0.00062	0.00085 J	<0.00087	<0.00043	ND
HA-5.91	3 to 3.5 ft	Not Excavated	20-Jul-06	<0.000052	<0.00031	<0.0005	<0.00041	<0.00046	<0.00054	<0.00018	<0.00077	<0.00038	ND
MW-4.4	5.6 to 7.1 ft	Not Excavated	16-Dec-03	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	ND
MW-5.7	4.5 to 6 ft	Not Excavated	15-Dec-03	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	ND
OUE-CAP-024	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	ND
OUE-DP-018	6 to 7 ft	Not Excavated	22-Jun-10	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	ND
	8 to 9 ft	Not Excavated	22-Jun-10	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	ND
OUE-DP-026	0.5 to 2 ft	Not Excavated	25-Jun-10	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.006	<0.006	<0.006	ND
	2 to 3.5 ft	Not Excavated	25-Jun-10	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	ND
OUE-DP-028	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	ND

	David		Sample Date / Analyte	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyl Toluene	sec-Butylbenzene	Tetrachloroethene	Toluene	Xylenes, m,p-	Xylenes, o-	Xylenes, Total ⁵
Location ID	(ft bgs)	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(11 093)		PSL-HH	3.6	240	240	-	220	0.55	5000	630	3800	630
			PSL-Eco	0.6		-	-		0.2	3	1		1
OUE-DP-030	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	ND
OUE-DP-031	0.5 to 1.5 ft	Not Excavated	21-Jun-10	<0.0079	<0.0079	<0.0079	<0.0079	<0.0079	<0.0064	<0.0064	<0.0064	<0.0064	ND
P4-23	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	ND
P4-24	0 to 0.5 ft	Not Excavated	28-Mar-03	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	ND
SAW MILL	0 to 0.5 ft	Not Excavated	17-Dec-03	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	ND
Compressor Hou	use and Lath B	Building AOI								1			· · · -
MW-3.14	0 to 0.5 ft	Not Excavated	29-Sep-07	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	0.00072 J	< 0.0053	<0.0053	ND
	5.5 to 6 ft	Not Excavated	29-Sep-07	0.0044 J	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	ND
OUE-DP-032	0.5 to 1.7 ft	Not Excavated	25-Jun-10	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	ND
	2 to 3.5 ft	Not Excavated	25-Jun-10	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	ND
OUE-DP-033	0.5 t0 1.5 π	Not Excavated	29-Jun-10	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	ND
	4 t0 5 ft	Not Excavated	29-Jun-10	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	ND
00L-DF-034	240.45.6	Not Excavated	25-Jun-10	-0.0059	-0.0055	-0.0059	-0.0051	-0.0059	-0.0051	-0.0053	-0.0059	-0.0059	ND
	3 10 4.5 II	Not Excavated	25-Jun-10	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	ND
002-07-035	3 to 4 5 ft	Not Excavated	25-Jun-10	<0.0043	<0.0043	<0.0043	<0.0043	<0.0043	<0.0045	<0.0043	<0.0043	<0.0043	ND
Power House an	d Fuel Barn A		20-001-10	-0.005	<0.000	<0.000	-0.000	<0.003	<0.000	<0.000	<0.000	<0.000	ND
HA-4.95	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	ND
HA-4.96	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	ND
HA-4.97	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	0.00061 J	<0.0048	<0.0048	ND
HA-4.98	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0045	< 0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	ND
HA-4.100	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0045	< 0.0045	< 0.0045	<0.0045	<0.0045	< 0.0045	< 0.0045	<0.0045	< 0.0045	ND
HA-4.101	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0049	<0.0049	< 0.0049	<0.0049	<0.0049	< 0.0049	< 0.0049	< 0.0049	<0.0049	ND
HA-4.102	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	0.00051 J	<0.0046	<0.0046	ND
HA-4.103	2 to 2.5 ft	Not Excavated	22-Aug-06	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	ND
HA-4.105	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	< 0.0048	<0.0048	ND
HA-4.106	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	ND
HA-4.118A	0.5 to 1 ft	Not Excavated	07-Aug-06	<0.0005	<0.00031	<0.00043	<0.00026	<0.00029	<0.00051	0.00062 J	<0.00075	<0.00022	ND
HA-4.156	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	ND
HA-4.157	2 to 2.5 ft	Not Excavated	22-Aug-06	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	0.00049 J	<0.005	< 0.005	ND
MW-4.6	0 to 0.5 ft	Not Excavated	28-Sep-07	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065	<0.0065	ND
	4 to 4.5 ft	Not Excavated	28-Sep-07	<0.0059	<0.0059	<0.0059	0.081	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	ND
OUE-DP-041	0.5 to 1 ft	Not Excavated	27-Sep-10	<0.0044 NDb	<0.0044 NDb	<0.0044 NDb	<0.0044 NDb	<0.0044 NDb	<0.0044 NDb	<0.0044 NDb	<0.0044 NDb	<0.0044 NDb	ND
OUE-DP-042	1 to 1.5 ft	Not Excavated	24-Sep-10	<0.0052 NDb	<0.0052 NDb	<0.0052 NDb	<0.0052 NDb	<0.0052 NDb	<0.0052 NDb	<0.0052 NDb	<0.0052 NDb	<0.0052 NDb	ND
	1.5 to 3 ft	Not Excavated	24-Sep-10	<0.0053 NDb	<0.0053 NDb	<0.0053 NDb	<0.0053 NDb	<0.0053 NDb	<0.0053 NDb	<0.0053 NDb	<0.0053 NDb	<0.0053 NDb	ND
	4 to 4.5 ft	Not Excavated	24-Sep-10	<0.007 NDb	<0.007 NDb	<0.007 NDb	<0.007 NDb	<0.007 NDb	<0.007 NDb	<0.007 NDb	<0.007 NDb	<0.007 NDb	ND
OUE-HA-013	0.5 to 1.5 ft	Not Excavated	24-Jun-10	<0.0082	<0.0082	<0.0082	<0.0082	<0.0082	<0.0082	<0.0082	<0.0082	<0.0082	ND
	4 to 5 ft	Not Excavated	24-Jun-10	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	ND
P4-PH1	3 to 3.5 ft	Not Excavated	20-Jul-04	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	ND
DP-4.22	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00041	<0.00092	<0.00023	<0.00033	<0.00032	<0.00024	0.00025 J	<0.00042	<0.00032	ND
DP-4.23	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00043	<0.00096	<0.00024	<0.00034	<0.00034	<0.00025	<0.00024	<0.00043	<0.00033	ND
DP-4.24	1 to 1.5 ft	Not Excavated	06-Jun-06	<0.00047	<0.0011	<0.00027	<0.00038	<0.00038	<0.00028	0.00053 J	<0.00048	<0.00037	ND
DP-5.59	0.5 to 1 ft	Not Excavated	20-Oct-05	<0.00061	<0.00069	<0.00094	<0.00085	<0.00089	<0.00086	<0.00084	<0.0019	<0.0009	ND

			Sample Date / Analyte	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyl Toluene	sec-Butylbenzene	Tetrachloroethene	Toluene	Xylenes, m,p-	Xylenes, o-	Xylenes, Total ⁵
Location ID	Depth (ft h re)	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bgs)		PSL-HH	3.6	240	240		220	0.55	5000	630	3800	630
			PSL-Eco	0.6	-	-			0.2	3	1		1
HA-4.63	1 to 1.5 ft	Not Excavated	23-Aug-06	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	ND
HA-4.66	6 to 6.5 ft	Not Excavated	09-Aug-06	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	0.0013 J	0.0014 J	0.001 J	0.0024
HA-4.67	6 to 6.5 ft	Not Excavated	09-Aug-06	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	0.0006 J	<0.0051	<0.0051	ND
HA-4.68	5 to 5.5 ft	Not Excavated	08-Aug-06	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	ND
HA-4.70	3.5 to 4 ft	Not Excavated	13-Sep-06	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	<0.0093	0.00073 J	<0.0093	<0.0093	ND
HA-4.71	6 to 6.5 ft	Not Excavated	13-Sep-06	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	ND
HA-4.72	8 to 8.5 ft	Not Excavated	13-Sep-06	<0.0069	<0.0069	<0.0069	<0.0069	<0.0069	<0.0069	<0.0069	<0.0069	<0.0069	ND
HA-4.73	8 to 8.5 ft	Not Excavated	13-Sep-06	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	ND
HA-4.74	8 to 8.5 ft	Not Excavated	13-Sep-06	<0.0092	<0.0092	<0.0092	<0.0092	<0.0092	<0.0092	<0.0092	<0.0092	<0.0092	ND
HA-4.76	3.5 to 4 ft	Not Excavated	13-Sep-06	<0.0073	<0.0073	<0.0073	<0.0073	<0.0073	<0.0073	0.0011 J	<0.0073	<0.0073	ND
HA-4.77	6 to 6.5 ft	Not Excavated	07-Aug-06	0.00067 J	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	0.013	0.0032 J	0.0011 J	0.0043
HA-4.78	8 to 8.5 ft	Not Excavated	14-Sep-06	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	ND
HA-4.79	8 to 8.5 ft	Not Excavated	08-Aug-06	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	0.00063 J	<0.0049	<0.0049	ND
HA-4.80	6 to 6.5 ft	Not Excavated	13-Sep-06	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	ND
HA-4.81	8 to 8.5 ft	Not Excavated	13-Sep-06	<0.0057	<0.0057	<0.0057	0.00066 J	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	ND
HA-4.82	6.5 to 7 ft	Not Excavated	07-Aug-06	0.0014 J	0.001 J	0.0063	0.00063 J	0.00071 J	<0.0054	0.3	0.18	0.063	0.243
HA-4.83	4 to 4.5 ft	Not Excavated	13-Sep-06	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	ND
HA-4.84	6 to 6.5 ft	Not Excavated	13-Sep-06	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	<0.0087	ND
HA-4.85	7 to 7.5 ft	Not Excavated	13-Sep-06	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	ND
HA-4.86	7 to 7.5 ft	Not Excavated	13-Sep-06	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	ND
HA-4.87	4.5 to 5 ft	Not Excavated	07-Aug-06	0.0016 J	<0.005	<0.005	<0.005	<0.005	<0.005	0.039	0.0083	0.0021 J	0.010
HA-4.88	4.5 to 5 ft	Not Excavated	07-Aug-06	0.0018 J	<0.0046	0.00073 J	<0.0046	<0.0046	<0.0046	0.059	0.019	0.0059	0.025
HA-4.90	13.5 to 14 ft	Not Excavated	08-Aug-06	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<0.0074 [<0.0071]	<0.0074 [<0.0071]	ND [ND]
HA-4.108	1 to 1.5 ft	Not Excavated	28-Jun-06	<0.00047 [<0.0008]	<0.00029 [<0.00049]	<0.0004 [<0.00069]	<0.00024 [<0.00041]	<0.00027 [<0.00046]	<0.00048 [<0.00082]	<0.0003 [<0.00051]	<0.00069 [<0.0012]	<0.00021 [<0.00036]	ND [ND]
HA-4.109	1 to 1.5 ft	Not Excavated	28-Jun-06	<0.00037	<0.00023	<0.00032	<0.00019	<0.00021	<0.00038	<0.00024	<0.00055	<0.00016	ND
HA-4.110	1 to 1.5 ft	Not Excavated	28-Jun-06	<0.00035	<0.00022	<0.0003	<0.00018	<0.0002	<0.00036	<0.00023	<0.00052	<0.00016	ND
HA-4.111	1 to 1.5 ft	Not Excavated	28-Jun-06	<0.00041	<0.00025	<0.00035	<0.00021	<0.00024	<0.00042	0.0011 J	<0.00061	<0.00018	ND
HA-4.112	1 to 1.5 ft	Not Excavated	11-Jul-06	<0.000062	<0.00037	<0.0006	<0.0005	<0.00056	<0.00065	0.00027 J	<0.00092	<0.00046	ND
HA-4.113	1 to 1.5 ft	Not Excavated	29-Jun-06	<0.00043	<0.00027	<0.00038	<0.00022	<0.00025	<0.00045	<0.00028	<0.00065	<0.00019	ND
HA-4.115	1 to 1.5 ft	Not Excavated	11-Jul-06	<0.000053	<0.00032	<0.00052	<0.00043	<0.00048	<0.00056	<0.00019	<0.0008	<0.00039	ND
HA-4.158	1 to 1.5 ft	Not Excavated	29-Jun-06	<0.00036	<0.00022	<0.00032	<0.00019	<0.00021	0.00067 J	<0.00023	<0.00054	<0.00016	ND

			Sample Date / Analyte	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyl Toluene	sec-Butylbenzene	Tetrachloroethene	Toluene	Xylenes, m,p-	Xylenes, o-	Xylenes, Total ⁵
Location ID	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)		PSL-HH	3.6	240	240		220	0.55	5000	630	3800	630
			PSL-Eco	0.6	-	-	-	-	0.2	3	1	-	1
HSA-4.2	2 to 2.5 ft	Not Excavated	24-Jan-06							<0.0081	<0.0081	<0.0081	ND
	3.5 to 4 ft	Not Excavated	24-Jan-06							<0.0053	<0.0053	<0.0053	ND
HSA-4.3	2 to 2.5 ft	Not Excavated	24-Jan-06							<0.0046	<0.0046	<0.0046	ND
	3.5 to 4 ft	Not Excavated	24-Jan-06							<0.0044	<0.0044	<0.0044	ND
HSA-4.4	2 to 2.5 ft	Not Excavated	23-Jan-06	0.00033 J	<0.00029	<0.00048	<0.00039	<0.00044	<0.00052	<0.00017	<0.00073	<0.00036	ND
	6 to 6.5 ft	Not Excavated	23-Jan-06	<0.000064	<0.00038	<0.00063	<0.00052	<0.00058	<0.00068	<0.00022	<0.00096	<0.00048	ND
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.000053	<0.00032	<0.00052	<0.00043	<0.00048	<0.00056	<0.00019	<0.0008	<0.00039	ND
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.000052	<0.00031	<0.00051	<0.00042	<0.00047	<0.00055	<0.00018	<0.00078	<0.00039	ND
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.000058	<0.00035	<0.00057	<0.00047	<0.00053	<0.00062	<0.0002	<0.00087	<0.00043	ND
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.000053	<0.00032	<0.00052	<0.00043	<0.00048	<0.00056	<0.00019	<0.0008	<0.00039	ND
HSA-4.5	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.000054	<0.00032	<0.00053	<0.00044	<0.00049	<0.00057	<0.00019	<0.00081	<0.0004	ND
	6 to 6.5 ft	Not Excavated	23-Jan-06	<0.000053	<0.00032	<0.00052	<0.00043	<0.00048	<0.00056	0.00076 J	<0.0008	<0.00039	ND
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.000058	<0.00035	<0.00057	<0.00047	<0.00053	<0.00062	0.00053 J	<0.00087	<0.00043	ND
	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.00067	<0.00074	<0.00057	<0.0006	<0.00061	<0.00054	<0.00041	<0.001	<0.00029	ND
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.00068	<0.00076	<0.00058	<0.00061	<0.00062	<0.00055	<0.00042	<0.0011	<0.00029	ND
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.00067	<0.00074	<0.00057	<0.0006	<0.00061	<0.00054	<0.00041	<0.001	<0.00029	ND
	31 to 31.5 ft	Not Excavated	24-Jan-06	<0.00068	<0.00076	<0.00058	<0.00061	<0.00062	<0.00055	<0.00042	<0.0011	<0.00029	ND
HSA-4.6	2 to 2.5 ft	Not Excavated	23-Jan-06	<0.00064	<0.00071	<0.00055	<0.00057	<0.00058	<0.00051	<0.00039	<0.00099	<0.00027	ND
	11 to 11.5 ft	Not Excavated	23-Jan-06	<0.00081	<0.0009	<0.0007	<0.00073	<0.00074	<0.00065	<0.0005	<0.0013	<0.00035	ND
	16 to 16.5 ft	Not Excavated	24-Jan-06	0.00084 J	<0.00071	<0.00055	<0.00057	<0.00058	<0.00051	<0.00039	<0.00099	<0.00027	ND
	21 to 21.5 ft	Not Excavated	24-Jan-06	<0.00098	<0.0011	<0.00084	<0.00088	<0.00089	<0.00079	<0.0006	<0.0015	<0.00042	ND
	26 to 26.5 ft	Not Excavated	24-Jan-06	<0.00064	<0.00071	<0.00055	<0.00057	<0.00058	<0.00051	<0.00039	<0.00099	<0.00027	ND
	31 to 31.5 ft	Not Excavated	24-Jan-06	<0.000052	<0.00031	<0.0005	<0.00041	<0.00046	<0.00054	<0.00018	<0.00077	<0.00038	ND
MW-4.1	1 to 1.5 ft	Not Excavated	16-Dec-03	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	ND
MW-4.5	0 to 0.5 ft	Not Excavated	28-Sep-07	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	0.0015 J	<0.0075	<0.0075	ND
	8.5 to 9 ft	Not Excavated	28-Sep-07	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	ND
OUE-DP-036	3 to 4 ft	Not Excavated	22-Jun-10	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075	ND
	5 to 7 ft	Not Excavated	22-Jun-10	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	ND
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	ND
	5 to 7 ft	Not Excavated	22-Jun-10	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	ND
OUE-DP-038	0 to 2.5 ft	Not Excavated	22-Jun-10	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	ND

			Sample Date / Analyte	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyl Toluene	sec-Butylbenzene	Tetrachloroethene	Toluene	Xylenes, m,p-	Xylenes, o-	Xylenes, Total ⁵
Location ID	Depth	Excavation Status	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bgs)		PSL-HH	3.6	240	240		220	0.55	5000	630	3800	630
			PSL-Eco	0.6	-				0.2	3	1		1
OUE-DP-046	5 to 6 ft	Not Excavated	22-Jun-10	<0.008	<0.008	<0.008	0.0014 J	<0.008	<0.008	<0.008	<0.008	<0.008	ND
OUE-DP-047	6 to 6.5 ft	Not Excavated	22-Jun-10	<0.0077	<0.0077	<0.0077	0.0021 J	<0.0077	<0.0085	<0.0085	<0.0085	<0.0085	ND
OUE-HA-020	0.5 to 1.5 ft	Not Excavated	24-Jun-10	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	<0.0076	ND
	4 to 5 ft	Not Excavated	24-Jun-10	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	ND
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	ND
	6.5 to 8 ft	Not Excavated	25-Jun-10	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	<0.0085	ND
OUE-HA-033	0.5 to 1 ft	Not Excavated	13-Nov-10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	ND
P4-38	10 to 10.5 ft	Not Excavated	20-Jul-04	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	ND
	10.5 to 11 ft	Not Excavated	20-Jul-04	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	ND
	12 to 12.5 ft	Not Excavated	20-Jul-04	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	< 0.0046	<0.0046	<0.0046	ND
P4-39	4 to 4.5 ft	Not Excavated	20-Jul-04	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	ND
P4-40	6.5 to 7 ft	Not Excavated	20-Jul-04	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	ND
P4-41	5.5 to 6 ft	Not Excavated	20-Jul-04	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	< 0.0046	<0.0046	<0.0046	ND
	6 to 6.5 ft	Not Excavated	20-Jul-04	< 0.0063	< 0.0063	<0.0063	< 0.0063	<0.0063	<0.0063	< 0.0063	< 0.0063	<0.0063	ND
P4-PH2	2 to 2.5 ft	Not Excavated	20-Jul-04	<0.0086	<0.0086	<0.0086	<0.0086	<0.0086	<0.0086	<0.0086	<0.0086	<0.0086	ND
Pond 8 Fill AOI	•												
HSA-6.29	2 to 2.5 ft	Not Excavated	18-Jan-06	< 0.00066	< 0.00076	<0.001	< 0.00093	<0.00097	< 0.00094	< 0.00092	<0.0021	<0.00098	ND
	6 to 6.5 ft	Not Excavated	18-Jan-06	<0.00061	< 0.00069	< 0.00094	<0.00085	<0.00089	< 0.00086	< 0.00084	<0.0019	<0.0009	ND
	16 to 16.5 ft	Not Excavated	18-Jan-06	< 0.00064	< 0.00073	< 0.00099	<0.00089	< 0.00094	<0.0009	<0.00089	<0.002	< 0.00095	ND
	20.5 to 21 ft	Not Excavated	19-Jan-06	< 0.00068	<0.00077	<0.001	<0.00094	<0.00099	<0.00095	< 0.00094	<0.0021	<0.001	ND
HSA-6.30	5.5 to 6 ft	Not Excavated	19-Jan-06	< 0.00058	<0.00066	<0.00089	<0.00081	<0.00085	<0.00082	<0.0008	<0.0018	<0.00086	ND
	6 to 6.5 ft	Not Excavated	19-Jan-06	<0.00061	<0.00069	< 0.00094	<0.00085	<0.00089	<0.00086	< 0.00084	<0.0019	<0.0009	ND
	16 to 16.5 ft	Not Excavated	19-Jan-06	<0.00066	<0.00076	<0.001	< 0.00093	<0.00097	<0.00094	< 0.00092	<0.0021	<0.00098	ND

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility

											-			
			Sample Date / Analyte	2,3,7,8-TCDD TEQ (Human/Mammal) ⁷	2,3,7,8-TCDD TEQ (Bird) ⁸	2,3,7,8-TCDD TEQ (Fish) ⁹	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD	OCDD	2,3,7,8- TCDF
Location ID	Depth	Excavation	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
200000000	(ft bgs)	Status	PSL-HH	4.6			4.6		94	94	94			
			PSL-Eco-Sed	21.5	21.5	21.5								
			PSL-Eco	4	4	4								
Water Treatme	ent and Truc	k Dump AOI												
OUE-DP-013	10.5 to 11 ft	Not Excavated	22-Jun-10	0.75	6.2 [PSL-Eco]	0.37	<0.997	<1.3	<2.14	<2.42	<2.36	6.93 J	21.1	6.1 F
Power House	and Fuel Ba	rn AOI												
MW-4.6	0 to 0.5 ft	Not Excavated	28-Sep-07	9.5 [PSL-HH,PSL-Eco]	20 [PSL-Eco]	9.3 [PSL-Eco]	2.02	1.78 J	1.78 J	5	3.29	78.4	550	8.83 F
	4 to 4.5 ft	Not Excavated	28-Sep-07	2.5	4.5 [PSL-Eco]	2.40	0.471 J	0.449 J	0.382 J	1.66 J	0.935 J	19.6	126	1.49 F
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	5.8 [PSL-HH,PSL-Eco]	11.3 [PSL-Eco]	5.7 [PSL-Eco]	1.23	1.54 J	1.44 J	3.47 J	2.19 J	45	324	5.14 F
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	2.9	2.86	2.5	<0.247	1.31 J	1.61 J	4.03 J	2.96 J	34.5	181	0.863 J
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	2.6	3.59	2.3	<0.426	1.14 J	0.857 J	3.22 J	1.86 J	27	140	1.29
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	2.0	5.6 [PSL-Eco]	1.7	<0.446	0.702 J	<0.382	1.62 J	1.05 J	13.6	78.8	3.37 F
OUE-SS-001	0 to 0.5 ft	Not Excavated	30-Jun-10	1.4	0.895	1.1	<0.121	0.421 J	0.64 J	1.68 J	1.35 J	33.4	228	<0.169
OUE-SS-002	0 to 0.5 ft	Not Excavated	30-Jun-10	6.3 [PSL-HH,PSL-Eco]	11.8 [PSL-Eco]	5.3 [PSL-Eco]	1.15	1.19 J	1.22 J	3.98 J	2.45 J	96.5	817	6.03 F
OUE-SS-003	0 to 0.5 ft	Not Excavated	30-Jun-10	0.87	0.969	0.59	<0.239	<0.387	0.589 J	1.44 J	1.01 J	24.4	182	0.577 J
OUE-SS-004	0 to 0.5 ft	Not Excavated	30-Jun-10	0.53	0.622	0.19	<0.164	<0.297	<0.332	1.11 J	0.892 J	13.7	96.8	0.373 J
DP-4.17	2.1 to 2.6 ft	Not Excavated	05-Jun-06	1.1	3.3	1.0	<0.225	0.311 J	0.169 J	1.18 J	0.697 J	5.37	21.4 B	1.96
DP-4.19	1 to 1.5 ft	Not Excavated	05-Jun-06	0.92	2.1	0.85	<0.122	0.221 J	<0.206	0.752 J	0.39 J	8.7	54.4 B	0.805
DP-5.71	1 to 1.5 ft	Not Excavated	06-Jun-06	1.0	2.0	0.95	<0.158	0.41 J	0.334 J	0.852 J	0.697 J	8.89	57.8 B	0.959
DP-5.72	0 to 0.5 ft	Not Excavated	06-Jun-06	0.44	0.93	0.47	0.0744	0.256	<0.132	0.256 J	0.179 J	2.22 J	12.1 B	0.448 J
HA-4.68	5 to 5.5 ft	Not Excavated	08-Aug-06	33 [PSL-HH, PSL-Eco]	47 [PSL-Eco]	29 [PSL-Eco]	3.89	9.46	8	31.9	17.6	409	2670	14.9
HA-4.90	2 to 2.5 ft	Not Excavated	08-Aug-06	504 [[PSL-HH, PSL-Eco]	1320 [PSL-Eco]	571 [PSL-Eco]	80.6 [PSL-HH]	138	89	129 [PSL-HH]	113 [PSL-HH]	577	812	586
HA-4.147	1.2 to 1.7 ft	Not Excavated	27-Jun-06	3.9	14 [PSL-Eco]	4.4 [PSL-Eco]	0.579	0.638 J	0.363 J	0.652 J	0.443 J	2.46 J	8.67	8.16
HSA-4.5	16 to 16.5 ft	Not Excavated	24-Jan-06	0.023	0.0030	0.0030	<0.12	<0.143	<0.126	<0.133	<0.125	1.88 J	13.2	<0.106
MW-4.5	0 to 0.5 ft	Not Excavated	28-Sep-07	9.1 [PSL-HH, PSL-Eco]	9.6 [PSL-Eco]	7.1 [PSL-Eco]	0.679	1.13 J	3.18	10.1	6.35	192	1400	2.57 F
	8.5 to 9 ft	Not Excavated	28-Sep-07	0.0010	0.00029	ND	<0.215	<0.0856	<0.252	<0.279	<0.291	<0.522	2.86 J	<0.135
OUE-DP-036	1 to 2 ft	Not Excavated	22-Jun-10	0.62	1.6	0.42	<0.171	<0.216	<0.479	1.67 J	<0.625	9.61	70.4	0.996
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10	4.5 [PSL-Eco]	6.3 [PSL-Eco]	3.9	0.953 J	0.99 J	1.16 J	3.9 J	2 J	57.8	345	2.36
OUE-DP-038	1 to 1.5 ft	Not Excavated	23-Jun-10	0.25	0.39	0.10	<0.247	<0.262	<0.234	0.549 J	0.567 J	3.18 J	23.3	0.253 J
	8 to 8.5 ft	Not Excavated	23-Jun-10	0.46	0.19	0.058	<0.376	<0.683	<0.788	2.34 J	1.41 J	6.83 J	33.2	<0.195

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility

			Sample Date / Analyte	2,3,7,8-TCDD TEQ (Human/Mammal) ⁷	2,3,7,8-TCDD TEQ (Bird) ⁸	2,3,7,8-TCDD TEQ (Fish) ⁹	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD	OCDD	2,3,7,8- TCDF
Location ID	Depth	Excavation	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(it bgs)	Status	PSL-HH	4.6			4.6		94	94	94			
			PSL-Eco-Sed	21.5	21.5	21.5								
			PSL-Eco	4	4	4								
Water Treatme	ent and Truc	k Dump AOI	1	1		1			n		1			
	11 to 11.5 ft	Not Excavated	23-Jun-10	2.6	3.90	1.5	<0.489	<1.02	<1.05	6.4 J	1.96 J	52.2	336	1.68 J
	16 to 16.5 ft	Not Excavated	23-Jun-10	ND	ND	ND	<0.23	<0.281	<0.314	<0.346	<0.34	<0.552	<1.39	<0.0836
OUE-DP-039	2 to 2.7 ft	Not Excavated	23-Jun-10	8.9 [PSL-HH, PSL-Eco]	3.5	3.2	<0.301	<0.42	1.24 J	9.58	3.13 J	500	3730	<0.163
	5 to 5.5 ft	Not Excavated	23-Jun-10	6.9 [PSL-HH, PSL-Eco]	2.4	2.3	<0.193	<0.291	0.723 J	5.14	1.56 J	408	3530	<0.122
OUE-DP-039	10 to 11.5 ft	Not Excavated	24-Jun-10	13 [PSL-HH, PSL-Eco]	5.7 [PSL-Eco]	5.2 [PSL-Eco]	<0.343	<0.68	2.17 J	13	4.32 J	696	6040	<0.211
	16.5 to 17 ft	Not Excavated	24-Jun-10	0.045	0.0070	0.0069	<0.435	<0.637	<0.586	<0.665	<0.644	3.51 J	34	<0.153
OUE-DP-045	5 to 5.5 ft	Not Excavated	22-Jun-10	6.8 [PSL-HH, PSL-Eco]	10 [PSL-Eco]	6.9 [PSL-Eco]	<0.733	2.58 J	2.79 J	6.08 J	5.07 J	55.6	425	2.42
OUE-DP-048	6 to 6.5 ft	Not Excavated	26-Jun-10	0.096	0.70	0.038	<0.214	<0.306	<0.376	<0.436	<0.42	2.37 J	9.52 J	0.692 J
	8 to 9 ft	Not Excavated	26-Jun-10	0.0010	0.00026	0.00026	<0.324	<0.614	<0.587	<0.664	<0.646	<0.828	2.56 J	<0.297
OUE-DP-049	13 to 13.5 ft	Not Excavated	23-Jun-10	0.047	0.012	0.012	<0.313	<0.441	<0.383	<0.462	<0.434	3.42 J	18	<0.196
	13.5 to 15 ft	Not Excavated	23-Jun-10	0.076	0.063	0.063	<0.192	<0.253	<0.387	<0.452	<0.431	1.24 J	9.62 J	<0.0942
OUE-DP-050	8 to 9 ft	Not Excavated	26-Jun-10	0.14	1.2	0.060	<0.217	<0.253	<0.243	<0.28	<0.269	1.71 J	7.12 J	1.16
	9 to 10 ft	Not Excavated	26-Jun-10	0.053	0.53	0.027	<0.284	<0.287	<0.355	<0.406	<0.392	<0.542	<0.734	0.531 J
OUE-DP-051	1.5 to 2 ft	Not Excavated	26-Jun-10	11 [PSL-HH, PSL-Eco]	16 [PSL-Eco]	11 [PSL-Eco]	1.46	4.86 J	3.66 J	7.93	6.68	88.4	462	4.51 F
	3 to 3.5 ft	Not Excavated	26-Jun-10	0.16	0.49	0.050	<0.33	<0.434	<0.706	<0.781	<0.768	8.5	49.3	0.468 J
OUE-DP-052	0 to 0.5 ft	Not Excavated	26-Jun-10	203 [PSL-HH, PSL-Eco]	330 [PSL-Eco]	218 [PSL-Eco]	2.45	42.6	81.5	213 [PSL-HH]	165 [PSL-HH]	1010	578	64.2 F
	0.5 to 1.5 ft	Not Excavated	26-Jun-10	2729 [PSL-HH, PSL-Eco]	8299 [PSL-Eco]	2969 [PSL-Eco]	176 [PSL-HH]	775	494 [PSL- HH]	1430 [PSL- HH]	1040 [PSL- HH]	4290	2490	4370 F
	3 to 4 ft	Not Excavated	26-Jun-10	2.2	4.3 [PSL-Eco]	2.2	<0.221	0.84 J	0.919 J	2.22 J	1.57 J	12.1	30.1	1.98

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility

			Sample Date / Analyte	2,3,7,8-TCDD TEQ (Human/Mammal) ⁷	2,3,7,8-TCDD TEQ (Bird) ⁸	2,3,7,8-TCDD TEQ (Fish) ⁹	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD	OCDD	2,3,7,8- TCDF
Location ID	Depth (ft has)	Excavation	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(it bgs)	Status	PSL-HH	4.6			4.6		94	94	94			
			PSL-Eco-Sed	21.5	21.5	21.5							-	
			PSL-Eco	4	4	4						-	-	
Water Treatme	ent and Truc	k Dump AOI	1	1	F	r	[1		1	1	<u> </u>		
OUE-DP-053	0 to 0.5 ft	Not Excavated	26-Jun-10	0.32	0.12	0.045	<0.21	<0.49	<0.397	1.15 J	0.776 J	9.65 J	64.2	<0.126
	0.5 to 1.5 ft	Not Excavated	26-Jun-10	0.16	0.041	0.041	<0.433	<0.443	<0.58	<0.633	<0.626	11	108	<0.356
OUE-DP-057	0 to 1 ft	Not Excavated	24-Jun-10	6.0 [PSL-HH, PSL-Eco]	6.3 [PSL-Eco]	4.9 [PSL-Eco]	0.948 J	1.47 J	1.65 J	10.6	4.22 J	68.7	444	1.07
	5 to 5.8 ft	Not Excavated	24-Jun-10	ND	ND	ND	<0.166	<0.302	<0.356	<0.382	<0.381	<0.494	<0.965	<0.237
	10.5 to 11 ft	Not Excavated	24-Jun-10	0.0020	0.0010	0.00067	<0.495	<0.753	<1.1	<1.19	<1.18	<2.01	6.65 J	<0.246
OUE-DP-076	5 to 6 ft	Not Excavated	02-Nov-10	0.33	2.0	0.35	<0.16	<0.252	<0.327	<0.425	<0.362	1.7 J	3.25 J	1.45
OUE-DP-076	6 to 7 ft	Not Excavated	02-Nov-10	2.6	9.1 [PSL-Eco-Soil]	2.8	<0.381	0.999 J	<0.649	<0.861	<0.721	5.04	6.75 J	5.25 F
OUE-DP-077	12.5 to 13 ft	Not Excavated	02-Nov-10	0.0090	0.0010	0.0012	<0.255	<0.157	<0.264	<0.308	<0.277	0.822 J	4.11 J	<0.199
	15 to 16 ft	Not Excavated	02-Nov-10	0.0010	0.00028	0.00028	<0.232	<0.307	<0.348	<0.449	<0.383	<0.5	2.75 J	<0.164
OUE-DP-078	2.2 to 2.7 ft	Not Excavated	04-Nov-10	1.5	3.0	1.5	0.445 J	0.541 J	0.328 J	0.614 J	0.406 J	1.6 J	2.9 J	1.45
	5 to 5.5 ft	Not Excavated	04-Nov-10	0.29	1.6	0.34	<0.269	<0.215	<0.26	<0.325	<0.291	1.65 J	3.91 J	0.993 J
OUE-DP-079	0.5 to 1.5 ft	Not Excavated	05-Nov-10	0.43	1.1	0.099	<0.255	<0.167	<0.29	1.02 J	<0.337	18.3	110	1.07
	2.5 to 3 ft	Not Excavated	05-Nov-10	0.73	0.25	0.39	<0.208	<0.322	0.605 J	2.13 J	1.4 J	27.5	84.9	<0.29
OUE-DP-079	3.5 to 4 ft	Not Excavated	05-Nov-10	3.3	11 [PSL-Eco]	3.3	0.746 J	0.601 J	<0.213	0.8 J	0.666 J	2.32 J	3.82 J	6.67 F
OUE-DP-080	5 to 5.5 ft	Not Excavated	05-Nov-10	0.58	2.3	0.61	<0.187	<0.247	<0.272	<0.373	<0.321	2.13 J	4.65 J	1.49
	5.5 to 6.5 ft	Not Excavated	05-Nov-10	ND	ND	ND	<0.135	<0.272	<0.343	<0.484	<0.41	<0.247	<0.467	<0.187
	5.5 to 6.5 ft	Not Excavated	05-Nov-10	ND	ND	ND	<0.127	<0.256	<0.17	<0.231	<0.2	<0.264	<0.562	<0.098
OUE-DP-081	2.5 to 3 ft	Not Excavated	05-Nov-10	0.020	0.0070	0.0066	<0.214	<0.289	<0.234	<0.31	<0.27	1.34 J	6.08 J	<0.175
	5 to 5.5 ft	Not Excavated	05-Nov-10	ND	ND	ND	<0.246	<0.255	<0.23	<0.288	<0.258	<0.329	<0.581	<0.171
OUE-DP-088	0 to 0.5 ft	Not Excavated	04-Nov-10	9.6 [PSL-HH, PSL-Eco]	22 [PSL-Eco]	11 [PSL-Eco]	1.86	2.48 J	2.03 J	3.63 J	2.57 J	22.2	150	9.06 F
	0.5 to 1.5 ft	Not Excavated	04-Nov-10	0.051	0.013	0.013	<0.156	<0.329	<0.486	<0.584	<0.538	3.61 J	25.2	<0.25

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility

			Sample Date / Analyte	2,3,7,8-TCDD TEQ (Human/Mammal) ⁷	2,3,7,8-TCDD TEQ (Bird) ⁸	2,3,7,8-TCDD TEQ (Fish) ⁹	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD	OCDD	2,3,7,8- TCDF
Location ID	Depth	Excavation	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(ft bgs)	Status	PSL-HH	4.6	-		4.6		94	94	94			
			PSL-Eco-Sed	21.5	21.5	21.5	-							
			PSL-Eco	4	4	4								
Water Treatme	ent and Truc	k Dump AOI	-							-	-			
OUE-DP-089	5.4 to 5.9 ft	Not Excavated	02-Nov-10	0.32	1.8	0.35	<0.135	<0.266	<0.31	<0.391	<0.336	1.82 J	4.91 J	1.29
OUE-DP-089	5.9 to 6.8 ft	Not Excavated	02-Nov-10	12 [PSL-HH, PSL-Eco]	18 [PSL-Eco]	12 [PSL-Eco]	2.02	5.43	2.95 J	7.97	5.43	37.9	35.4	5.61 F
	10 to 10.5 ft	Not Excavated	02-Nov-10	2.6	9.5 [PSL-Eco]	2.5	0.638 J	0.503 J	0.452 J	0.849 J	0.521 J	3.08 J	4.09 J	7 F
OUE-DP-090	1 to 1.5 ft	Not Excavated	05-Nov-10	4	8.1 [PSL-Eco]	4.0 [PSL-Eco]	0.638 J	1.28 J	0.863 J	2.21 J	1.23 J	17.1	130	3.61 F
	2 to 2.5 ft	Not Excavated	05-Nov-10	2.9	8.1 [PSL-Eco]	2.8	0.72 J	0.665 J	<0.195	1.49 J	0.687 J	6.23	27.1	4.54 F
OUE-DP-093	6.8 to 7.3 ft	Not Excavated	03-Nov-10	2.3	4.8 [PSL-Eco]	2.1	<0.435	1.17 J	<0.416	1.53 J	1.29 J	13.4	51.4	1.96
OUE-HA-015	0 to 0.5 ft	Not Excavated	21-Jun-10	1.4	0.48	0.66	<0.254	<0.362	0.569 J	1.84 J	0.823 J	62.6	652	<0.138
	0.5 to 1.3 ft	Not Excavated	21-Jun-10	1.65	0.47	0.83	<0.22	<0.403	1.11 J	2.91 J	1.55 J	81.2	620	<0.104
OUE-HA-023A	11 to 12 ft	Not Excavated	26-Jun-10	0.014	0.0020	0.0018	<0.178	<0.278	<0.381	<0.424	<0.416	1.2 J	6.45 J	<0.138
	13 to 14 ft	Not Excavated	26-Jun-10	0.0010	0.00048	0.00048	<0.217	<0.287	<0.45	<0.449	<0.464	<0.796	4.75 J	<0.136
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10	11 [PSL-HH, PSL-Eco]	27 [PSL-Eco]	13 [PSL-Eco]	1.6 J	1.72 J	<1.49	<1.63	<1.61	6.38 J	7.8 J	10.1 F
	6.5 to 8 ft	Not Excavated	25-Jun-10	0.090	0.89	0.045	<0.304	<0.396	<0.541	<0.6	<0.59	<0.831	2.33 J	0.893 J
OUE-HA-024	10 to 11 ft	Not Excavated	26-Jun-10	0.083	0.63	0.034	<0.179	<0.25	<0.377	<0.417	<0.41	1.85 J	6.57 J	0.629 J
	11 to 12 ft	Not Excavated	26-Jun-10	0.00048	0.00016	0.00016	<0.356	<0.337	<0.415	<0.463	<0.453	<0.595	1.61 J	<0.166
OUE-T1-1	15.5 to 16 ft	Not Excavated	01-Nov-10	0.010	0.0010	0.0014	<0.132	<0.152	<0.228	<0.288	<0.249	0.906 J	4.62 J	<0.212
OUE-T2-2a	6 to 6.5 ft	Not Excavated	03-Nov-10	32 [PSL-HH, PSL-Eco]	33 [PSL-Eco]	26 [PSL-Eco]	2.74	10.6	9.09	40.1	20.9	463	2830	6.69 F
OUE-T2-2b	6 to 6.5 ft	Not Excavated	14-Dec-10	36 [PSL-HH, PSL-Eco]	28 [PSL-Eco]	26 [PSL-Eco]	2.96	8.43	8.79	52.7	26.1	691	4780	2.79 F

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility

							-						-							
			Sample Date / Analyte	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	OCDF	Total TCDD	Total PeCDD	Total HxCDD	Total HpCDD	Total TCDF	Total PeCDF	Total HxCDF	Total HpCDF
Location ID	Depth	Excavation	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(ft bgs)	Status	PSL-HH																	
			PSL-Eco-Sed																	
			PSL-Eco																	
Water Treatme	ent and Truc	k Dump AOI							•				.			i	•	•		
OUE-DP-013	10.5 to 11 ft	Not Excavated	22-Jun-10	<2.91	<2.67	<2	<1.96	<2.13	<2.43	6 J	<2.13	<6.27	81.7	32.7	17.1	13.6	108	26.9	5.66 J	6 J
Power House	and Fuel Ba	rn AOI	T				1		1			1	-			1				
MW-4.6	0 to 0.5 ft	Not Excavated	28-Sep-07	4.19	5.24	2.72	2.34 J	3.24	1.01 J	17.5	1.95 J	50.9	38	22.6	62.1	190	184 D,M/J	72.9 D,M/J	49.4	47.8
-	4 to 4.5 ft	Not Excavated	28-Sep-07	0.918 J	1.38 J	0.884 J	1.14 J	1.75 J	0.454 J	3.81	0.362 J	5.86	8.47	5.68	17.8	40.1	49.2 D,M/J	42.4 D,M/J	24.6	9.22
OUE-HA-029	0 to 1 ft	Not Excavated	28-Jun-10	2.25 J	2.3 J	1.28 J	1.37 J	1.78 J	<0.521	7.63	<0.667	17.7	22.3	18	38.5	113	79.1	31.7	18.9	20.6
OUE-HA-030	0 to 1 ft	Not Excavated	28-Jun-10	<0.314	<0.361	0.509 J	0.526 J	0.617 J	<0.316	5.18	<0.462	8.58 J	6.29	5.65	27.6	66.1	14.2	2.69 J	8.13	12.1
OUE-HA-031	0 to 1 ft	Not Excavated	28-Jun-10	0.541 J	0.542 J	0.675 J	0.662 J	0.728 J	<0.313	5.19	<0.471	8.04 J	5.29	6.36	25.2	53.2	18.3	5.92	8.13	12.2
OUE-HA-032	0 to 1 ft	Not Excavated	28-Jun-10	1.14 J	1.12 J	0.763 J	0.501 J	<0.396	<0.304	3.09 J	<0.453	5.55 J	12.3	7.16	15.2	27.8	55.2	11.2	5.47	6.13
OUE-SS-001	0 to 0.5 ft	Not Excavated	30-Jun-10	<0.185	<0.191	0.46 J	0.534 J	0.515 J	<0.132	7.71	0.502 J	14.3	0.591 J	1.61 J	17.5	89.7	0.997	2.5 J	9.4	16.9
OUE-SS-002	0 to 0.5 ft	Not Excavated	30-Jun-10	2.06 J	2.09 J	1.28 J	1.38 J	1.52 J	<0.354	20.8	1.2 J	51.5	13.6	10.2	38.9	255	77.8	28.5	24.3	50.6
OUE-SS-003	0 to 0.5 ft	Not Excavated	30-Jun-10	<0.209	<0.235	0.463 J	0.412 J	0.511 J	<0.121	6.01	0.414 J	12.8	<0.239	<0.45	12.4	56.2	8.69	4.28 J	7.67	14.2
OUE-SS-004	0 to 0.5 ft	Not Excavated	30-Jun-10	<0.18	<0.201	0.262 J	0.301 J	0.422 J	<0.168	2.59 J	<0.167	5.61 J	0.544 J	1.32 J	8.63	32.3	5.66	2.28 J	4.05 J	6.1
DP-4.17	2.1 to 2.6 ft	Not Excavated	05-Jun-06	0.56 J	0.837 J	0.21 J	0.205 J	0.24 J	0.0781 J	0.412 J,B	<0.0644	0.583 J	2.54	2.86	8.13	10.4	28.1	7.7	2.35	0.962 B
DP-4.19	1 to 1.5 ft	Not Excavated	05-Jun-06	0.367 J	0.78 J	0.332 J	0.348 J	0.517 J	<0.0685	3.34 B	0.187 J	6.55	10.3	5.59	7.27	15.8	15.3	9.65	6.9	8.72 B
DP-5.71	1 to 1.5 ft	Not Excavated	06-Jun-06	0.315 J	0.386 J	0.224 J	0.213 J	0.21 J	<0.0487	1.76 J,B	0.154 J	4.01 J	1.64	1.44	5.31	16.3	13.4	4.37	3.22	4.66 B
DP-5.72	0 to 0.5 ft	Not Excavated	06-Jun-06	0.13 J	0.173 J	<0.0665	0.0747 J	0.0848 J	<0.0533	0.214 J,B	<0.0618	<0.501	0.478	0.508	2.5	4.18	5.91	1.41	0.491	0.53 B
HA-4.68	5 to 5.5 ft	Not Excavated	08-Aug-06	6.96	11	5.96	7.34	9.12	2.15 J	144 B	6.1	403	78.4	87.1	217	702	265	128	184	407 B
HA-4.90	2 to 2.5 ft	Not Excavated	08-Aug-06	276	413	140	155 D	179	57.8	172 B	47.2	61.1	1950	1940	1740	1030	10800	4010 D	1530 D	376 B
HA-4.147	1.2 to 1.7 ft	Not Excavated	27-Jun-06	3.7	3.72	1.51 J	1.51 J	1.19 J	0.552 J	2.27 J,B	<0.296	0.975 J	15.1	9.19	7.9	4.75	130	40.9	13.7 B	3.21 B
HSA-4.5	16 to 16.5 ft	Not Excavated	24-Jan-06	<0.124	<0.109	<0.0292	<0.0278	<0.0311	<0.0482	<0.195	<0.0502	0.289 J	<0.12	<0.143	0.2	3.33	<0.106	<0.117	<0.0334	0.235
MW-4.5	0 to 0.5 ft	Not Excavated	28-Sep-07	1.62 J	1.74 J	3.45	3.53	4.53	1.02 J	77.4	5.15	187	18.3	11.9	87.4	411	56 D,M/J	37.4	103 D,M/J	178
	8.5 to 9 ft	Not Excavated	28-Sep-07	<0.144	<0.166	<0.0934	<0.0967	<0.114	<0.147	<0.126	<0.177	<0.589	<0.283	<0.25	<0.76	<0.522	<0.135	<0.166	<0.147	<0.177
OUE-DP-036	1 to 2 ft	Not Excavated	22-Jun-10	0.526 J	0.45 J	<0.282	<0.265	0.633 J	<0.337	1.86 J	<0.376	<2.2	24.6	14.1	21.4	25.3	18.2	8.57	5.05	3.94 J
OUE-DP-037	0 to 2.8 ft	Not Excavated	22-Jun-10	1.04 J	0.847 J	1.45 J	1.18 J	1.59 J	<0.449	17.6	<0.902	33.9	37.5	19.8	39.3	114	42.7	20	30.3	45.6
OUE-DP-038	1 to 1.5 ft	Not Excavated	23-Jun-10	<0.175	<0.181	<0.232	<0.231	<0.236	0.658 J	0.603 J	<0.266	1.12 J	1.72	0.417 J	4.11 J	7.43	4.83	0.816 J	1.72 J	1.24 J
	8 to 8.5 ft	Not Excavated	23-Jun-10	<0.454	<0.46	<0.546	<0.577	<0.61	<0.64	1.06 J	<0.672	<1.62	<0.621	<0.683	15.2	16.4	<0.373	2.31 J	4.45 J	2.89 J

			Sample Date / Analyte	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	OCDF	Total TCDD	Total PeCDE	Total HxCDD	Total HpCDD	Total TCDF	Total PeCDF	Total HxCDF	Total HpCDF
Location ID	Depth	Excavation	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
20041101112	(ft bgs)	Status	PSL-HH																	
			PSL-Eco-Sed																	
			PSL-Eco																	
Water Treatme	ent and Truc	k Dump AOI	_													-				
	11 to 11.5 ft	Not Excavated	23-Jun-10	<0.656	1.27 J	<0.913	2 J	2.26 J	<0.995	18.2	<1.09	30.6	3.94	4.48 J	37.8	110	22.8	24.9	39	44.6
	16 to 16.5 ft	Not Excavated	23-Jun-10	<0.204	<0.227	<0.26	<0.268	<0.28	<0.31	<0.467	<0.54	<1.16	<0.23	<0.281	<0.346	<0.552	<0.123	<0.227	<0.31	<0.54
OUE-DP-039	2 to 2.7 ft	Not Excavated	23-Jun-10	<0.335	1.02 J	3.05 J	1.42 J	2.37 J	<0.512	38.5	2.1 J	49	2.41	2.7 J	75.2	884	5.84	20.8	52.2	102
	5 to 5.5 ft	Not Excavated	23-Jun-10	<0.198	0.518 J	2.25 J	0.867 J	1.61 J	0.503 J	31.2	1.48 J	46.6	1.17	11.4	53.6	752	3.32	11.3	41.6	88.4
OUE-DP-039	10 to 11.5 ft	Not Excavated	24-Jun-10	<0.317	2.18 J	3.43 J	1.76 J	3.07 J	1.07 J	61	2.84 J	90.7	1.89	2.24 J	102	1270	5.09	24.2	74.8	174
	16.5 to 17 ft	Not Excavated	24-Jun-10	<0.348	<0.363	<0.427	<0.453	<0.477	<0.554	<0.781	<0.952	<2.18	<0.435	<0.637	<0.665	7.08	<0.28	<0.363	<0.554	<0.952
OUE-DP-045	5 to 5.5 ft	Not Excavated	22-Jun-10	2.26 J	3.4 J	2.07 J	2.65 J	2.24 J	<0.917	12.6	<0.851	22.5	17.3	24.9	54.8	106	41.1	32.4	24.5	31.3
OUE-DP-048	6 to 6.5 ft	Not Excavated	26-Jun-10	<0.363	<0.408	<0.451	<0.453	<0.554	<0.597	<0.496	<0.549	<0.909	3.91	1.82 J	3.36 J	4.55 J	8.51	<0.451	<0.597	<0.549
	8 to 9 ft	Not Excavated	26-Jun-10	<0.386	<0.405	<0.286	<0.294	<0.314	<0.362	<0.464	<0.496	<0.857	1.04 J	<0.614	<0.664	<0.828	1.62 J	<0.405	<0.362	<0.496
OUE-DP-049	13 to 13.5 ft	Not Excavated	23-Jun-10	<0.286	<0.279	<0.349	<0.361	<0.379	<0.387	0.68 J	<0.226	1.21 J	0.786 J	<0.441	2.36 J	7.69	3.86	<0.286	<0.387	1.77 J
	13.5 to 15 ft	Not Excavated	23-Jun-10	<0.208	<0.201	<0.224	<0.238	<0.24	0.61 J	<0.262	<0.334	<0.467	0.635 J	<0.703	<0.452	2.47 J	4.7	0.997 J,M	0.61 J	<0.334
OUE-DP-050	8 to 9 ft	Not Excavated	26-Jun-10	<0.395	<0.424	<0.29	< 0.305	<0.326	<0.33	<0.283	<0.302	<0.561	4.09	2.27 J	1.51 J	3.18 J	15.8	1.84 J	<0.33	<0.302
	9 to 10 ft	Not Excavated	26-Jun-10	<0.39	<0.402	<0.334	<0.34	<0.357	<0.417	<0.37	<0.383	<0.734	3.75	1.04 J	1.68 J	<0.542	2.48	<0.402	<0.417	<0.383
OUE-DP-051	1.5 to 2 ft	Not Excavated	26-Jun-10	2.79 J	2.75 J	2.14 J	2.44 J	2.45 J	<0.454	15.5	1.15 J	26	109	134	132	178	65.3	35.5 D,M	25.5	35.1
	3 to 3.5 ft	Not Excavated	26-Jun-10	<0.328	<0.345	<0.333	<0.332	<0.354	<0.386	1.26 J	<0.365	2.41 J	5.01	4.65 J	4.75 J	14.7	2.89	<0.548	0.905 J	2.88 J
OUE-DP-052	0 to 0.5 ft	Not Excavated	26-Jun-10	116	133	244	125	109	3.78 J	366	4.54 J	17.4	312	1160	3220	1840	559	1090 D,M/J	988 D,M/J	392
	0.5 to 1.5 ft	Not Excavated	26-Jun-10	3940	2220	1090	677	334	22.8	406	10.9	22.3	37600	44700	43500	7290	26300 D,M/J	19200 D,M/J	3820 D,M/J	455
	3 to 4 ft	Not Excavated	26-Jun-10	1.43 J	0.849 J	0.969 J	0.57 J	0.489 J	<0.209	1.41 J	<0.236	1.21 J	48.7	49.7	60.7	24.7	25.2	14.2 D,M	5.22	2.33 J

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility

			Sample Date / Analyte	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	OCDF	Total TCDD	Total PeCDD	Total HxCDD	Total HpCDD	Total TCDF	Total PeCDF	Total HxCDF	Total HpCDF
Location ID	Depth	Excavation	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(ft bgs)	Status	PSL-HH																	
			PSL-Eco-Sed			-		-		-	-		-				-			
			PSL-Eco																	-
Water Treatme	ent and Truc	k Dump AOI	1		1	1		1	-	1	0		-	0	1	-		1		
OUE-DP-053	0 to 0.5 ft	Not Excavated	26-Jun-10	<0.213	<0.264	<0.231	<0.234	<0.254	<0.259	0.948 J	<0.494	2.55 J	<0.21	<0.49	8.47 J	19.1	<0.126	<0.264	0.605 J	2.82 J
	0.5 to 1.5 ft	Not Excavated	26-Jun-10	<0.438	<0.478	<0.237	<0.236	<0.289	<0.357	1.84 J	<0.54	8.93 J	6.01	8.37	9.17	24	<0.356	<0.478	1.25 J	7.03
OUE-DP-057	0 to 1 ft	Not Excavated	24-Jun-10	0.848 J	1.39 J	1.22 J	1.34 J	2.01 J	<0.463	11.2	<0.673	17.1	8.78	11.8	81.4	146	20.2	37.4	36.8	29.5
	5 to 5.8 ft	Not Excavated	24-Jun-10	<0.232	<0.239	<0.264	<0.268	<0.287	<0.337	<0.277	<0.354	<0.641	0.671 J	<0.302	<0.382	<0.494	<0.237	<0.239	<0.337	<0.354
	10.5 to 11 ft	Not Excavated	24-Jun-10	<0.563	<0.613	<0.565	<0.58	<0.725	<0.927	<0.559	<1.27	<2.36	3.03	<0.753	<1.19	<2.01	14.8	6.6 J,M	<0.927	<1.27
OUE-DP-076	5 to 6 ft	Not Excavated	02-Nov-10	0.475 J	0.508 J	<0.274	<0.275	<0.299	<0.246	<0.686	<0.11	<0.349	17.7	10.5	10.1	3.73 J	22.7	5.67	0.707 J	<0.727
OUE-DP-076	6 to 7 ft	Not Excavated	02-Nov-10	1.52 J	2.45 J	0.733 J	0.775 J	0.885 J	<0.136	2.18 J	<0.176	<0.5	67.9	40.7	39.4	12.4	93.3	27.9	7.71	2.18 J
OUE-DP-077	12.5 to 13 ft	Not Excavated	02-Nov-10	<0.29	<0.307	<0.31	<0.287	<0.315	<0.288	<0.242	<0.268	<0.433	1.65	0.679 J	0.896 J	1.78 J	1.37	<0.307	<0.315	<0.268
	15 to 16 ft	Not Excavated	02-Nov-10	<0.149	<0.167	<0.124	<0.125	<0.135	<0.116	<0.156	<0.175	<0.251	<0.232	<0.307	<0.449	<0.943	<0.164	<0.167	<0.135	<0.175
OUE-DP-078	2.2 to 2.7 ft	Not Excavated	04-Nov-10	0.496 J	0.475 J	<0.288	<0.285	<0.293	<0.249	0.647 J	<0.196	<0.71	43.6	22.1	16.8	3.43 J	18.1	4.93 J	0.664 J	0.647 J
	5 to 5.5 ft	Not Excavated	04-Nov-10	0.455 J	0.516 J	<0.303	<0.307	<0.346	<0.267	0.641 J	<0.179	<0.412	23.6	10.3	8.46	3.29 J	16.3	5.04	0.667 J	0.641 J
OUE-DP-079	0.5 to 1.5 ft	Not Excavated	05-Nov-10	<0.261	<0.264	<0.171	<0.157	<0.176	<0.141	0.613 J	<0.159	1.39 J	1.62	1.05 J	13.9	57.9	15.6	1.55 J	2.01 J	1.76 J
	2.5 to 3 ft	Not Excavated	05-Nov-10	<0.175	<0.195	<0.165	<0.149	<0.156	<0.126	1.79 J	<0.188	1.25 J	1.17	1.34 J	16.5	51.2	<0.29	0.633 J	1.51 J	3.02 J
OUE-DP-079	3.5 to 4 ft	Not Excavated	05-Nov-10	2.45 J	2.02 J	1.85 J	1.37 J	1.09 J	<0.212	3.59 J	0.674 J	4.62 J	28.8	14.1	11.9	4.23 J	106	27.5	9.45	5.24
OUE-DP-080	5 to 5.5 ft	Not Excavated	05-Nov-10	0.782 J	0.541 J	0.714 J	0.656 J	0.713 J	<0.136	1.5 J	<0.229	<0.622	28.7	16	18.2	5.34	30.7	11.9	5.41	1.5 J
	5.5 to 6.5 ft	Not Excavated	05-Nov-10	<0.17	<0.178	<0.193	<0.185	<0.198	<0.162	<0.181	<0.213	<0.412	1.33	<0.272	<0.484	<0.247	<0.187	<0.178	<0.198	<0.213
	5.5 to 6.5 ft	Not Excavated	05-Nov-10	<0.143	<0.161	<0.163	<0.148	<0.16	<0.16	<0.167	<0.206	<0.398	0.695 J	<0.256	0.911 J	<0.264	<0.098	<0.161	<0.163	<0.206
OUE-DP-081	2.5 to 3 ft	Not Excavated	05-Nov-10	<0.216	<0.244	<0.168	<0.163	<0.181	<0.146	0.469 J	<0.13	<0.507	2.96	2.52 J	1.94 J	2.95 J	1.19 M/J	<0.244	0.373 J	0.469 J
	5 to 5.5 ft	Not Excavated	05-Nov-10	<0.194	<0.203	<0.225	<0.229	<0.237	<0.191	<0.211	<0.24	<0.64	<0.246	0.776 J	<0.288	<0.329	1.03	<0.203	<0.237	<0.24
OUE-DP-088	0 to 0.5 ft	Not Excavated	04-Nov-10	5.24	6.69	2.72 J	2.91 J	3.44 J	0.879 J	5.52	1.17 J	9.73 J	47.8	38.1	39.8	42.1	153	78.8	31	14.4
	0.5 to 1.5 ft	Not Excavated	04-Nov-10	<0.231	<0.248	<0.349	<0.336	<0.356	<0.337	0.667 J	<0.286	1.75 J	0.542 J	<0.329	<0.584	6.38	0.863 J	0.54 J	0.692 J	1.99 J

			Sample Date / Analyte	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	OCDF	Total TCDE	Total PeCDD	Total HxCDE	Total HpCDD	Total TCDF	Total PeCDF	Total HxCDF	Total HpCD
Location ID	Depth	Excavation	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(it bgs)	Status	PSL-HH																	
			PSL-Eco-Sed																	
Water Treatme	ant and True		PSL-Eco																	
			00 Nov 40	0.40.1	0.400.1	0.477	0.400	0.444	0.057	0.070.1	0.044	0.010	44.0		5.04	4 00 1		0.00	0.050.1	0.070.1
OUE-DP-089	5.4 to 5.9 ft	Not Excavated	02-INOV-10	0.49 J	0.493 J	<0.477	<0.426	<0.441	<0.357	0.878 J	<0.244	<0.818	14.6	7.5	5.31	4.26 J	20	6.83	0.953 J	0.878 J
OUE-DP-089	5.9 to 6.8 ft	Not Excavated	02-Nov-10	3.17 J	3.28 J	2.21 J	2.67 J	2.55 J	<0.172	7.69	<0.373	1.24 J	408	312	267	78.6	158	55.7	20.4	7.69
	10 to 10.5 ft	Not Excavated	02-Nov-10	1.81 J	0.955 J	0.481 J	0.522 J	0.511 J	<0.122	0.81 J	<0.166	<0.565	28	23.4	26.8	6.38	96.6	19.2	3.62 J	0.81 J
OUE-DP-090	1 to 1.5 ft	Not Excavated	05-Nov-10	1.4 J	1.68 J	1.15 J	1.37 J	1.69 J	0.352 J	4.24 J	0.581 J	8.46 J	30.5	23.3	26	32.9	54.7	21	14	9.6
	2 to 2.5 ft	Not Excavated	05-Nov-10	1.73 J	1.68 J	0.634 J	0.556 J	0.723 J	<0.179	0.948 J	<0.18	1.79 J	10.9	6.51	8.98	12.2	69	21.5	5.28	2.1 J
OUE-DP-093	6.8 to 7.3 ft	Not Excavated	03-Nov-10	0.951 J	1.32 J	<0.561	<0.536	0.827 J	<0.162	1.68 J	<0.27	1.85 J	30.7	23.3	19.7	24.9	35.2	13.1	3.42 J	3 J
OUE-HA-015	0 to 0.5 ft	Not Excavated	21-Jun-10	<0.26	<0.278	0.421 J	0.327 J	0.581 J	<0.273	7.66	0.682 J	30.2	<0.254	1.28 J	30	243	0.354 J	2.23 J	12.2	26.8
	0.5 to 1.3 ft	Not Excavated	21-Jun-10	<0.201	<0.21	<0.562	<0.605	<0.704	<0.777	8.64	<0.851	36.6	1.1 J	3.22 J	51.9	290	0.44 J	2.4 J	11.3	32
OUE-HA-023A	11 to 12 ft	Not Excavated	26-Jun-10	<0.207	<0.223	<0.218	<0.219	<0.244	<0.278	<0.265	<0.304	<0.579	2	<0.278	<0.424	2.44 J	2.59	<0.223	<0.278	<0.304
	13 to 14 ft	Not Excavated	26-Jun-10	<0.208	<0.224	<0.22	<0.217	<0.258	<0.285	<0.344	<0.372	<0.881	<0.217	<0.287	<0.464	<0.796	0.643 J	<0.224	<0.285	<0.372
OUE-HA-023B	5 to 6.5 ft	Not Excavated	25-Jun-10	11.5	8.62 J	13.4	12	7.36 J	1.6 J	30.8	1.22 J	3.24 J	163	69.9	64.3	13.4	239	175	104	37.9
	6.5 to 8 ft	Not Excavated	25-Jun-10	<0.532	<0.575	<0.41	<0.402	<0.45	<0.497	<0.62	<0.644	<0.747	8.42	5.95 J	5.47 J	1.47 J	11.4	<0.575	<0.497	<0.644
OUE-HA-024	10 to 11 ft	Not Excavated	26-Jun-10	<0.257	<0.259	<0.379	<0.38	<0.408	<0.476	<0.481	<0.519	<0.603	5.99	5.15	4.47 J	4.55 J	8.13	<0.413	<0.476	<0.519
	11 to 12 ft	Not Excavated	26-Jun-10	<0.255	<0.265	<0.248	<0.253	<0.268	<0.317	<0.305	<0.344	<0.609	<0.356	<0.337	<0.463	<0.595	1.22	<0.265	<0.317	<0.344
OUE-T1-1	15.5 to 16 ft	Not Excavated	01-Nov-10	<0.268	<0.273	<0.239	<0.236	<0.243	<0.202	<0.259	<0.304	<0.452	1.81	<0.543	1.11 J	2.07 J	1.76	<0.273	<0.243	<0.304
OUE-T2-2a	6 to 6.5 ft	Not Excavated	03-Nov-10	3.03 J	5.03	4.28 J	8.42	7.3	0.863 J	128	6.33	355	31	74.5	285	884	107	91	200	385
OUE-T2-2b	6 to 6.5 ft	Not Excavated	14-Dec-10	2.69 J	2.93 J	6.57	18.4	10.1	1.77 J	227	9.28	629	25.6	58	367	1290	57.5 D,M	90.5 D,M	291 D,M	738

Metals Detected in Sediment

			Sample Date /	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (boxovalent	Chromium	Cobalt
			Units	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	mg/kg	ma/ka	ma/ka
Leastian ID	Depth	Lithology	PSI-HH	30	0.07	5200	16	39	17	100000	660
Location ID	(ft bss)	Lithology	PSL-Eco		9.79			0.99		43.4	20
			вкда-мов-	0.97	10	100	1.1	2.8		42	20
			Bkad-Fill-Soil	0.97	10	310	1.1	2.8		60	20
Pond 5											
DP-5.63	0 to 0.5 ft	Fill	25-Apr-06	0.98	2.9 [PSL-HH]	52	<0.25	<0.25	<0.05	8.1	2.2
	5 to 5.5 ft	MSB	25-Apr-06	0.52	0.94 [PSL-HH]	40	<0.25	<0.25	<0.05	9.2	1.7
	10 to 10.5 ft	MSB	25-Apr-06	2.3	7.2 [PSL-HH]	100	0.67	<0.25	<0.05	36	15
Pond5-01	0 to 1 ft	Fill	14-Mar-08	0.583	6.13 [PSL-HH]	161	0.432	0.324		22.1	6.58
Pond5-02	0 to 1 ft	Fill	14-Mar-08	0.676	9.6 [PSL-HH]	359	0.757	0.412		35.6	16.5
Pond5-03	0 to 0.5 ft	Fill	18-Mar-08	0.47	9.6 [PSL-HH]	475	0.728	0.365		33.7	14.8
Pond 9											
DP-1.5	0 to 0.5 ft	MSB	27-Apr-06	0.83	1.4 [PSL-HH]	51	<0.25	<0.25	<0.05	17	2.9
	2 to 2.5 ft	MSB	27-Apr-06	1	2.6 [PSL-HH]	45	<0.25	<0.25	<0.05	16	5.3
	7 to 7.5 ft	MSB	27-Apr-06	1.2	2 [PSL-HH]	42	<0.25	<0.25	<0.05	18	4.4
	12 to 12.5 ft	MSB	27-Apr-06	0.62	1.8 [PSL-HH]	35	<0.25	<0.25	<0.05	14	3.6
	17 to 17.5 ft	MSB	27-Apr-06	0.71	1.9 [PSL-HH]	40	<0.25	<0.25	<0.05	14	4
	19.5 to 20 ft	MSB	27-Apr-06	1	0.76 [PSL-HH]	40	<0.25	<0.25	<0.05	13	3.8
Pond9-01	0 to 0.5 ft	NA	18-Jun-09	0.252	5.01 [PSL-HH]	89.2	0.217	0.111		15.4	4.4
North Pond	-				-						
DP-4.7	0 to 0.5 ft	Fill	17-Apr-06	<0.25	1.5 [PSL-HH]	44	<0.25	<0.25	<0.05	6.6	1.8
	8 to 8.5 ft	Fill	17-Apr-06	<0.25	1.4 [PSL-HH]	56	<0.25	<0.25	0.23	4.5	0.67
	14 to 14.5 ft	Fill	17-Apr-06	<0.25	3.8 [PSL-HH]	110	0.33	<0.25	<0.05	20	5.6
	19 to 19.5 ft	Fill	17-Apr-06	0.77	3.5 [PSL-HH]	500	<0.25	0.42	<0.05	12	3.5
North Pond-01	0 to 0.5 ft	Fill	19-Mar-08	0.47	32.7 [PSL-HH,PSL-Eco]	298	0.673	0.274		71.9 [PSL-Eco]	11.3

Metals Detected in Sediment

			Sample Date /	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (bexavalent	Chromium	Cobalt
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	l ithology	PSL-HH	30	0.07	5200	16	39	17	100000	660
	(ft bss)		PSL-Eco		9.79			0.99	-	43.4	20
			вкда-мов-	0.97	10	100	1.1	2.8		42	20
			Bkgd-Fill-Soil	0.97	10	310	1.1	2.8		60	20
Pond 6											
DP-4.8	0 to 0.5 ft	MSB	26-Apr-06	<0.27	0.61 [PSL-HH]	58	<0.25	<0.27	<0.05	11	1.7
	13 to 13.5 ft	MSB	26-Apr-06	<0.25	0.33 [PSL-HH]	28	<0.25	<0.25	<0.05	11	1.6
	18 to 18.5 ft	MSB	26-Apr-06	<0.25	0.46 [PSL-HH]	40	0.28	<0.25	<0.05	14	2.5
	23 to 23.5 ft	MSB	26-Apr-06	<0.25 [<0.25]	0.53 [0.31] [PSL-HH]	60 [43]	0.28 [<0.25]	<0.25 [<0.25]	<0.05 [<0.05]	19 [14]	3.2 [2.5]
	28 to 28.5 ft	MSB	26-Apr-06	<0.25	8.8 [PSL-HH]	70	0.37	<0.25	<0.05	23	11
	33 to 33.5 ft	MSB	26-Apr-06	<0.25	9.8 [PSL-HH]	51	0.25	<0.25	<0.05	18	6.1
DP-4.9	0.5 to 1 ft	Fill	25-Apr-06	1.2	2.2 [PSL-HH]	330	<0.25	<0.28	<0.05	7.6	3
	6 to 6.5 ft	Fill	25-Apr-06	0.51	5.3 [PSL-HH]	64	<0.25	<0.25	<0.05	9.7	2.5
	11 to 11.5 ft	MSB	25-Apr-06	0.47 [0.58]	2.5 [1.9] [PSL-HH]	26 [57]	<0.25 [<0.25]	<0.25 [<0.25]	<0.05 [<0.05]	6.1 [12]	1.7 [1.7]
	16 to 16.5 ft	MSB	25-Apr-06	0.62	1.1 [PSL-HH]	49	0.27	<0.26	<0.05	20	2.7
	21 to 21.5 ft	MSB	25-Apr-06	0.69	1.5 [PSL-HH]	70	0.28	<0.25	<0.05	20	4.1
	26 to 26.5 ft	MSB	25-Apr-06	0.7	3 [PSL-HH]	38	<0.25	<0.25	<0.05	12	3
	31 to 31.5 ft	MSB	25-Apr-06	0.78	3.6 [PSL-HH]	45	0.26	<0.25	<0.05	15	4.3
DP-4.10	0 to 0.5 ft	Fill	18-Apr-06	0.8	12 [PSL-HH,PSL-Eco]	1500	0.35	1.2 [PSL-Eco]		28	7
	5 to 5.5 ft	MSB	18-Apr-06	<0.25	1.8 [PSL-HH]	46	<0.25	<0.25	<0.05	9.1	1.7

Metals Detected in Sediment

			Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (hexavalent	Chromium	Cobalt
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	30	0.07	5200	16	39	17	100000	660
	(ft bss)		PSL-Eco		9.79		-	0.99		43.4	20
			вкда-мов-	0.97	10	100	1.1	2.8		42	20
			Bkgd-Fill-Soil	0.97	10	310	1.1	2.8		60	20
	10 to 10.5 ft	MSB	18-Apr-06	0.56	3.7 [PSL-HH]	44	<0.25	<0.27	<0.05	13	2.4
	14.5 to 15 ft	MSB	18-Apr-06	<0.25	3.9 [PSL-HH]	45	<0.25	<0.25	<0.05	23	4
Pond6-01	0 to 0.5 ft	Fill	18-Mar-08	0.77	12.3 [PSL-HH,PSL-Eco]	692	0.681	0.744		29	13.7
	0.5 to 1.5 ft	Fill	11-Mar-08	0.479	29.2 /J [PSL-HH,PSL- Eco]	315	0.565	0.29		48.2 /J [PSL-Eco]	8.47 /J
Pond6-02	0 to 0.5 ft	Fill	18-Mar-08	1.12	14 [PSL-HH,PSL-Eco]	2120	0.585	1.22 [PSL- Eco]		35.4	15.3
	0.5 to 1.5 ft	Fill	12-Mar-08	1.15	30.2 [PSL-HH,PSL-Eco]	2880	0.629	2.13 [PSL- Eco]		51.9 [PSL-Eco]	14.4
	4.5 to 5.5 ft	Fill	12-Mar-08	1.01	27.8 [PSL-HH,PSL-Eco]	3220	0.842	2.72 [PSL- Eco]		47.4 [PSL-Eco]	15.1
Pond 7											
DP-4.11	0 to 0.5 ft	Fill	18-Apr-06	0.51	11 [PSL-HH,PSL-Eco]	610	<0.25	0.54	<0.05	15	4.6
	6 to 6.5 ft	Fill	17-Apr-06	0.9	27 [PSL-HH,PSL-Eco]	820	<0.25	1.2 [PSL-Eco]	<0.05	25	5.9
	11 to 11.5 ft	MSB	17-Apr-06	<0.25	2.7 [PSL-HH]	200	0.72	<0.25	<0.05	29	12
DP-4.12	0 to 0.5 ft	Fill	18-Apr-06	0.69	15 [PSL-HH,PSL-Eco]	860	0.26	0.84		25	6.7
	6 to 6.5 ft	Fill	18-Apr-06	1.2	35 [PSL-HH,PSL-Eco]	610	<0.25	1.1 [PSL-Eco]		23	4.3
	11 to 11.5 ft	MSB	18-Apr-06	0.37	6.7 [PSL-HH]	120	0.66	0.34	<0.05	35	13
DP-4.13	0 to 0.5 ft	Fill	18-Apr-06	1.1	32 [PSL-HH,PSL-Eco]	660	<0.25	0.95		27	5.4
	5 to 5.5 ft	MSB	18-Apr-06	0.41	3.3 [PSL-HH]	130	0.51	<0.25		47 [PSL-Eco]	14
Pond7-01	0 to 0.5 ft	Fill	18-Mar-08	2.45	95.9 [PSL-HH,PSL-Eco]	2640	0.569	3.77 [PSL- Eco]		67.2 [PSL-Eco]	14.5
	0.5 to 1.5 ft	Fill	12-Mar-08	2.19	100 [PSL-HH,PSL-Eco]	2590	0.678	3.95 [PSL- Eco]		80.1 [PSL-Eco]	16.8

Metals Detected in Sediment

			Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (hexavalent	Chromium	Cobalt
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	30	0.07	5200	16	39	17	100000	660
	(ft bss)		PSL-Eco		9.79			0.99		43.4	20
			вкда-мов-	0.97	10	100	1.1	2.8		42	20
			Bkgd-Fill-Soil	0.97	10	310	1.1	2.8		60	20
Pond7-02	0 to 0.5 ft	Fill	18-Mar-08	3.1	95.7 [PSL-HH,PSL-Eco]	2430	0.563	3.68 [PSL- Eco]		70 [PSL-Eco]	13.8
	0.5 to 1.5 ft	Fill	12-Mar-08	2.71	115 [PSL-HH,PSL-Eco]	2210	0.726	4.29 [PSL- Eco]		86.7 [PSL-Eco]	16.5
	4.5 to 5.5 ft	Fill	12-Mar-08	1.04	35.1 [PSL-HH,PSL-Eco]	2620	0.842	2.51 [PSL- Eco]		59.8 [PSL-Eco]	16.9
Pond 8 East		0	r			1	1			-	
DP-5.60	3 to 3.5 ft	Fill	20-Apr-06	<0.25 [<0.25]	11 [12] [PSL-HH,PSL- Eco]	81 [91]	0.71 [0.69]	0.33 [0.36]	<0.05 [<0.05]	24 [25]	13 [14]
	8 to 8.5 ft	MSB	20-Apr-06	<0.25	16 [PSL-HH,PSL-Eco]	96	0.76	0.49		35	18
	12 to 12.5 ft	MSB	20-Apr-06	<0.25	13 [PSL-HH,PSL-Eco]	110	0.7	0.37	<0.05	50 [PSL-Eco]	16
	16.5 to 17 ft	MSB	20-Apr-06	<0.25	20 [PSL-HH,PSL-Eco]	130	0.91	0.46	<0.05	38	19
DP-5.61	0 to 0.5 ft	Fill	19-Apr-06	0.96	3.4 [PSL-HH]	120	0.26	0.35	<0.05	16	3.9
	5 to 5.5 ft	Fill	19-Apr-06	0.44	2.3 [PSL-HH]	81	<0.25	<0.25	<0.05	14	3.7
	10 to 10.5 ft	MSB	19-Apr-06	0.43 [<0.25]	1.1 [0.92] [PSL-HH]	35 [32]	<0.25 [<0.25]	<0.25 [<0.25]	<0.05 [<0.05]	10 [11]	2.3 [2.1]
	15 to 15.5 ft	MSB	19-Apr-06	<0.25	1.4 [PSL-HH]	63	<0.25	<0.25	<0.05	10	1.9
	20 to 20.5 ft	MSB	19-Apr-06	<0.26	1.5 [PSL-HH]	61	<0.25	<0.26	<0.05	16	3
	25 to 25.5 ft	MSB	19-Apr-06	<0.25	6.4 [PSL-HH]	80	0.34	<0.25	<0.05	23	6.5
DP-5.62	0 to 0.5 ft	MSB	24-Apr-06	1.3	3.9 [PSL-HH]	92	0.29	0.28		18	5.4
	5 to 5.5 ft	MSB	24-Apr-06	1.2	3.5 [PSL-HH]	120	0.27	<0.25		15	4.5
	10 to 10.5 ft	MSB	24-Apr-06	0.74 [0.74]	2.2 [2.3] [PSL-HH]	87 [90]	<0.25 [0.29]	<0.25 [<0.25]	<0.05 [<0.05]	9.4 [13]	2.4 [3.3]

Metals Detected in Sediment

			Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (hexavalent	Chromium	Cobalt
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	30	0.07	5200	16	39	17	100000	660
	(ft bss)		PSL-Eco		9.79			0.99		43.4	20
			BKGQ-MISB-	0.97	10	100	1.1	2.8		42	20
			Bkgd-Fill-Soil	0.97	10	310	1.1	2.8		60	20
	15 to 15.5 ft	MSB	24-Apr-06	1.5	7.1 [PSL-HH]	83	0.64	<0.25	<0.05	23	7.2
	20 to 20.5 ft	MSB	24-Apr-06	2.3	26 [PSL-HH,PSL-Eco]	52	0.95	<0.25	<0.05	30	16
Pond8-05	0.5 to 1.5 ft	Fill	17-Mar-08	0.92	10.8 [PSL-HH,PSL-Eco]	1130	0.792	1.69 [PSL- Eco]		46.9 [PSL-Eco]	14.6
	1.5 to 2.5 ft	Fill	17-Mar-08	0.68	6.11 [PSL-HH]	477	0.622	0.945		41.6	14.5
	2.5 to 3.5 ft	Fill	17-Mar-08	0.36	5.52 [PSL-HH]	290	0.789	0.611		33.7	10.1
Pond8-06	0 to 0.5 ft	Fill	17-Mar-08	0.88	8.3 [PSL-HH]	691	0.772	1.59 [PSL- Eco]		46.1 [PSL-Eco]	13.8
	0.5 to 1.5 ft	Fill	18-Mar-08	0.5	6.9 [PSL-HH]	386	0.566	0.835		36.2	10.6
Pond8-07	0 to 0.5 ft	Fill	17-Mar-08	1.09	8.7 [PSL-HH]	265	0.648	1.05 [PSL- Eco]		46.6 [PSL-Eco]	13.6
	0.5 to 1.5 ft	Fill	17-Mar-08	0.53	9.4 [PSL-HH]	264	0.505	0.983		34.3	10.5
	2.5 to 3.5 ft	Fill	17-Mar-08	0.61	5.19 [PSL-HH]	416	0.557	1.39 [PSL- Eco]		41.6	12.5
	4.5 to 5.5 ft	Fill	17-Mar-08	0.42	6.44 [PSL-HH]	340	0.894	1.01 [PSL- Eco]		39.6	11.1
Pond8-08	0 to 0.5 ft	Fill	17-Mar-08	1.53	7.2 [PSL-HH]	253	0.586	1.25 [PSL- Eco]		42.3	12.7
	0.5 to 1.5 ft	Fill	17-Mar-08	0.97	5.5 [PSL-HH]	211	0.549	1.04 [PSL- Eco]		33.4	9.01
	1.5 to 2.5 ft	Fill	17-Mar-08	0.96	9.2 [PSL-HH]	527	0.935	1.94 [PSL- Eco]		50.6 [PSL-Eco]	13.6
Pond8-14	0 to 0.5 ft	Fill	17-Jun-09	2.49	14.8 [PSL-HH,PSL-Eco]	201	0.401	1.19 [PSL- Eco]		34.2	14.7
Pond8-15	0 to 0.5 ft	Fill	17-Jun-09	0.271	4.88 [PSL-HH]	72.2	0.294	0.248		28	7.3
Pond8-16	0 to 0.5 ft	Fill	17-Jun-09	1.2	12.8 [PSL-HH,PSL-Eco]	650	0.772	1.56 [PSL- Eco]		65 [PSL-Eco]	17.3
Pond8-17	0 to 0.5 ft	Fill	17-Jun-09	0.882	11.1 [PSL-HH,PSL-Eco]	570	0.786	1.54 [PSL- Eco]		58.5 [PSL-Eco]	15.3
Pond8-18	0 to 0.5 ft	Fill	17-Jun-09	1.88	10.2 [PSL-HH,PSL-Eco]	223	0.662	1.2 [PSL-Eco]		58.7 [PSL-Eco]	15.8
SD-5.1	1.5 to 2 ft	Fill	05-Apr-06	2.5	3.6 [PSL-HH]	120	0.33	<0.26	<0.05	23	6.8
SD-5.2	1.5 to 2 ft	Fill	05-Apr-06	2.4	4.3 [PSL-HH]	76	0.37	<0.2	<0.05	18	6.3

Metals Detected in Sediment

			Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (hexavalent	Chromium	Cobalt
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	30	0.07	5200	16	39	17	100000	660
	(ft bss)		PSL-Eco		9.79			0.99	-	43.4	20
			Soil	0.97	10	100	1.1	2.8	-	42	20
			Bkgd-Fill-Soil	0.97	10	310	1.1	2.8	-	60	20
Pond 8 West											
DP-4.14	0 to 0.5 ft	Fill	24-Apr-06	0.68	1.7 [PSL-HH]	53	<0.25	<0.25	<0.05	6.9	3.1
	4 to 4.5 ft	Fill	24-Apr-06	0.63	1.5 [PSL-HH]	34	0.26	<0.25	<0.05	12	4.2
	7.5 to 8 ft	MSB	24-Apr-06	2.5	4.4 [PSL-HH]	150	0.87	<0.25	<0.05	35	10
DP-4.15	0 to 0.5 ft	Fill	20-Apr-06	<0.25	4.2 [PSL-HH]	150	0.42	0.4	<0.05	24	8.5
	2 to 2.5 ft	Fill	20-Apr-06	<0.26	2.8 [PSL-HH]	85	<0.25	<0.26	<0.05	12	4.3
	7 to 7.5 ft	MSB	20-Apr-06	<0.25	0.58 [PSL-HH]	35	<0.25	<0.25	<0.05	15	3.8
	11.5 to 12 ft	MSB	20-Apr-06	<0.25 [<0.25]	1.1 [0.73] [PSL-HH]	69 [31]	0.26 [<0.25]	<0.25 [<0.25]	<0.05 [<0.05]	21 [13]	7.8 [3.4]
Pond8-01	0 to 0.5 ft	Fill	17-Mar-08	0.89	14.4 [PSL-HH,PSL-Eco]	446	0.451	0.624		31.5	11.5
	0.5 to 1.5 ft	Fill	18-Mar-08	0.93	12.5 [PSL-HH,PSL-Eco]	2170	0.769	1.38 [PSL- Eco]		44.8 [PSL-Eco]	14.7
	1.5 to 2.5 ft	Fill	18-Mar-08	0.43	6.81 [PSL-HH]	582	0.869	0.893		41.6	15.1
Pond8-02	0 to 0.5 ft	Fill	17-Mar-08	0.37	8.6 [PSL-HH]	728	0.808	0.572		40	12.5
	0.5 to 1.5 ft	Fill	18-Mar-08	0.44	5.6 [PSL-HH]	674	0.815	0.738		43.3	14.9
Pond8-03	0 to 0.5 ft	Fill	17-Mar-08	0.74	16.3 [PSL-HH,PSL-Eco]	1370	0.859	0.963		47.6 [PSL-Eco]	16.3
	0.5 to 1.5 ft	Fill	18-Mar-08	0.87	9.5 [PSL-HH]	2090	0.735	1.56 [PSL- Eco]		43.8 [PSL-Eco]	15.3
Pond8-04	0 to 0.5 ft	Fill	17-Mar-08	0.99	27.6 [PSL-HH,PSL-Eco]	731	0.744	1.01 [PSL- Eco]		50.4 [PSL-Eco]	17.5
	0.5 to 1.5 ft	Fill	12-Mar-08	0.864	14.3 [PSL-HH,PSL-Eco]	1230	0.846	1.03 [PSL- Eco]		54.4 [PSL-Eco]	16.2
	1.5 to 2.5 ft	Fill	12-Mar-08	1.06	9.05 [PSL-HH]	2160	0.624	1.83 [PSL- Eco]		45.2 [PSL-Eco]	15.9
	4.5 to 5.5 ft	MSB	12-Mar-08	0.12	1.82 [PSL-HH]	160	0.191	0.048		10.1	2.92
Pond8-09	0 to 0.5 ft	Fill	18-Jun-09	1.27	17 [PSL-HH,PSL-Eco]	2070	0.821	1.67 [PSL- Eco]		64.4 [PSL-Eco]	19.8
Pond8-10	0 to 0.5 ft	Fill	18-Jun-09	1.03	16.3 [PSL-HH,PSL-Eco]	910	0.738	0.79		65.6 [PSL-Eco]	17.9

Metals Detected in Sediment

			Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (hexavalent	Chromium	Cobalt
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	l ithology	PSL-HH	30	0.07	5200	16	39	17	100000	660
	(ft bss)		PSL-Eco		9.79			0.99		43.4	20
			вкда-мов-	0.97	10	100	1.1	2.8		42	20
			Bkgd-Fill-Soil	0.97	10	310	1.1	2.8		60	20
Pond8-11	0 to 0.5 ft	Fill	18-Jun-09	1.08	13.6 [PSL-HH,PSL-Eco]	1450	0.78	1.13 [PSL- Eco]		63.3 [PSL-Eco]	20.3 [PSL-Eco]
Pond8-12	0 to 0.5 ft	Fill	18-Jun-09	1.16	19.3 [PSL-HH,PSL-Eco]	831	0.709	0.819		54.7 [PSL-Eco]	17.7
Pond 1			-					-			
DP-7.9	0 to 0.5 ft	MSB	12-Apr-06	1.3	4.9 [PSL-HH]	270	0.48	<0.25	<0.05	39	9.8
	0.5 to 1 ft	MSB	12-Apr-06	1.7	4.4 [PSL-HH]	120	0.74	<0.25	<0.05	44 [PSL-Eco]	15
	5 to 5.5 ft	MSB	12-Apr-06	1.5	6.3 [PSL-HH]	57	0.64	<0.25	<0.05	43	11
DP-7.10	0 to 0.5 ft	Fill	12-Apr-06	1.2	4.1 [PSL-HH]	280	0.75	<0.25	<0.05	29	8
	5 to 5.5 ft	MSB	12-Apr-06	1.9	6.9 [PSL-HH]	86	0.81	<0.25	<0.05	46 [PSL-Eco]	12
Pond1-01	0 to 0.5 ft	Fill	18-Mar-08	0.61	14.1 [PSL-HH,PSL-Eco]	1000	0.363	1.43 [PSL- Ecol		30.1	13.7
	0.5 to 1.5 ft	Fill	14-Mar-08	1.29	30.7 [PSL-HH,PSL-Eco]	3090	0.784	2.46 [PSL- Ecol		55.1 [PSL-Eco]	18.7
	2.5 to 3 ft	MSB	14-Mar-08	0.2	5.6 [PSL-HH]	398	1.03	0.269		23.4	12.5
Pond1-02	0 to 0.5 ft	Fill	18-Mar-08	1.73	58.8 [PSL-HH,PSL-Eco]	4290	0.941	4.96 [PSL-		66 [PSL-Eco]	23.6 [PSL-Eco]
Pond 2											
DP-7.11	2 to 2.5 ft	Fill	05-Apr-06	2.6	14 [PSL-HH,PSL-Eco]	1400	0.36	0.74	<0.05	23	7.6
	7 to 7.5 ft	MSB	05-Apr-06	2.4	2.6 [PSL-HH]	79	0.6	<0.19	0.11	38	9.8
DP-7.12	2 to 2.5 ft	MSB	05-Apr-06	1.7	1.8 [PSL-HH]	51	0.45	<0.21	<0.05	23	3.2
	7 to 7.5 ft	MSB	05-Apr-06	3.7	5.8 [PSL-HH]	98	0.51	<0.22	<0.05	51 [PSL-Eco]	10
Pond2-01	0 to 0.5 ft	Fill	19-Mar-08	2.13	46 [PSL-HH,PSL-Eco]	4930	1.15	4.22 [PSL-		72.6 [PSL-Eco]	22.6 [PSL-Eco]
	0.5 to 1.5 ft	Fill	13-Mar-08	1.93	44.6 [PSL-HH,PSL-Eco]	4940	1.13	4.08 [PSL-		80 [PSL-Eco]	24.7 [PSL-Eco]
Pond2-02	0 to 0.5 ft	Fill	19-Mar-08	2.11	81.6 [PSL-HH,PSL-Eco]	3500	0.888	4.29 (PSL-		79.2 [PSL-Eco]	19.4
	0.5 to 1.5 ft	Fill	13-Mar-08	1.66	36.8 [PSL-HH,PSL-Eco]	3830	0.955	3.3Z[PSL-		70.2 [PSL-Eco]	20.8 [PSL-Eco]
	1.5 to 2.5 ft	Fill	13-Mar-08	1.08	20.1 [PSL-HH,PSL-Eco]	3870	0.803	2.05[P5L-		53.7 [PSL-Eco]	18
	4.5 to 5.5 ft	Fill	13-Mar-08	0.77	12.1 [PSL-HH,PSL-Eco]	2660	0.631	1.7 T [PSL-		36.6	11.6
Pond 3											
DP-7.13	0 to 0.5 ft	Fill	06-Apr-06	1.6	5.2 [PSL-HH]	680	0.22	0.4	<0.05	18	4.2
	7 to 7.5 ft	MSB	06-Apr-06	4.7	13 [PSL-HH,PSL-Eco]	46	0.62	<0.19	<0.05	26	17
DP-7.14	1 to 1.5 ft	Fill	06-Apr-06	1.3	4.1 [PSL-HH]	1000	<0.23	0.43	<0.05	12	3.5
	6 to 6.5 ft	Fill	06-Apr-06	1.5	3.3 [PSL-HH]	410	<0.25	<0.25	0.06	15	3.5
	6.5 to 7 ft	Fill	06-Apr-06	1.5	4 [PSL-HH]	450	0.21	0.22	<0.05	17	3.8
	13 to 13.5 ft	MSB	06-Apr-06	3.7	42 [PSL-HH,PSL-Eco]	100	0.44	<0.19	<0.05	39	12
DP-7.15	0 to 0.5 ft	Fill	06-Apr-06	1.8	5.3 [PSL-HH]	190	0.33	<0.21	<0.05	17	6.1
	5 to 5.5 ft	MSB	06-Apr-06	4.7	3.6 [PSL-HH]	190	0.89	<0.19	<0.05	38	11
DP-7.16	4 to 4.5 ft	MSB	10-Apr-06	0.49	11 [PSL-HH,PSL-Eco]	23	<0.25	<0.27	<0.05	8	2.1
Pond3-01	0.5 to 1.5 ft	Fill	13-Mar-08	3.29	98.9 [PSL-HH,PSL-Eco]	3900	0.923	5.00 [PSL-		94.5 [PSL-Eco]	25.9 [PSL-Eco]
	3.5 to 4.5 ft	Fill	13-Mar-08	0.82	5.94 [PSL-HH]	800	0.664	0.725		36.6	7.87
Pond3-02	0.5 to 1.5 ft	Fill	14-Mar-08	1.53	14.2 [PSL-HH,PSL-Eco]	2920	0.789	1.84 [PSL-		56.5 [PSL-Eco]	14.4
	1.5 to 2.5 ft	Fill	14-Mar-08	0.32	3.67 [PSL-HH]	485	0.425	0.375		22.7	5.8

Metals Detected in Sediment

			Sample Date / Analyte	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (hexavalent	Chromium	Cobalt
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	30	0.07	5200	16	39	17	100000	660
	(IT DSS)		PSL-Eco	-	9.79		-	0.99		43.4	20
			BKga-MSB- Soil	0.97	10	100	1.1	2.8	-	42	20
			Bkgd-Fill-Soil	0.97	10	310	1.1	2.8	-	60	20
Pond3-03	0.5 to 1.5 ft	Fill	14-Mar-08	1.89	15.9 [PSL-HH,PSL-Eco]	4170	0.741	2.1 [PSL-Eco]		51.8 [PSL-Eco]	15.5
Pond3-04	0 to 0.5 ft	Fill	19-Mar-08	1.91	51.1 [PSL-HH,PSL-Eco]	2750	0.726	2.97 [PSL- Eco]		57.4 [PSL-Eco]	17.8
	1.5 to 2.5 ft	MSB	14-Mar-08	0.05	1.66 [PSL-HH]	115	0.346	<0.083		17.4	2.36
Pond3-05	0.5 to 1.5 ft	Fill	14-Mar-08	1.64	14.3 [PSL-HH,PSL-Eco]	2100	0.813	1.26 [PSL- Ecol		47.3 [PSL-Eco]	15.8
	1.5 to 2.5 ft	Fill	14-Mar-08	1.19	10.8 [PSL-HH,PSL-Eco]	1120	0.79	0.984		43.8 [PSL-Eco]	12.3
Pond3-06	0 to 0.5 ft	Fill	19-Mar-08	1.93	48.3 [PSL-HH,PSL-Eco]	4540	0.977	3.79 [PSL- Eco]		66.2 [PSL-Eco]	24.1 [PSL-Eco]
Pond3-07	0 to 0.5 ft	Fill	19-Mar-08	0.99	15.4 [PSL-HH,PSL-Eco]	5240 [PSL-	0.66	2.43 [PSL- Eco]		41.8	14.8
Pond3-08	0 to 0.5 ft	Fill	19-Mar-08	2.63	50.6 [PSL-HH,PSL-Eco]	4220	0.946	3.55 [F3L-		67.1 [PSL-Eco]	26.4 [PSL-Eco]
Pond3-09	0 to 0.5 ft	Fill	19-Mar-08	3.78	53 [PSL-HH,PSL-Eco]	785	0.947	2.65 [PSL-		67.1 [PSL-Eco]	30.4 [PSL-Eco]
Pond 4											
DP-7.17	0 to 0.5 ft	MSB	13-Apr-06	<0.25	5.2 [PSL-HH]	78	0.34	<0.25	<0.05	20	4.9
	5 to 5.5 ft	MSB	13-Apr-06	0.35	3.8 [PSL-HH]	97	0.36	0.32	<0.05	26	8.1
DP-7.18	0 to 0.5 ft	MSB	13-Apr-06	<0.26	4.2 [PSL-HH]	26	<0.25	<0.26	<0.05	15	2.8
	0.5 to 1 ft	MSB	13-Apr-06	0.42	4 [PSL-HH]	96	0.42	<0.25	<0.05	20	7.2
	5 to 5.5 ft	MSB	13-Apr-06	<0.25	5.2 [PSL-HH]	66	0.31	<0.25	<0.05	17	10
Pond4-01	0 to 0.5 ft	MSB	18-Mar-08	0.18	7.7 [PSL-HH]	311	0.528	0.275		30.4	8.91

Metals Detected in Sediment

			Sample Date /										
			Analyte	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	3000	80	18	380	1600	380	380	5	530	23000
	(ft bss)		PSL-Eco	31.6	35.8	0.18	3	22.7					121
			вкда-мов-	36	22	0.12	0.7	41	0.82	0.22	0.67	90	84
			Bkgd-Fill-Soil	53	25	0.12	4.6	41	0.82	0.22	0.67	90	160
Pond 5													
DP-5.63	0 to 0.5 ft	Fill	25-Apr-06	180 [PSL-Eco]	27	0.027	0.27	6.6	<0.25	<0.25	<0.25	12	48
	5 to 5.5 ft	MSB	25-Apr-06	2	1	0.025	0.27	7.2	<0.25	<0.25	<0.25	10	14
	10 to 10.5 ft	MSB	25-Apr-06	42 [PSL-Eco]	9.4	0.062	1.5	36 [PSL-Eco]	<0.25	<0.25	<0.25	58	92
Pond5-01	0 to 1 ft	Fill	14-Mar-08	377 [PSL-Eco]	54.9 [PSL-Eco]	0.073	0.56	17.3	0.5 B	0.072	0.085	32.7	119
Pond5-02	0 to 1 ft	Fill	14-Mar-08	396 [PSL-Eco]	70.8 [PSL-Eco]	0.179	1.05	28.4 [PSL-Eco]	<1.6	0.139	0.198	55.8	189 [PSL-Eco]
Pond5-03	0 to 0.5 ft	Fill	18-Mar-08	785 [PSL-Eco]	50.5 [PSL-Eco]	0.169	0.79	26.2 [PSL-Eco]	0.7 B	0.25	0.187	49.4	170 [PSL-Eco]
Pond 9													
DP-1.5	0 to 0.5 ft	MSB	27-Apr-06	6.8	2.9	<0.02	0.39	16	<0.25	<0.25	<0.25	39	21
	2 to 2.5 ft	MSB	27-Apr-06	5.9	1.7	<0.02	0.3	21	<0.25	<0.25	<0.25	28	20
	7 to 7.5 ft	MSB	27-Apr-06	5.4	1.3	<0.02	0.43	21	<0.25	<0.25	<0.25	28	18
	12 to 12.5 ft	MSB	27-Apr-06	3.6	1.2	<0.02	0.25	16	<0.25	<0.25	<0.25	23	16
	17 to 17.5 ft	MSB	27-Apr-06	4.2	1.4	<0.02	0.36	16	<0.25	<0.25	<0.25	27	17
	19.5 to 20 ft	MSB	27-Apr-06	6.3	1.9	<0.02	<0.25	16	<0.25	<0.25	<0.25	21	18
Pond9-01	0 to 0.5 ft	NA	18-Jun-09	286 [PSL-Eco]	11.5	0.031 /J	4.63 [F3L-	13.7	0.3	0.051	0.033	24.9	46.1
North Pond													
DP-4.7	0 to 0.5 ft	Fill	17-Apr-06	8.7	1.8	<0.02	4.7 [PSL-Eco]	5.1	<0.25	<0.25	<0.25	9.9	32
	8 to 8.5 ft	Fill	17-Apr-06	6.8	2.3	0.033	0.51	2.8	<0.25	<0.25	<0.25	7.9	17
	14 to 14.5 ft	Fill	17-Apr-06	14	6.1	0.029	0.43	16	<0.25	<0.25	<0.25	37	42
	19 to 19.5 ft	Fill	17-Apr-06	21	12	0.025	1.2	8.3	<0.25	<0.25	<0.25	16	68
North Pond-01	0 to 0.5 ft	Fill	19-Mar-08	53.2 [PSL-Eco]	22.7	0.088	14.7 [PSL- Eco]	20.1	1 B	0.172	0.139	59.2	185 [PSL-Eco]
Metals Detected in Sediment

			Sample Date / Analyte	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	3000	80	18	380	1600	380	380	5	530	23000
	(ft bss)		PSL-Eco	31.6	35.8	0.18	3	22.7					121
			вкда-мов-	36	22	0.12	0.7	41	0.82	0.22	0.67	90	84
			Bkgd-Fill-Soil	53	25	0.12	4.6	41	0.82	0.22	0.67	90	160
Pond 6					•				•				
DP-4.8	0 to 0.5 ft	MSB	26-Apr-06	2	2.6	<0.02	<0.27	6.4	<0.27	<0.27	<0.27	12	13
	13 to 13.5 ft	MSB	26-Apr-06	2.6	2	<0.02	<0.25	6.3	<0.25	<0.25	<0.25	14	16
	18 to 18.5 ft	MSB	26-Apr-06	2.4	2.3	<0.02	<0.25	10	<0.25	<0.25	<0.25	19	23
	23 to 23.5 ft	MSB	26-Apr-06	4.9 [3.4]	3 [2.4]	0.045 [<0.02]	<0.25 [0.37]	12 [9.2]	<0.25 [<0.25]	<0.25 [<0.25]	<0.25 [<0.25]	26 [18]	33 [24]
	28 to 28.5 ft	MSB	26-Apr-06	13	5.1	0.052	0.87	24 [PSL-Eco]	<0.25	<0.25	<0.25	31	44
	33 to 33.5 ft	MSB	26-Apr-06	8.3	3.9	0.033	0.33	19	<0.25	<0.25	<0.25	25	33
DP-4.9	0.5 to 1 ft	Fill	25-Apr-06	12	18	0.058	0.4	5.6	<0.28	<0.28	<0.28	13	36
	6 to 6.5 ft	Fill	25-Apr-06	2.6	2.1	<0.02	0.26	8	<0.25	<0.25	<0.25	14	11
	11 to 11.5 ft	MSB	25-Apr-06	1.3 [2.4]	1.2 [3.7]	<0.02 [<0.02]	<0.25 [<0.25]	5.5 [7.2]	<0.25 [<0.25]	<0.25 [<0.25]	<0.25 [<0.25]	8.9 [18]	8.3 [16]
	16 to 16.5 ft	MSB	25-Apr-06	3.5	2	<0.02	0.3	12	<0.26	<0.26	<0.26	22	26
	21 to 21.5 ft	MSB	25-Apr-06	3.7	2.2	<0.02	<0.25	16	<0.25	<0.25	<0.25	26	35
	26 to 26.5 ft	MSB	25-Apr-06	2	0.98	<0.02	0.47	10	<0.25	<0.25	<0.25	17	21
	31 to 31.5 ft	MSB	25-Apr-06	4.5	1.1	0.055	0.44	15	<0.25	<0.25	<0.25	21	28
DP-4.10	0 to 0.5 ft	Fill	18-Apr-06	62 [PSL-Eco]	30	0.033	0.98	19	<0.25	<0.25	<0.25	32	290 [PSL-Eco]
	5 to 5.5 ft	MSB	18-Apr-06	0.71	2.3	<0.02	<0.25	7.9	<0.25	<0.25	<0.25	11	9.6

Metals Detected in Sediment

			Sample Date / Analyte	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	3000	80	18	380	1600	380	380	5	530	23000
	(ft bss)		PSL-Eco	31.6	35.8	0.18	3	22.7					121
			BKGQ-MISB-	36	22	0.12	0.7	41	0.82	0.22	0.67	90	84
			Bkgd-Fill-Soil	53	25	0.12	4.6	41	0.82	0.22	0.67	90	160
	10 to 10.5 ft	MSB	18-Apr-06	3.3	2.4	0.022	<0.27	9.6	<0.27	<0.27	<0.27	20	17
	14.5 to 15 ft	MSB	18-Apr-06	4.7	2.3	<0.02	1.4	17	<0.25	<0.25	<0.25	18	26
Pond6-01	0 to 0.5 ft	Fill	18-Mar-08	94.2 [PSL-Eco]	34.7	0.137	4.14 [PSL- Eco]	23.8 [PSL-Eco]	0.6 B	0.232	0.187	48.3	374 [PSL-Eco]
	0.5 to 1.5 ft	Fill	11-Mar-08	31.4 /J	23.4	0.086	5.21 [PSL- Eco]	18.0 /J	<2.8	0.228 /J	0.113	52.0 /J	183 [PSL-Eco]
Pond6-02	0 to 0.5 ft	Fill	18-Mar-08	106 [PSL-Eco]	59.5 [PSL-Eco]	0.737 [PSL- Eco]	13.7 [PSL- Eco]	30.7 [PSL-Eco]	0.7 B	0.486	0.199	45.7	677 [PSL-Eco]
	0.5 to 1.5 ft	Fill	12-Mar-08	92.2 [PSL-Eco]	188 [PSL-HH,PSL- Eco]	0.117	2.15	31.8 [PSL-Eco]	<1.2	0.318	0.571	51.7	623 [PSL-Eco]
	4.5 to 5.5 ft	Fill	12-Mar-08	123 [PSL-Eco]	114 [PSL-HH,PSL- Eco]	0.063	3.3 [PSL-Eco]	37.8 [PSL-Eco]	<4	0.376	0.716	52	539 [PSL-Eco]
Pond 7													
DP-4.11	0 to 0.5 ft	Fill	18-Apr-06	29	20	0.11	1.1	11	<0.25	<0.25	<0.25	19	150 [PSL-Eco]
	6 to 6.5 ft	Fill	17-Apr-06	62 [PSL-Eco]	58 [PSL-Eco]	0.2 [PSL-Eco]	1.8	15	<0.27	<0.27	<0.27	22	300 [PSL-Eco]
	11 to 11.5 ft	MSB	17-Apr-06	41 [PSL-Eco]	9.2	0.2 [PSL-Eco]	0.61	32 [PSL-Eco]	<0.25	<0.25	<0.25	52	83
DP-4.12	0 to 0.5 ft	Fill	18-Apr-06	52 [PSL-Eco]	32	0.16	1.1	19	<0.25	<0.25	<0.25	25	180 [PSL-Eco]
	6 to 6.5 ft	Fill	18-Apr-06	61 [PSL-Eco]	61 [PSL-Eco]	0.21 [PSL-Eco]	1.5	13	<0.25	<0.25	<0.25	18	260 [PSL-Eco]
	11 to 11.5 ft	MSB	18-Apr-06	52 [PSL-Eco]	8.4	0.054	0.58	36 [PSL-Eco]	<0.25	<0.25	<0.25	48	82
DP-4.13	0 to 0.5 ft	Fill	18-Apr-06	59 [PSL-Eco]	50 [PSL-Eco]	0.16	1.5	16	<0.25	<0.25	<0.25	23	230 [PSL-Eco]
	5 to 5.5 ft	MSB	18-Apr-06	22	6.3	0.083	2.7	26 [PSL-Eco]	<0.25	<0.25	<0.25	53	57
Pond7-01	0 to 0.5 ft	Fill	18-Mar-08	234 [PSL-Eco]	205 [PSL-HH,PSL- Eco]	0.742 [PSL- Eco]	6.04 [PSL- Eco]	34.6 [PSL-Eco]	0.6 B	0.667	0.461	45.6	1080 [PSL-Eco]
	0.5 to 1.5 ft	Fill	12-Mar-08	166 [PSL-Eco]	255 [PSL-HH,PSL- Eco]	0.534 [PSL- Eco]	5.29 [PSL- Eco]	41.2 [PSL-Eco]	0.6 B	0.585	0.529	56.9	1120 [PSL-Eco]

Metals Detected in Sediment

			Sample Date /	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	l ithology	PSL-HH	3000	80	18	380	1600	380	380	5	530	23000
2000010112	(ft bss)		PSL-Eco	31.6	35.8	0.18	3	22.7					121
			вкда-тов-	36	22	0.12	0.7	41	0.82	0.22	0.67	90	84
			Bkgd-Fill-Soil	53	25	0.12	4.6	41	0.82	0.22	0.67	90	160
Pond7-02	0 to 0.5 ft	Fill	18-Mar-08	229 [PSL-Eco]	226 [PSL-HH,PSL- Eco]	0.286 [PSL- Eco]	9.66 [PSL- Eco]	36.3 [PSL-Eco]	1 B	0.786	0.743	46.6	1040 [PSL-Eco]
	0.5 to 1.5 ft	Fill	12-Mar-08	171 [PSL-Eco]	262 [PSL-HH,PSL- Eco]	0.634 [PSL- Eco]	4.4 [PSL-Eco]	44.0 [PSL-Eco]	0.8 B	0.561	0.514	57.2	1180 [PSL-Eco]
	4.5 to 5.5 ft	Fill	12-Mar-08	149 [PSL-Eco]	153 [PSL-HH,PSL- Eco]	0.309 [PSL- Eco]	3.02 [PSL- Eco]	44.7 [PSL-Eco]	<4.6	0.38	0.598	56.7	504 [PSL-Eco]
Pond 8 East	1	1	1	r		E	1		1	1	1		
DP-5.60	3 to 3.5 ft	Fill	20-Apr-06	53 [50] [PSL-Eco]	12 [12]	0.08 [0.13]	1.5 [1.6]	40 [40] [PSL-Eco]	1.2 [0.99]	<0.25 [<0.25]	<0.25 [<0.25]	35 [37]	78 [78]
	8 to 8.5 ft	MSB	20-Apr-06	62 [PSL-Eco]	15	0.12	3.5 [PSL-Eco]	49 [PSL-Eco]	1.1	<0.25	<0.25	42	86
	12 to 12.5 ft	MSB	20-Apr-06	67 [PSL-Eco]	12	0.088	7.3 [PSL-Eco]	47 [PSL-Eco]	1.3	<0.25	<0.25	41	82
	16.5 to 17 ft	MSB	20-Apr-06	69 [PSL-Eco]	16	0.038	1.2	50 [PSL-Eco]	1.3	<0.25	<0.25	49	100
DP-5.61	0 to 0.5 ft	Fill	19-Apr-06	22	54 [PSL-Eco]	0.16	0.38	13	<0.25	<0.25	<0.25	22	77
	5 to 5.5 ft	Fill	19-Apr-06	15	18	0.099	0.32	11	<0.25	<0.25	<0.25	16	32
	10 to 10.5 ft	MSB	19-Apr-06	0.53 [0.51]	2.6 [2.3]	<0.02 [0.028]	<0.25 [<0.25]	6.5 [6.2]	<0.25 [<0.25]	<0.25 [<0.25]	<0.25 [<0.25]	18 [18]	9.5 [9.3]
	15 to 15.5 ft	MSB	19-Apr-06	1.8	2.2	<0.02	<0.25	8.6	<0.25	<0.25	<0.25	17	9.6
	20 to 20.5 ft	MSB	19-Apr-06	5.3	2.9	<0.02	<0.26	14	<0.26	<0.26	<0.26	27	22
	25 to 25.5 ft	MSB	19-Apr-06	10	4.7	0.038	0.41	23 [PSL-Eco]	<0.25	<0.25	<0.25	36	39
DP-5.62	0 to 0.5 ft	MSB	24-Apr-06	36 [PSL-Eco]	40 [PSL-Eco]	0.065	1.1	15	<0.25	<0.25	<0.25	27	150 [PSL-Eco]
	5 to 5.5 ft	MSB	24-Apr-06	25	36 [PSL-Eco]	0.043	0.55	13	<0.25	<0.25	<0.25	22	77
	10 to 10.5 ft	MSB	24-Apr-06	10 [11]	16 [20]	0.065 [0.05]	0.3 [0.34]	6.6 [8.6]	<0.25 [<0.25]	<0.25 [<0.25]	<0.25 [<0.25]	15 [21]	32 [36]

Metals Detected in Sediment

			Sample Date / Analyte	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	3000	80	18	380	1600	380	380	5	530	23000
	(ft bss)		PSL-Eco	31.6	35.8	0.18	3	22.7		-			121
			BKga-MSB- Soil	36	22	0.12	0.7	41	0.82	0.22	0.67	90	84
			Bkgd-Fill-Soil	53	25	0.12	4.6	41	0.82	0.22	0.67	90	160
	15 to 15.5 ft	MSB	24-Apr-06	17	7.2	0.037	0.89	17	<0.25	<0.25	<0.25	39	49
	20 to 20.5 ft	MSB	24-Apr-06	75 [PSL-Eco]	14	0.09	1.7	48 [PSL-Eco]	<0.25	<0.25	<0.25	42	95
Pond8-05	0.5 to 1.5 ft	Fill	17-Mar-08	194 [PSL-Eco]	98.4 [PSL-HH,PSL- Eco]	0.184 [PSL- Eco]	57.6 [PSL- Eco]	37.2 [PSL-Eco]	1.1 B	0.409	0.231	62.7	523 [PSL-Eco]
	1.5 to 2.5 ft	Fill	17-Mar-08	148 [PSL-Eco]	131 [PSL-HH,PSL- Eco]	0.122	9.03 [PSL- Eco]	34.4 [PSL-Eco]	0.8	0.2	0.174	71.8	325 [PSL-Eco]
	2.5 to 3.5 ft	Fill	17-Mar-08	63.2 [PSL-Eco]	77.1 [PSL-Eco]	0.12	0.76	29.8 [PSL-Eco]	<4.2	0.143	0.198	48.7	161 [PSL-Eco]
Pond8-06	0 to 0.5 ft	Fill	17-Mar-08	206 [PSL-Eco]	194 [PSL-HH,PSL- Eco]	0.227 [PSL- Eco]	9.35 [PSL- Eco]	36.6 [PSL-Eco]	0.7 B	0.39	0.193	60.5	530 [PSL-Eco]
	0.5 to 1.5 ft	Fill	18-Mar-08	125 [PSL-Eco]	103 [PSL-HH,PSL- Eco]	0.136	4.01 [PSL- Eco]	27.8 [PSL-Eco]	0.5 B	0.244	0.143	45.2	316 [PSL-Eco]
Pond8-07	0 to 0.5 ft	Fill	17-Mar-08	127 [PSL-Eco]	67.6 [PSL-Eco]	0.096	2.82	41.3 [PSL-Eco]	0.8 B	0.296	0.152	71.1	561 [PSL-Eco]
	0.5 to 1.5 ft	Fill	17-Mar-08	90.1 [PSL-Eco]	79.3 [PSL-Eco]	0.11	1.6	27.3 [PSL-Eco]	0.5 B	0.204	0.124	48.4	391 [PSL-Eco]
	2.5 to 3.5 ft	Fill	17-Mar-08	140 [PSL-Eco]	302 [PSL-HH,PSL- Eco]	0.122	2.28	33.9 [PSL-Eco]	0.8	0.217	0.14	69.9	339 [PSL-Eco]
	4.5 to 5.5 ft	Fill	17-Mar-08	70.5 [PSL-Eco]	156 [PSL-HH,PSL- Eco]	0.112	0.86	35.4 [PSL-Eco]	<3.8	0.166	0.212	56.2	191 [PSL-Eco]
Pond8-08	0 to 0.5 ft	Fill	17-Mar-08	139 [PSL-Eco]	98.1 [PSL-HH,PSL- Eco]	0.117	5.5 [PSL-Eco]	39.2 [PSL-Eco]	0.5 B	0.326	0.15	67.2	675 [PSL-Eco]
	0.5 to 1.5 ft	Fill	17-Mar-08	116 [PSL-Eco]	83 [PSL-HH,PSL-Eco]	0.187 [PSL- Eco]	2.72	28.8 [PSL-Eco]	0.4 B	0.225	0.19	48.4	453 [PSL-Eco]
	1.5 to 2.5 ft	Fill	17-Mar-08	165 [PSL-Eco]	210 [PSL-HH,PSL- Eco]	0.219 [PSL- Eco]	10 [PSL-Eco]	44.6 [PSL-Eco]	<3.8	0.362	0.229	68	433 [PSL-Eco]
Pond8-14	0 to 0.5 ft	Fill	17-Jun-09	92.8 [PSL-Eco]	54.9 [PSL-Eco]	0.093 /J	4.23 [PSL- Eco]	31.1 [PSL-Eco]	1	0.163	0.141	53.8	500 [PSL-Eco]
Pond8-15	0 to 0.5 ft	Fill	17-Jun-09	39.3 [PSL-Eco]	17.1	0.025 /J	0.6	24.3 [PSL-Eco]	<1.2	0.064	0.056	51.6	96.4
Pond8-16	0 to 0.5 ft	Fill	17-Jun-09	163 [PSL-Eco]	134 [PSL-HH,PSL- Eco]	0.221 /J [PSL- Eco]	14.1 [PSL- Eco]	49.2 [PSL-Eco]	1.1	0.345	0.203	92.9	425 [PSL-Eco]
Pond8-17	0 to 0.5 ft	Fill	17-Jun-09	212 [PSL-Eco]	237 [PSL-HH,PSL- Eco]	0.305 /J [PSL- Eco]	4.78 [PSL- Eco]	44.5 [PSL-Eco]	1	0.29	0.2	84.9	371 [PSL-Eco]
Pond8-18	0 to 0.5 ft	Fill	17-Jun-09	122 [PSL-Eco]	118 [PSL-HH,PSL- Eco]	0.175 /J	4.05 [PSL- Eco]	52.4 [PSL-Eco]	0.8	0.259	0.17	103	487 [PSL-Eco]
SD-5.1	1.5 to 2 ft	Fill	05-Apr-06	15	8	0.029	0.36	18	<0.26	<0.26	<0.26	32	62
SD-5.2	1.5 to 2 ft	Fill	05-Apr-06	15	15	0.027	0.49	15	<0.2	<0.2	<0.2	32	39

Metals Detected in Sediment

			Sample Date /	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	3000	80	18	380	1600	380	380	5	530	23000
	(ft bss)		PSL-Eco	31.6	35.8	0.18	3	22.7		-			121
			BKga-MSB- Soil	36	22	0.12	0.7	41	0.82	0.22	0.67	90	84
			Bkgd-Fill-Soil	53	25	0.12	4.6	41	0.82	0.22	0.67	90	160
Pond 8 West													
DP-4.14	0 to 0.5 ft	Fill	24-Apr-06	3.6	2.7	0.021	<0.25	7.2	<0.25	<0.25	<0.25	9.8	15
	4 to 4.5 ft	Fill	24-Apr-06	3.5	1.9	0.033	0.47	7.9	<0.25	<0.25	<0.25	19	19
	7.5 to 8 ft	MSB	24-Apr-06	11	6.4	0.055	1.2	25 [PSL-Eco]	<0.25	<0.25	<0.25	67	75
DP-4.15	0 to 0.5 ft	Fill	20-Apr-06	39 [PSL-Eco]	31	0.067	0.68	21	<0.25	<0.25	<0.25	40	93
	2 to 2.5 ft	Fill	20-Apr-06	32 [PSL-Eco]	18	0.049	1.9	9.8	<0.26	<0.26	<0.26	17	71
	7 to 7.5 ft	MSB	20-Apr-06	4.4	2.7	<0.02	<0.25	12	<0.25	<0.25	<0.25	21	25
	11.5 to 12 ft	MSB	20-Apr-06	16 [3.6]	4.8 [2.3]	0.059 [<0.02]	0.45 [<0.25]	20 [11]	<0.25 [<0.25]	<0.25 [<0.25]	<0.25 [<0.25]	38 [18]	47 [22]
Pond8-01	0 to 0.5 ft	Fill	17-Mar-08	64 [PSL-Eco]	21.8	0.081	14.4 [PSL- Eco]	24.8 [PSL-Eco]	1.1 B	0.208	0.198	51.4	381 [PSL-Eco]
	0.5 to 1.5 ft	Fill	18-Mar-08	138 [PSL-Eco]	34.4	0.194 [PSL- Eco]	17.9 [PSL- Eco]	34 [PSL-Eco]	1.6	0.484	0.29	63.7	439 [PSL-Eco]
	1.5 to 2.5 ft	Fill	18-Mar-08	126 [PSL-Eco]	79.8 [PSL-Eco]	0.161	1.79	39.2 [PSL-Eco]	<4.2	0.231	0.258	58.8	242 [PSL-Eco]
Pond8-02	0 to 0.5 ft	Fill	17-Mar-08	76.4 [PSL-Eco]	21.1	0.083	12 [PSL-Eco]	31.5 [PSL-Eco]	0.8 B	0.3	0.189	56.1	254 [PSL-Eco]
	0.5 to 1.5 ft	Fill	18-Mar-08	169 [PSL-Eco]	66.3 [PSL-Eco]	0.148	2.13	33.5 [PSL-Eco]	0.4 B	0.279	0.202	58.4	305 [PSL-Eco]
Pond8-03	0 to 0.5 ft	Fill	17-Mar-08	118 [PSL-Eco]	31.9	0.119	27.5 [PSL- Eco]	36.6 [PSL-Eco]	1.3 B	0.325	0.29	70.9	392 [PSL-Eco]
	0.5 to 1.5 ft	Fill	18-Mar-08	236 [PSL-Eco]	66.2 [PSL-Eco]	0.183 [PSL- Eco]	8.09 [PSL- Eco]	34.8 [PSL-Eco]	1.3 B	0.526	0.301	56.7	454 [PSL-Eco]
Pond8-04	0 to 0.5 ft	Fill	17-Mar-08	130 [PSL-Eco]	37.7 [PSL-Eco]	0.107	96.4 [PSL- Eco]	39.9 [PSL-Eco]	2.3 B	0.295	0.278	76.6	445 [PSL-Eco]
	0.5 to 1.5 ft	Fill	12-Mar-08	77.2 [PSL-Eco]	33.9	0.089	41.5 [PSL- Eco]	39.1 [PSL-Eco]	1.2 B	0.298	0.245	76.6	364 [PSL-Eco]
	1.5 to 2.5 ft	Fill	12-Mar-08	251 [PSL-Eco]	86.9 [PSL-HH,PSL- Eco]	0.165	13.4 [PSL- Eco]	40.2 [PSL-Eco]	1.5	0.406	0.328	80.9	471 [PSL-Eco]
	4.5 to 5.5 ft	MSB	12-Mar-08	13.9	3.28	0.065	0.13	19.7	<1.9	0.058	0.035	15.6	38.8
Pond8-09	0 to 0.5 ft	Fill	18-Jun-09	176 [PSL-Eco]	59.6 [PSL-Eco]	0.193 /J [PSL- Eco]	27.8 [PSL- Eco]	49.3 [PSL-Eco]	1.7	0.429	0.34	89.6	410 [PSL-Eco]
Pond8-10	0 to 0.5 ft	Fill	18-Jun-09	125 [PSL-Eco]	39 [PSL-Eco]	0.114 /J	94.4 [PSL- Eco]	46.2 [PSL-Eco]	1.7	0.262	0.21	95.6	332 [PSL-Eco]

Metals Detected in Sediment

			Sample Date /				1						
			Analyte	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	3000	80	18	380	1600	380	380	5	530	23000
	(ft bss)		PSL-Eco	31.6	35.8	0.18	3	22.7	ł	-			121
			BKga-MSB- Soil	36	22	0.12	0.7	41	0.82	0.22	0.67	90	84
			Bkgd-Fill-Soil	53	25	0.12	4.6	41	0.82	0.22	0.67	90	160
Pond8-11	0 to 0.5 ft	Fill	18-Jun-09	199 [PSL-Eco]	61.8 [PSL-Eco]	0.191 /J [PSL- Eco]	12.2 [PSL- Eco]	47.9 [PSL-Eco]	1.3	0.392	0.286	93.1	335 [PSL-Eco]
Pond8-12	0 to 0.5 ft	Fill	18-Jun-09	89.2 [PSL-Eco]	26.9	0.115 /J	21.1 [PSL- Eco]	42.1 [PSL-Eco]	1.7	0.249	0.245	85.7	310 [PSL-Eco]
Pond 1													
DP-7.9	0 to 0.5 ft	MSB	12-Apr-06	17	6.9	0.043	1.4	19	<0.25	<0.25	<0.25	60	73
	0.5 to 1 ft	MSB	12-Apr-06	12	6.2	0.047	0.3	23 [PSL-Eco]	<0.25	<0.25	<0.25	75	60
	5 to 5.5 ft	MSB	12-Apr-06	21	5.2	0.068	1.3	23 [PSL-Eco]	0.42	<0.25	<0.25	69	61
DP-7.10	0 to 0.5 ft	Fill	12-Apr-06	13	5.3	0.034	0.29	21	0.64	<0.25	<0.25	45	57
	5 to 5.5 ft	MSB	12-Apr-06	27	7.5	0.094	0.61	25 [PSL-Eco]	<0.25	<0.25	<0.25	82	86
Pond1-01	0 to 0.5 ft	Fill	18-Mar-08	97 [PSL-Eco]	27	0.054	1.29	24.4 [PSL-Eco]	0.7 B	0.265	0.602	31.1	329 [PSL-Eco]
	0.5 to 1.5 ft	Fill	14-Mar-08	94.9 [PSL-Eco]	60.5 [PSL-Eco]	0.144	7.79 [PSL-	34.3 [PSL-Eco]	1 B	0.399	0.767	59.3	568 [PSL-Eco]
	2.5 to 3 ft	MSB	14-Mar-08	29.3	15.6	0.082	1.3	29.6 [PSL-Eco]	<4.1	0.157	0.208	47.5	80
Pond1-02	0 to 0.5 ft	Fill	18-Mar-08	215 [PSL-Eco]	389 [PSL-HH,PSL-	0.134	11 [PSL-Eco]	39.7 [PSL-Eco]	1.4	0.529	1.39	61.1	1100 [PSL-Eco]
Pond 2							•						
DP-7.11	2 to 2.5 ft	Fill	05-Apr-06	65 [PSL-Eco]	29	0.039	4.3 [PSL-Eco]	16	<0.19	<0.19	<0.19	30	260 [PSL-Eco]
	7 to 7.5 ft	MSB	05-Apr-06	8.4	3.4	0.094	1.3	17	<0.19	<0.19	<0.19	55	45
DP-7.12	2 to 2.5 ft	MSB	05-Apr-06	6.3	3.6	0.066	0.35	10	<0.21	<0.21	<0.21	31	34
	7 to 7.5 ft	MSB	05-Apr-06	12	4.7	0.061	3.5 [PSL-Eco]	23 [PSL-Eco]	<0.22	<0.22	<0.22	66	60
Pond2-01	0 to 0.5 ft	Fill	19-Mar-08	230 [PSL-Eco]	ZID [PSL-HH,PSL-	0.214 [PSL-	7.91 [PSL-	46.6 [PSL-Eco]	1.4 B	0.799	0.908	73.7	1270 [PSL-Eco]
	0.5 to 1.5 ft	Fill	13-Mar-08	145 [PSL-Eco]	217 [PSE-HH,PSL-	0.148	6.14[PSL-	49.4 [PSL-Eco]	1.0 B	0.734	0.944	84.6	1170 [PSL-Eco]
Pond2-02	0 to 0.5 ft	Fill	19-Mar-08	240 [PSL-Eco]	188 [PSL-HH,PSL-	0.284 [PSL-	9.48[PSL-	44.6 [PSL-Eco]	1.5 B	0.634	0.743	67.3	1170 [PSL-Eco]
	0.5 to 1.5 ft	Fill	13-Mar-08	119 [PSL-Eco]	128 [PSL-HH,PSL-	0.177	5.9 [PSL-Eco]	43 [PSL-Eco]	1 B	0.547	0.653	74.5	926 [PSL-Eco]
	1.5 to 2.5 ft	Fill	13-Mar-08	157 [PSL-Eco]	58.7 [PSL-Eco]	0.054	3.95 [FSL-	39.7 [PSL-Eco]	1.7	0.419	0.491	86.6	570 [PSL-Eco]
	4.5 to 5.5 ft	Fill	13-Mar-08	93.9 [PSL-Eco]	38.5 [PSL-Eco]	0.06	2.7	29.5 [PSL-Eco]	<4.5	0.279	0.306	43.6	286 [PSL-Eco]
Pond 3								<u> </u>					<u> </u>
DP-7.13	0 to 0.5 ft	Fill	06-Apr-06	31	12	0.032	0.79	12	<0.2	<0.2	<0.2	21	100
	7 to 7.5 ft	MSB	06-Apr-06	41 [PSL-Eco]	7.2	0.16	2	37 [PSL-Eco]	<0.19	<0.19	<0.19	46	88
DP-7.14	1 to 1.5 ft	Fill	06-Apr-06	31	6.7	<0.013	0.94	9.9	<0.23	<0.23	<0.23	14	110
	6 to 6.5 ft	Fill	06-Apr-06	24	8.3	0.026	0.82	10	<0.25	<0.25	<0.25	18	73
	6.5 to 7 ft	Fill	06-Apr-06	26	8.7	0.023	0.83	12	<0.2	<0.2	<0.2	20	78
	13 to 13.5 ft	MSB	06-Apr-06	8.7	4	0.074	1.1	23 [PSL-Eco]	<0.19	<0.19	<0.19	45	64
DP-7.15	0 to 0.5 ft	Fill	06-Apr-06	14	4.8	0.047	4.1 [PSL-Eco]	13	<0.21	<0.21	<0.21	28	56
-	5 to 5.5 ft	MSB	06-Apr-06	32 [PSL-Ecol	8.5	0.058	0.93	31 [PSL-Eco]	<0.19	<0.19	<0.19	59	80
DP-7.16	4 to 4.5 ft	MSB	10-Apr-06	1.9	1.3	<0.02	1.1	10	0.39	<0.27	<0.27	11	12
Pond3-01	0.5 to 1.5 ft	Fill	13-Mar-08	186 [PSL-Eco]	271 [PSL-HH,PSL-	0.419 [PSL-	15.0 [PSL-	54.6 [PSL-Eco]	1.7 B	0.753	0.857	81.6	1510 [PSL-Eco]
	3.5 to 4.5 ft	Fill	13-Mar-08	102 [PSL-Eco]	28.7	0.079	3.6 ⁴ [₽5∟-	23.2 [PSL-Eco]	<5	0.146	0.183	43.2	163 [PSL-Eco]
Pond3-02	0.5 to 1.5 ft	Fill	14-Mar-08	85.6 [PSL-Eco]	41.1 [PSL-Eco]	0.096	<u>₀.15[PS</u> L-	34.8 [PSL-Eco]	1.3 B	0.39	0.307	60.7	433 [PSL-Eco]
	1.5 to 2.5 ft	Fill	14-Mar-08	43.4 [PSL-Eco]	19.6	0.069	1.22	17.3	<4.4	0.092	0.117	28.7	98.2

Metals Detected in Sediment

			Sample Date / Analyte	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	Depth	Lithology	PSL-HH	3000	80	18	380	1600	380	380	5	530	23000
	(ft bss)		PSL-Eco	31.6	35.8	0.18	3	22.7					121
			BKga-MSB- Soil	36	22	0.12	0.7	41	0.82	0.22	0.67	90	84
			Bkgd-Fill-Soil	53	25	0.12	4.6	41	0.82	0.22	0.67	90	160
Pond3-03	0.5 to 1.5 ft	Fill	14-Mar-08	106 [PSL-Eco]	38.9 [PSL-Eco]	0.089	9.54 [PSL-	37.4 [PSL-Eco]	1.9	0.399	0.31	63.8	491 [PSL-Eco]
Pond3-04	0 to 0.5 ft	Fill	19-Mar-08	163 [PSL-Eco]	89.8 [PSL-HH,PSL- Eco]	0.184 [PSL- Eco]	23.9 [PSL- Eco]	35.2 [PSL-Eco]	2.7	0.483	0.607	60.7	739 [PSL-Eco]
	1.5 to 2.5 ft	MSB	14-Mar-08	1.6	6.88	0.021	<0.21	8.21	<4.2	<0.021	0.042	31.1	25.6
Pond3-05	0.5 to 1.5 ft	Fill	14-Mar-08	70.2 [PSL-Eco]	32.2	0.103	15.7 [PSL-	35.4 [PSL-Eco]	1.7	0.305	0.276	68	346 [PSL-Eco]
	1.5 to 2.5 ft	Fill	14-Mar-08	83.6 [PSL-Eco]	38.1 [PSL-Eco]	0.108	9.33 [PSL-	36.5 [PSL-Eco]	<4.6	0.228	0.251	62	228 [PSL-Eco]
Pond3-06	0 to 0.5 ft	Fill	19-Mar-08	213 [PSL-Eco]	233 [PSL-HH,PSL- Eco]	0.128	13.6 [PSL- Eco]	43.7 [PSL-Eco]	2.7	0.669	0.762	73.4	1110 [PSL-Eco]
Pond3-07	0 to 0.5 ft	Fill	19-Mar-08	156 [PSL-Eco]	41.9 [PSL-Eco]	0.06	6.6 [PSL-Eco]	32.3 [PSL-Eco]	1.4 B	0.449	0.364	50.1	547 [PSL-Eco]
Pond3-08	0 to 0.5 ft	Fill	19-Mar-08	201 [PSL-Eco]	96 [PSL-HH,PSL-Eco]	0.131	50.5 [FSL-	48.8 [PSL-Eco]	5	0.652	0.741	83.4	1000 [PSL-Eco]
Pond3-09	0 to 0.5 ft	Fill	19-Mar-08	131 [PSL-Eco]	69.2 [PSL-Eco]	0.134	67.1 [PSL-	61.5 [PSL-Eco]	5.7	0.443	1.2	113	886 [PSL-Eco]
Pond 4													
DP-7.17	0 to 0.5 ft	MSB	13-Apr-06	7.1	3.8	<0.02	<0.25	13	<0.25	<0.25	<0.25	34	30
	5 to 5.5 ft	MSB	13-Apr-06	8.7	5	0.031	0.46	23 [PSL-Eco]	<0.25	<0.25	<0.25	39	39
DP-7.18	0 to 0.5 ft	MSB	13-Apr-06	4.9	3.5	0.051	0.29	13	<0.26	<0.26	<0.26	24	23
	0.5 to 1 ft	MSB	13-Apr-06	7.4	4.7	0.046	<0.25	14	<0.25	<0.25	<0.25	40	35
	5 to 5.5 ft	MSB	13-Apr-06	6.3	3.7	0.03	0.6	14	<0.25	<0.25	<0.25	34	32
Pond4-01	0 to 0.5 ft	MSB	18-Mar-08	27.4	16.5	0.056	0.43	20.5	0.4 B	0.081	0.111	42.9	126 [PSL-Eco]

		Sample Date / Analyte	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bss)	RBSC-ali_d	2.6	9.8	9.8	51	648	10772	10772	281346
		RBSC-aro_d		1.6	1.6	8.5	110	4220	4220	4220
		TPH-LGW					-	-	1045	
Pond 5	-	•	•				1	1		
DP-5.63	0 to 0.5 ft	25-Apr-06				<1	<1	6.5	6.5	18 LY
	5 to 5.5 ft	25-Apr-06				<1	1	2.8	3.8	<5
	10 to 10.5 ft	25-Apr-06				1.4	5.7	13	20.1	19 LY
Pond5-01	0 to 1 ft	14-Mar-08				71 J	250 H	2100 Y	2421 [TPH-LGW]	1400 O
Pond5-02	0 to 1 ft	14-Mar-08				94 J	51 J	520 H	665	1300 O
Pond5-03	0 to 0.5 ft	18-Mar-08				270 Y [RBSC-ali_di]	120 H	590 H	980	1100 O
Pond 9		07.4 00	r					-		
DP-1.5	0 to 0.5 ft	27-Apr-06				1.1	3.3	29	33.4	99
	2 to 2.5 ft	27-Apr-06				<1	<1	1.4	1.4 ND	6.7 LY
	12 to 12 5 ft	27-Apr-06				<1	<1	<1	ND	<5
	17 to 17 5 ft	27-Apr-06				<1	<1	<1	ND	<5
	19.5 to 20 ft	27-Apr-06				<0.99	<0.99	3 HY	3	35
Pond9-01	0 to 0.5 ft	18-Jun-09				<50 J/UB	5.4 J/J	50 H/J	55.4 H/J	150 O/J
North Pond	1						1			
DP-4.7	0 to 0.5 ft	17-Apr-06	<0.19	<0.19	ND					
	8 to 8.5 ft	17-Apr-06				<9.9	<9.9	840	840	220 Y
	14 to 14.5 ft	17-Apr-06	<0.22	<0.22	ND	<1	1.6	180	181.6	76 H
	19 to 19.5 ft	17-Apr-06	<0.25	<0.25	ND	8.7	11	140	159.7	160 HL
North Pond-01	0 to 0.5 ft	19-Mar-08				19 J	<220	520 H	539	1,400 O
Pond 6		•							•	
DP-4.10	0 to 0.5 ft	18-Apr-06	<0.29	<0.29	ND	18	40	140	198	240 L
	5 to 5.5 ft	18-Apr-06	<0.2	<0.2	ND	<1	<1	<1	ND	<5
	10 to 10.5 ft	18-Apr-06	<0.18	<0.18	ND	<1	<1	1.7	1.7	9
	14.5 to 15 ft	18-Apr-06	<0.17	<0.17	ND	<0.99	<0.99	1.1	1.1	<5
DP-4.8	0 to 0.5 ft	26-Apr-06	<0.17	<0.17	ND	2.4	4	31	37.4	42 LY
	13 to 13.5 ft	26-Apr-06	<0.18	<0.18	ND	<1	<1	<1	ND	<5
	18 to 18.5 ft	26-Apr-06	<0.18	<0.18	ND	<1	<1	<1	ND	<5
	23 to 23.5 ft	26-Apr-06	<0.18 [<0.18]	<0.18 [<0.18]	ND [ND]	<1 [<0.99]	<1 [<0.99]	<1 [<0.99]	ND [ND]	<5 [<5]
	28 to 28.5 ft	26-Apr-06	<0.18	<0.18	ND	<1	<1	2.2	2.2	6.8 LY
	33 to 33.5 ft	26-Apr-06	<0.17	<0.17	ND	<1	1.5	4.3	5.8	11 LY

		Sample Date / Analyte	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bss)	RBSC-ali_d	2.6	9.8	9.8	51	648	10772	10772	281346
		RBSC-aro_d		1.6	1.6	8.5	110	4220	4220	4220
		TPH-LGW					-	-	1045	-
DP-4.9	0.5 to 1 ft	25-Apr-06	<0.31	<0.31	ND	<3	3.1	160	163.1	770
	6 to 6.5 ft	25-Apr-06	<0.17	<0.17	ND	<1	<1	3.2	3.2	6.1 Y
	11 to 11.5 ft	25-Apr-06	<0.17 [<0.17]	<0.17 [<0.17]	ND [ND]	<1 [<1]	<1 [<1]	3.6 [3.8]	3.6 [3.8]	24 Y [32 Y]
	16 to 16.5 ft	25-Apr-06	<0.17	<0.17	ND	<0.99	<0.99	<0.99	ND	<5
	21 to 21.5 ft	25-Apr-06	<0.19	<0.19	ND	<1	<1	<1	ND	<5
	26 to 26.5 ft	25-Apr-06	<0.19	<0.19	ND	<1	<1	1.4	1.4	<5
	31 to 31.5 ft	25-Apr-06	<0.2	<0.2	ND	<1	1.5	4.8	6.3	14 Y
Pond6-01	0 to 0.5 ft	18-Mar-08				24 J	<290	320 H	344	1000 O
	0.5 to 1.5 ft	11-Mar-08				<220 J/UB	11 J	420 H/J	431 /J	1200 O/J
Pond6-02	0 to 0.5 ft	18-Mar-08				14 J	<190	190 H	204	770 O
	0.5 to 1.5 ft	12-Mar-08				<92 J/UB	18 J	160 H/J	178 /J	260 O/J
Pond 7							-	-		
DP-4.11	0 to 0.5 ft	18-Apr-06				7.5	25	120	152.5	500 L
	6 to 6.5 ft	17-Apr-06	<0.38	<0.38	ND	11	39	160	210	470 L
	11 to 11.5 ft	17-Apr-06	<0.18	<0.18	ND	1.1	3.2	12	16.3	20 L
DP-4.12	0 to 0.5 ft	18-Apr-06	<0.31	<0.31	ND	18	39	220	277	610
	6 to 6.5 ft	18-Apr-06	<0.31	<0.31	ND	29	72	240	341	660 L
	11 to 11.5 ft	18-Apr-06	<0.18	<0.18	ND	1.6	4.9	9.7	16.2	12 L
DP-4.13	0 to 0.5 ft	18-Apr-06	<0.16	<0.16	ND	18	45	180	243	560 L
	5 to 5.5 ft	18-Apr-06	<0.17	<0.17	ND	<1	<1	2.7	2.7	<5
Pond7-01	0 to 0.5 ft	18-Mar-08				48 J	150 H	950 Y	1148 [TPH-LGW]	1900 O
	0.5 to 1.5 ft	12-Mar-08				140 H/J	130 H/J	900 Y/J	1170 /J [TPH-LGW]	1800 O/J
Pond7-02	0 to 0.5 ft	18-Mar-08				46 J	120 J	840 Y	1006	1900 O
	0.5 to 1.5 ft	12-Mar-08				260 H/J	260 H/J	1100 Y/J	1620 /J [TPH-LGW]	1900 O/J
Pond 8 East			·	• •	·					
DP-5.60	3 to 3.5 ft	20-Apr-06	<0.16 [<0.16]	<0.16 [<0.16]	ND [ND]	6.7 [7]	51 [23]	290 [60]	348 [90]	570 L [110 L]
	8 to 8.5 ft	20-Apr-06				5	17	52	74	97 L
	12 to 12.5 ft	20-Apr-06	<0.16	<0.16	ND	6	22	70	98	130 L
	16.5 to 17 ft	20-Apr-06	<0.16	<0.16	ND	6.4	24	58	88.4	110 L

		Sample Date / Analyte	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bss)	RBSC-ali_d	2.6	9.8	9.8	51	648	10772	10772	281346
		RBSC-aro_d		1.6	1.6	8.5	110	4220	4220	4220
		TPH-LGW					-		1045	-
DP-5.61	0 to 0.5 ft	19-Apr-06	<0.28	<0.28	ND	51	280	1100	1431 [TPH-LGW]	2900 HL
	5 to 5.5 ft	19-Apr-06	<0.3	<0.3	ND	4.5	14	120	139	400 L
	10 to 10.5 ft	19-Apr-06	<0.16 [<0.16]	<0.16 [<0.16]	ND [ND]	<1 [<1]	<1 [<1]	1.3 [<1]	1.3 [ND]	<5 [<5]
	15 to 15.5 ft	19-Apr-06	<0.17	<0.17	ND	<1	<1	6.9	6.9	91
	20 to 20.5 ft	19-Apr-06	<0.19	<0.19	ND	<1	<1	2.7	2.7	11
	25 to 25.5 ft	19-Apr-06	<0.2	<0.2	ND	<1	<1	2.3	2.3	<5
DP-5.62	0 to 0.5 ft	24-Apr-06	<0.26	<0.26	ND	9.6	67	380	457	1400 L
	5 to 5.5 ft	24-Apr-06				4	27	160	191	520 L
	10 to 10.5 ft	24-Apr-06	<0.27 [<0.21]	<0.27 [<0.21]	ND [ND]	3.9 [4.2]	8.3 [12]	89 [130]	101 [146]	380 L [500 L]
	15 to 15.5 ft	24-Apr-06	<0.19	<0.19	ND	<1	<1	2.2	2.2	11 Y
	20 to 20.5 ft	24-Apr-06	<0.17	<0.17	ND	1.7	5.6	15	22.3	22 LY
Pond8-05	0.5 to 1.5 ft	17-Mar-08				1700 H [RBSC-ali_di]	2100 Y [RBSC-ali_di]	7800 Y	11600 [RBSC-ali_di,TPH-LGW]	11000 DO
	2.5 to 3.5 ft	17-Mar-08				180 H [RBSC-ali_di]	450 H	3100 H	3730 [TPH-LGW]	4400 O
Pond8-06	0 to 0.5 ft	17-Mar-08				3700 H [RBSC-ali_di]	4900 H [RBSC-ali_di]	17000 Y [RBSC-ali_di]	25600 [RBSC-ali_di,TPH-LGW]	14000 DO
	0.5 to 1.5 ft	18-Mar-08				880 H [RBSC-ali_di]	2300 H [RBSC-ali_di]	10000 Y	13180 [RBSC-ali_di,TPH-LGW]	7700 O
Pond8-07	0 to 0.5 ft	17-Mar-08				75 J [RBSC-ali_di]	100 J	1300 H	1475 [TPH-LGW]	7100 DO
	0.5 to 1.5 ft	17-Mar-08				110 H [RBSC-ali_di]	180 H	1300 H	1590 [TPH-LGW]	4900 DO
	4.5 to 5.5 ft	17-Mar-08				310 H [RBSC-ali_di]	970 Y [RBSC-ali_di]	5700 O	6980 [TPH-LGW]	7300 O
Pond8-08	0 to 0.5 ft	17-Mar-08				130 H [RBSC-ali_di]	160 H	2300 H	2590 [TPH-LGW]	11000 DO
	0.5 to 1.5 ft	17-Mar-08				190 H [RBSC-ali_di]	300 H	2400 H	2890 [TPH-LGW]	8600 DO
	1.5 to 2.5 ft	17-Mar-08				6700 Y [RBSC-ali_di]	7100 H [RBSC-ali_di]	23000 Y [RBSC-ali_di]	36800 [RBSC-ali_di,TPH-LGW]	22000 O
Pond8-14	0 to 0.5 ft	17-Jun-09				180 DJ/J [RBSC-ali_di]	220 DJ	1400 DJ	1800 DJ [TPH-LGW]	2800 DO/J
Pond8-14 (re-extracted)	0 to 0.5 ft	17-Jun-09				62 J/J [RBSC-ali_di]	71 J/J	520 H/J	653 H/J	1100 O/J
Pond8-15	0 to 0.5 ft	17-Jun-09				21 DJ/J [RBSC-aro_di]	26 DJ	210 DH	257 DH	1500 DO/J
Pond8-15 (re-extracted)	0 to 0.5 ft	17-Jun-09				<180 DJ/UB	16 DJ/J	130 DJ/J	146 DJ/J	1100 DO/J
Pond8-16	0 to 0.5 ft	17-Jun-09				2500 DH/J [RBSC-ali_di]	3300 DH [RBSC-ali_di]	11000 DH [RBSC-ali_di]	16800 DH [RBSC-ali_di,TPH-LGW]	16000 DO/J
Pond8-16 (re-extracted)	0 to 0.5 ft	17-Jun-09				2300 DH/J [RBSC-ali_di]	2700 DH/J [RBSC-ali_di]	9100 DH/J	14100 DH/J [RBSC-ali_di,TPH- LGW]	13000 DO/J
Pond8-17	0 to 0.5 ft	17-Jun-09				2200 DH/J [RBSC-ali_di]	3400 DH [RBSC-ali_di]	13000 DY [RBSC-ali_di]	18600 DYH [RBSC-ali_di,TPH- LGW]	7600 DOL/J
Pond8-17 (re-extracted)	0 to 0.5 ft	17-Jun-09				4900 DH/J [RBSC-ali_di]	7000 DH/J [RBSC-ali_di]	25000 DY/J [RBSC-ali_di]	36900 DYH/J [RBSC-ali_di,TPH- LGW]	15000 DOL/J
Pond8-18	0 to 0.5 ft	17-Jun-09				62 DJ/J [RBSC-ali_di]	100 DJ	1400 DH	1562 DHJ [TPH-LGW]	6500 DO/J
Pond8-18 (re-extracted)	0 to 0.5 ft	17-Jun-09				70 DJ/J [RBSC-ali_di]	170 DJ/J	2500 DH/J	2740 DH/J [TPH-LGW]	13000 DO/J
SD-5.1	1.5 to 2 ft	05-Apr-06	<0.15	<0.15	ND	<1	4	45	49	200
SD-5.2	1.5 to 2 ft	05-Apr-06	<0.15	<0.15	ND	<2	2.4	32	34.4	320

		Sample Date / Analyte	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bss)	RBSC-ali_d	2.6	9.8	9.8	51	648	10772	10772	281346
		RBSC-aro_d		1.6	1.6	8.5	110	4220	4220	4220
		TPH-LGW							1045	
Pond 8 West										
DP-4.14	0 to 0.5 ft	24-Apr-06				3.7	16	150	170	610
	4 to 4.5 ft	24-Apr-06	<0.16	<0.16	ND	<0.99	<0.99	8.1	8.1	12 Y
	7.5 to 8 ft	24-Apr-06	<0.2	<0.2	ND	<1	<1	<1	ND	<5
DP-4.15	0 to 0.5 ft	20-Apr-06	<0.31	<0.31	ND	13	140	1200	1353 [TPH-LGW]	3200 L
	2 to 2.5 ft	20-Apr-06				9.6	110	680	800	1400 L
	7 to 7.5 ft	20-Apr-06				<1	<1	<1	ND	<5
	11.5 to 12 ft	20-Apr-06	<0.18 [<0.19]	<0.18 [<0.19]	ND [ND]	<1 [<1]	2.8 [<1]	6.8 [1.5]	9.6 [1.5]	<5 [<5]
Pond8-01	0 to 0.5 ft	17-Mar-08				60 J [RBSC-ali_di]	43 J	1200 H	1303 [TPH-LGW]	5600 O
	0.5 to 1.5 ft	18-Mar-08				200 H [RBSC-ali_di]	240 H	2100 H	2540 [TPH-LGW]	6000 O
Pond8-02	0 to 0.5 ft	17-Mar-08				110 H [RBSC-ali_di]	84 H	1300 H	1494 [TPH-LGW]	5000 DO
	0.5 to 1.5 ft	18-Mar-08				180 H [RBSC-ali_di]	860 H [RBSC-ali_di]	5600 H	6640 [TPH-LGW]	6900 DO
Pond8-03	0 to 0.5 ft	17-Mar-08				76 J [RBSC-ali_di]	100 J	1300 H	1476 [TPH-LGW]	4500 O
	0.5 to 1.5 ft	18-Mar-08				440 H [RBSC-ali_di]	960 H [RBSC-ali_di]	6000 H	7400 [TPH-LGW]	8500 DO
Pond8-04	0 to 0.5 ft	17-Mar-08				60 J [RBSC-ali_di]	89 J	1100 H	1249 [TPH-LGW]	3800 O
	0.5 to 1.5 ft	12-Mar-08				<130 J/UB	190 H/J	1800 H/J	1990 /J [TPH-LGW]	5300 O/J
Pond8-09	0 to 0.5 ft	18-Jun-09				720 DH/J [RBSC-ali_di]	840 DH [RBSC-ali_di]	4400 DH	5960 DH/J [TPH-LGW]	8400 DO/J
Pond8-09 (re-extracted)	0 to 0.5 ft	18-Jun-09				210 DJ/J [RBSC-ali_di]	300 DJ/J	1800 DH/J	2310 DH/J [TPH-LGW]	3700 DO/J
Pond8-10	0 to 0.5 ft	18-Jun-09				72 J/J [RBSC-ali_di]	110 H	860 H	1042 H	2400 O/J
Pond8-10 (re-extracted)	0 to 0.5 ft	18-Jun-09				89 J/J [RBSC-ali_di]	150 H/J	1300 H/J	1539 H/J [TPH-LGW]	3900 O/J
Pond8-11	0 to 0.5 ft	18-Jun-09				340 DJ/J [RBSC-ali_di]	840 DH [RBSC-ali_di]	5700 DH	6880 DH [TPH-LGW]	9300 DO/J
Pond8-11 (re-extracted)	0 to 0.5 ft	18-Jun-09				180 DJ/J [RBSC-ali_di]	500 DJ/J	3900 DH/J	4580 DH/J [TPH-LGW]	6500 DO/J
Pond8-12	0 to 0.5 ft	18-Jun-09				110 DJ/J [RBSC-ali_di]	100 DJ	1600 DH	1810 DH [TPH-LGW]	6900 DO/J
Pond8-12 (re-extracted)	0 to 0.5 ft	18-Jun-09				70 DJ/J [RBSC-ali_di]	50 DJ/J	940 DH/J	1060 DH/J [TPH-LGW]	4200 DO/J
Pond 1										
DP-7.9	0 to 0.5 ft	12-Apr-06				1.7	5.1	27	33.8	55
	0.5 to 1 ft	12-Apr-06				<1	<1	1.4	1.4	<5
	5 to 5.5 ft	12-Apr-06				<1	<1	3.9	3.9	7.3
DP-7.10	0 to 0.5 ft	12-Apr-06				<0.99	<0.99	7.3	7.3	19
	5 to 5.5 ft	12-Apr-06				<1	<1	1.1	1.1	<5
Pond1-01	0 to 0.5 ft	18-Mar-08				<49	<49	13 J	13	64 O
	0.5 to 1.5 ft	14-Mar-08				14 J	9.9 J	180 H	203.9	500 O
Pond1-02	0 to 0.5 ft	18-Mar-08				7.2 J	6.3 J	100 H	113.5	320 O

		Sample Date / Analyte	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C10-C12	Diesel C12-C16	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
	Denth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location ID	(ft bss)	RBSC-ali_d	2.6	9.8	9.8	51	648	10772	10772	281346
		RBSC-aro_d		1.6	1.6	8.5	110	4220	4220	4220
		TPH-LGW							1045	
Pond 2				•						
DP-7.11	2 to 2.5 ft	05-Apr-06				<1	1.4	6.2	7.6	22
	7 to 7.5 ft	05-Apr-06				<1	<1	19	19	24 LY
DP-7.12	2 to 2.5 ft	05-Apr-06				<1	<1	4.6	4.6	21 Y
	7 to 7.5 ft	05-Apr-06				<1	<1	6.2	6.2	11 LY
Pond2-01	0 to 0.5 ft	19-Mar-08				11 J	15 J	260 H	286	840 O
	0.5 to 1.5 ft	13-Mar-08				<110 J/UB	11 J	260 H/J	271 /J	750 O/J
Pond2-02	0 to 0.5 ft	19-Mar-08				20 J	69 J	400 Y	489	730 O
	0.5 to 1.5 ft	13-Mar-08				25 J	17 J	320 H	362	960 O
Pond 3										
DP-7.13	0 to 0.5 ft	06-Apr-06				9	22	210	241	620 L
	7 to 7.5 ft	06-Apr-06				<0.99	2.9	13	15.9	33 L
DP-7.14	1 to 1.5 ft	06-Apr-06				9.6	16	95	120.6	240 L
	6 to 6.5 ft	06-Apr-06				9.5	26	280	315.5	1100 L
	6.5 to 7 ft	06-Apr-06				8.6	23	270	301.6	900 L
	13 to 13.5 ft	06-Apr-06				<1	<1	<1	ND	<5
DP-7.15	0 to 0.5 ft	06-Apr-06				1.6	6	72	79.6	360 L
	5 to 5.5 ft	06-Apr-06				<1	<1	7.1	7.1	16 L
DP-7.16	4 to 4.5 ft	10-Apr-06				<1	1.1	5.5	6.6	78
Pond3-01	0.5 to 1.5 ft	13-Mar-08				<140 J/UB	24 J	200 H/J	224 /J	560 O/J
Pond3-02	0.5 to 1.5 ft	14-Mar-08				160 Z [RBSC-ali_di]	100 J	1400 H	1660 [TPH-LGW]	4100 O
Pond3-03	0.5 to 1.5 ft	14-Mar-08				120 Z [RBSC-ali_di]	68 J	750 H	938	2200 O
Pond3-04	0 to 0.5 ft	19-Mar-08				27 J	16 J	290 H	333	900 O
Pond3-05	0.5 to 1.5 ft	14-Mar-08				77 J [RBSC-ali_di]	94 J	1200 H	1371 [TPH-LGW]	2800 O
Pond3-06	0 to 0.5 ft	19-Mar-08				11 J	12 J	220 H	243	770 O
Pond3-07	0 to 0.5 ft	19-Mar-08				61 J [RBSC-ali_di]	26 J	220 H	307	760 O
Pond3-08	0 to 0.5 ft	19-Mar-08				28 J	18 J	320 H	366	1200 O
Pond3-09	0 to 0.5 ft	19-Mar-08				25 J	15 J	400 H	440	2200 O
Pond 3										
DP-7.17	0 to 0.5 ft	13-Apr-06				<1	<1	1	1	<5
	5 to 5.5 ft	13-Apr-06				<1	<1	<1	ND	<5
DP-7.18	0 to 0.5 ft	13-Apr-06				<1	<1	<1	ND	<5
	0.5 to 1 ft	13-Apr-06				<1	<1	<1	ND	<5
	5 to 5.5 ft	13-Apr-06				<1	<1	<1	ND	<5
Pond4-01	0 to 0.5 ft	18-Mar-08				5.4 J	<52	11 J	16.4	58 O

		Sample Date / Analyte	PCB #8	PCB #18	PCB #28	PCB #44	PCB #52	PCB #66	PCB #77	PCB #81	PCB #101
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg						
	(IT DSS)	PSL-HH							0.034	0.011	
		PSL-Eco		-	-				-	-	-
Pond 5											
DP-5.63	0 to 0.5 ft	25-Apr-06	0.00043 C	<0.00034	<0.00034	0.0017 C	0.00081 C	0.00063 C	0.0018 C	<0.00034	0.00069
Pond5-01	0 to 1 ft	14-Mar-08	<0.00086 Ui	<0.00086	0.0012	0.00064 J	0.00095	<0.00086 Ui	<0.0037 Ui	0.0033	0.0023
Pond5-02	0 to 1 ft	14-Mar-08	<0.0021 Ui	<0.0012	0.00024 J	<0.0012	<0.0012	<0.0012	<0.0013 Ui	<0.0012 Ui	<0.0012 Ui
Pond5-03	0 to 0.5 ft	18-Mar-08	<0.00098 Ui	<0.00098	0.00031 J	<0.00098	<0.00098	<0.00098 Ui	<0.00098	<0.00098 Ui	<0.00098
Pond 9											
DP-1.5	2 to 2.5 ft	27-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond 8 East											
DP-5.60	3 to 3.5 ft	20-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
	12 to 12.5 ft	20-Apr-06	0.00037 C	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-5.61	5 to 5.5 ft	19-Apr-06	0.00045 C	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
	10 to 10.5 ft	19-Apr-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	< 0.00034	<0.00034
DP-5.62	10 to 10.5 ft	24-Apr-06	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	0.00035 C [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]
	15 to 15.5 ft	24-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond8-05	0.5 to 1.5 ft	17-Mar-08	<0.0012 Ui	0.00097 J	0.0038	0.0021	0.0019 P	0.0014	<0.0012 Ui	<0.0021 Ui	<0.0017 Ui
Pond8-06	0 to 0.5 ft	17-Mar-08	0.0027 P	0.0065	<0.008 Ui	<0.0015 Ui	<0.0054 Ui	<0.0037 Ui	<0.0012 Ui	0.011 P	<0.0033 Ui
	0.5 to 1.5 ft	18-Mar-08	<0.0039 Ui	0.008	0.014	0.0061	0.0057	0.0039	<0.0018 Ui	0.01 P	<0.005 Ui
Pond8-07	0 to 0.5 ft	17-Mar-08	<0.0017 Ui	<0.001 Ui	0.0035 P	0.0016	0.0016	<0.001 Ui	<0.001 Ui	<0.001 Ui	<0.0052 Ui
	0.5 to 1.5 ft	17-Mar-08	0.0019	0.0027	0.0076	0.0037	0.0044	0.0011 P	<0.0005 Ui	<0.0016 Ui	<0.00097 Ui
Pond8-08	0 to 0.5 ft	17-Mar-08	<0.00085 Ui	<0.00085 Ui	0.0012 P	0.00084 JP	0.00074 JP	0.00062 JP	<0.00085 Ui	<0.0025 Ui	<0.0017 Ui
	0.5 to 1.5 ft	17-Mar-08	<0.00058 Ui	<0.00058 Ui	0.0019 P	0.00075 P	<0.00058 Ui	0.0011 P	<0.00074 Ui	<0.0031 Ui	<0.0027 Ui

		Sample Date /	PCB #8	PCB #18	PCB #28	PCB #44	PCB #52	PCB #66	PCB #77	PCB #81	PCB #101
	Depth	Analyte	malka	malka	malka	malka	malka	malka	malka	malka	malka
Location ID	(ft bss)		iiig/kg	ilig/kg	ilig/kg	ilig/kg	iiig/kg	iiig/kg	0.024	0.011	iiig/kg
									0.034	0.011	
Pond 8 West		FSL-LCO	-					-			
	0 to 0 5 ft	24-Apr-06	0.00044	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DF-4.14	0 t0 0.5 ft	24-Api-06	0.00044	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DF-4.15	2 t0 2.5 ft	20-Api-00	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
FUIU6-UT	0 t0 0.5 tt	19 Mar 09	<0.0013 01	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013
Dond [®] 02	0.5 10 1.5 II	17 Mar 08	<0.0011	<0.0011	-0.00055 JP	<0.0011	<0.0011 01	<0.0011	<0.0011	<0.0011	<0.0011
P01106-02	0100.51	17-Iviar-06	<0.00076 UI	<0.00076 01	<0.00076 01	<0.00076	<0.00076 01	<0.00076 01	<0.00076	0.00067 P	<0.00076 01
Darrelo 00	0.5 to 1.5 ft	18-Iviar-08	<0.00084 UI	0.0012 P	0.0028	0.0017	0.002	0.002	<0.00084 01	0.0043	0.0039
P01100-03	0 10 0.5 II	17-Mar-08	<0.0014 Ui	<0.0014	0.00091 JP	<0.0014	<0.0014 01	<0.0014	<0.0014	0.0013 JP	<0.0014 01
Pond8-04	0.0 to 0.5 ft	17-Mar-08	<0.0012 01	<0.002	<0.0025	<0.002	<0.0010	<0.0007 0	<0.0012	<0.0020	<0.002
1 0100 04	0 to 0.5 ft	12-Mar-08	<0.002	<0.002	0.002 01	0.002	<0.002	0.002	<0.002	<0.002	<0.002
Pond 1	0.5 10 1.5 11	12-10101-00	<0.0013 01	<0.0013	0.00033 3	0.00040 0	<0.0013 01	0.0003 3	<0.0013 01	<0.0013 01	<0.0013
	0 to 0.5 ft	12-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP 7.0	0 to 0.5 ft	12-Apt-00	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DF-7.10 Pond1-01	0 to 0.5 ft	12-Api-08	<0.00054	<0.0005	<0.0005	<0.00034	<0.00034	<0.00034	<0.00034	<0.0005	<0.00034
	0 t0 0.5 tt	14 Mar 08	<0.0005 01	<0.0005	<0.0005	<0.0005	<0.0005 01	<0.0005	<0.0005	<0.0005	<0.0005
Pond1 02	0.5 t0 1.5 ft	14-Iviai-08	<0.00087	<0.00007	<0.00007 Ui	<0.00007	<0.0007 01	<0.00007	<0.00007 01	<0.00007 01	<0.00087
Pond 2	0 10 0.5 11	10-Ivial-00	<0.00087	<0.00087	<0.00087 01	<0.00087	<0.00087	<0.00087	<0.00087	<0.00087	<0.00087
	2 40 2 5 4	05 Apr 06	-0.00022	-0.00022	-0.00022	-0.00022	-0.00022	-0.00022	-0.00022	-0.00022	-0.00022
DP-7.11	2102.511	05-Api-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-7.12	2 to 2.5 ft	05-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond2-01	0 to 0.5 ft	19-Iviar-08	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011 UI	<0.0011	<0.0011	<0.0011	<0.0011
D. 10.00	0.5 to 1.5 ft	13-Mar-08	<0.0012 Ui	<0.0011	<0.0011	<0.0011	<0.0011 UI				
Pond2-02	0 to 0.5 ft	19-Mar-08	<0.0015	<0.0015 01	<0.0015 Ui	<0.0015	<0.0015 UI	<0.0015	<0.0015	<0.0015 UI	<0.0015
Dec. 10	0.5 to 1.5 ft	13-Mar-08	<0.0018 Ui	<0.00098	<0.00098 01	<0.00098	<0.00098 01	<0.00098	<0.00098 01	<0.00098 01	<0.00098
Pond 3	01.050	00.400	0.0014	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
DP-7.13	0 to 0.5 ft	06-Apr-06	0.0011	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-7.14	6 to 6.5 ft	06-Apr-06	0.0004 C	<0.00034	0.00061	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-7.15	0 to 0.5 ft	06-Apr-06	<0.00034	<0.00034	<0.00034	< 0.00034	<0.00034	<0.00034	<0.00034	< 0.00034	<0.00034
DP-7.16	4 to 4.5 ft	10-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond3-01	0.5 to 1.5 ft	13-Mar-08	<0.0014 Ui	<0.0014	<0.0014 Ui	<0.0014 Ui	<0.0014 Ui	<0.0014	<0.0014 Ui	<0.0014	<0.0014
Pond3-02	0.5 to 1.5 ft	14-Mar-08	<0.0023 Ui	<0.0013	0.00054 JP	<0.0013	<0.0028 Ui	<0.0013	<0.0013 Ui	<0.0013	<0.0013
Pond3-03	0.5 to 1.5 ft	14-Mar-08	<0.0025 Ui	<0.0012	0.00057 JP	<0.0012	<0.0012 Ui	<0.0012	<0.0012 Ui	<0.0012	<0.0012
Pond3-04	0 to 0.5 ft	19-Mar-08	0.00056 JP	<0.0012	<0.0012	<0.0012	<0.0012 Ui	<0.0012	<0.0012	<0.0012	<0.0012
Pond3-05	0.5 to 1.5 ft	14-Mar-08	<0.002 Ui	<0.0011	<0.0011 Ui	<0.0011	<0.0011 Ui	<0.0011	<0.0011 Ui	<0.0011	<0.0011
Pond3-06	0 to 0.5 ft	19-Mar-08	<0.0011 Ui	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011 Ui	<0.0011	<0.0011 Ui	<0.0011

		Sample Date / Analyte	PCB #8	PCB #18	PCB #28	PCB #44	PCB #52	PCB #66	PCB #77	PCB #81	PCB #101
Location ID	Depth (ft bac)	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bss)	PSL-HH							0.034	0.011	
		PSL-Eco									
Pond3-07	0 to 0.5 ft	19-Mar-08	<0.0013 Ui	<0.0013	<0.0013 Ui	<0.0013	<0.0013 Ui	<0.0013	<0.0013	<0.0013	<0.0013
Pond3-08	0 to 0.5 ft	19-Mar-08	<0.0019 Ui	<0.0014	<0.0014 Ui	<0.0014	<0.0014 Ui	<0.0014	<0.0014	<0.0014	<0.0014
Pond3-09	0 to 0.5 ft	19-Mar-08	<0.0018 Ui	<0.0018	<0.0018 Ui	<0.0018 Ui	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018
Pond 4											
DP-7.17	0 to 0.5 ft	13-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-7.18	0 to 0.5 ft	13-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond4-01	0 to 0.5 ft	18-Mar-08	<0.00052 Ui	<0.00052	<0.00052 Ui	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052 Ui

		Sample Date / Analyte	PCB #105	PCB #118	PCB #128	PCB #138	PCB #153	PCB #156	PCB #169	PCB #170	PCB #180
Location ID	Depth	Units	mg/kg								
	(ft bss)	PSL-HH	0.11	0.11				0.11	0.00011		
		PSL-Eco									
Pond 5											
DP-5.63	0 to 0.5 ft	25-Apr-06	<0.00034	0.0015 [PSL-HH]	0.00055	0.00095	0.00072 C	0.00045	<0.00034	<0.00034	0.00081
Pond5-01	0 to 1 ft	14-Mar-08	0.00045 J	<0.0016 Ui	<0.00086 Ui	0.0018	<0.0018 Ui	<0.00099 Ui	<0.012 Ui	<0.00086 Ui	<0.003 Ui
Pond5-02	0 to 1 ft	14-Mar-08	<0.0012	<0.0012	<0.0012	0.00055 J	<0.0012 Ui	<0.0012	<0.0012 Ui	<0.0012	0.00069 JP
Pond5-03	0 to 0.5 ft	18-Mar-08	<0.00098	<0.00098	<0.00098	0.00043 J	<0.00098	<0.00098 Ui	<0.00098	<0.00098	0.00052 J
Pond 9											
DP-1.5	2 to 2.5 ft	27-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond 8 East											
DP-5.60	3 to 3.5 ft	20-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
	12 to 12.5 ft	20-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-5.61	5 to 5.5 ft	19-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
	10 to 10.5 ft	19-Apr-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-5.62	10 to 10.5 ft	24-Apr-06	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]
	15 to 15.5 ft	24-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond8-05	0.5 to 1.5 ft	17-Mar-08	0.00069 J	0.0014	0.00049 J	0.0018	0.0018	0.00056 J	<0.0012	0.00055 JP	0.0019
Pond8-06	0 to 0.5 ft	17-Mar-08	0.0011	0.0023	0.00086 J	<0.0033 Ui	<0.0032 Ui	<0.00098 Ui	<0.00098	<0.0012 Ui	<0.0029 Ui
	0.5 to 1.5 ft	18-Mar-08	0.0015 J	0.0036	0.0011 J	0.0045	0.0068	0.0011 J	<0.0018	0.0014 JP	0.0035
Pond8-07	0 to 0.5 ft	17-Mar-08	0.0014	0.00087 J	<0.001	0.00074 J	<0.001 Ui	0.00064 J	0.0005 J [PSL-HH]	0.00066 J	0.00087 J
	0.5 to 1.5 ft	17-Mar-08	<0.0005 Ui	0.00086	0.00034 J	0.0012	0.0012 P	0.00084	0.00044 J [PSL-HH]	<0.0005 Ui	0.0017
Pond8-08	0 to 0.5 ft	17-Mar-08	0.00096 P	0.0016	<0.00085	0.0019	0.0018 P	<0.0013 Ui	0.00095 [PSL-HH]	<0.00085 Ui	0.0018 P
	0.5 to 1.5 ft	17-Mar-08	0.0017	0.0045 P	0.00077	0.0025	0.0032	0.0015	0.00072 [PSL-HH]	<0.00058 Ui	<0.0018 Ui

		Sample Date / Analyte	PCB #105	PCB #118	PCB #128	PCB #138	PCB #153	PCB #156	PCB #169	PCB #170	PCB #180
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(IT DSS)	PSL-HH	0.11	0.11				0.11	0.00011		
		PSL-Eco									
Pond 8 West											
DP-4.14	0 to 0.5 ft	24-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-4.15	2 to 2.5 ft	20-Apr-06	<0.00033	<0.00033	<0.00033	0.0012 C	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond8-01	0 to 0.5 ft	17-Mar-08	<0.0013	<0.0013	<0.0013	0.00025 J	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013
	0.5 to 1.5 ft	18-Mar-08	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	0.00022 JP
Pond8-02	0 to 0.5 ft	17-Mar-08	<0.00076	<0.00076	<0.00076	0.00037 J	<0.00076	<0.00076	<0.00076	<0.00076	0.00022 JP
	0.5 to 1.5 ft	18-Mar-08	0.00084 J	0.0019	0.00059 J	0.0031	0.0038 P	0.00038 J	<0.00084	0.0013 P	0.0022
Pond8-03	0 to 0.5 ft	17-Mar-08	<0.0014	<0.0014	<0.0014	0.00031 JP	<0.0014	<0.0014	<0.0014	<0.0014	0.0004 J
	0.5 to 1.5 ft	18-Mar-08	0.00046 J	0.0011 J	0.00036 J	0.0015	0.0015 P	<0.0012 Ui	<0.0012	0.0008 JP	0.0015
Pond8-04	0 to 0.5 ft	17-Mar-08	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	0.5 to 1.5 ft	12-Mar-08	<0.0013	0.00071 JP	<0.0013	0.0007 J	0.00048 JP	0.0003 J	<0.0013	<0.0013	0.00092 J
Pond 1											
DP-7.9	0 to 0.5 ft	12-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-7.10	0 to 0.5 ft	12-Apr-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
Pond1-01	0 to 0.5 ft	18-Mar-08	<0.0018 Ui	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
	0.5 to 1.5 ft	14-Mar-08	<0.00067	<0.00067 Ui	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067
Pond1-02	0 to 0.5 ft	18-Mar-08	<0.00087	<0.00087	<0.00087	<0.00087	<0.00087	<0.00087	<0.00087	<0.00087	<0.00087
Pond 2											
DP-7.11	2 to 2.5 ft	05-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-7.12	2 to 2.5 ft	05-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond2-01	0 to 0.5 ft	19-Mar-08	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011 Ui
	0.5 to 1.5 ft	13-Mar-08	<0.0011	<0.0011	<0.0011	<0.0011	0.00043 J	<0.0011	<0.0011	<0.0011	0.00049 JP
Pond2-02	0 to 0.5 ft	19-Mar-08	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015 Ui
	0.5 to 1.5 ft	13-Mar-08	<0.00098	<0.00098	<0.00098	<0.00098	<0.00098	<0.00098	<0.00098	<0.00098	<0.00098 Ui
Pond 3											
DP-7.13	0 to 0.5 ft	06-Apr-06	<0.00033	0.0011 C	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-7.14	6 to 6.5 ft	06-Apr-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-7.15	0 to 0.5 ft	06-Apr-06	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034	<0.00034
DP-7.16	4 to 4.5 ft	10-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond3-01	0.5 to 1.5 ft	13-Mar-08	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014 Ui
Pond3-02	0.5 to 1.5 ft	14-Mar-08	<0.0013	<0.0013	<0.0013	0.00051 J	0.00091 J	<0.0013	<0.0013	<0.0013 Ui	0.00083 J
Pond3-03	0.5 to 1.5 ft	14-Mar-08	<0.0012	<0.0012 Ui	<0.0012	0.00031 J	<0.0012	<0.0012	<0.0012	<0.0012	0.00084 JP
Pond3-04	0 to 0.5 ft	19-Mar-08	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012 Ui
Pond3-05	0.5 to 1.5 ft	14-Mar-08	<0.0011	<0.0011	<0.0011	0.00033 J	<0.0011	<0.0011	<0.0011	<0.0011	0.00088 J
Pond3-06	0 to 0.5 ft	19-Mar-08	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011 Ui

		Sample Date / Analyte	PCB #105	PCB #118	PCB #128	PCB #138	PCB #153	PCB #156	PCB #169	PCB #170	PCB #180
Location ID	Depth (ft bac)	Units	mg/kg								
	(it bss)	PSL-HH	0.11	0.11				0.11	0.00011		
		PSL-Eco									
Pond3-07	0 to 0.5 ft	19-Mar-08	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013
Pond3-08	0 to 0.5 ft	19-Mar-08	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
Pond3-09	0 to 0.5 ft	19-Mar-08	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018
Pond 4											
DP-7.17	0 to 0.5 ft	13-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
DP-7.18	0 to 0.5 ft	13-Apr-06	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033	<0.00033
Pond4-01	0 to 0.5 ft	18-Mar-08	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052

		Sample Date / Analyte	PCB #187	PCB #206	PCB #209	Total PCB Congeners ⁶
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(IT DSS)	PSL-HH				0.22
		PSL-Eco				0.0598
Pond 5						
DP-5.63	0 to 0.5 ft	25-Apr-06	0.00098	0.00055	<0.00034	0.025
Pond5-01	0 to 1 ft	14-Mar-08	<0.11 Ui	0.002	0.00044 J	0.026
Pond5-02	0 to 1 ft	14-Mar-08	<0.0012	0.0005 J	<0.0012	0.0040
Pond5-03	0 to 0.5 ft	18-Mar-08	<0.00098	0.00033 J	<0.00098	0.0045
Pond 9						
DP-1.5	2 to 2.5 ft	27-Apr-06	<0.00033	<0.00033	<0.00033	ND
Pond 8 East						
DP-5.60	3 to 3.5 ft	20-Apr-06	<0.00033	<0.00033	<0.00033	ND
	12 to 12.5 ft	20-Apr-06	<0.00033	<0.00033	<0.00033	0.00074
DP-5.61	5 to 5.5 ft	19-Apr-06	<0.00033	<0.00033	<0.00033	0.00090
	10 to 10.5 ft	19-Apr-06	<0.00034	<0.00034	<0.00034	ND
DP-5.62	10 to 10.5 ft	24-Apr-06	<0.00033 [<0.00033]	<0.00033 [<0.00033]	<0.00033 [<0.00033]	0.00070 [ND]
	15 to 15.5 ft	24-Apr-06	<0.00033	<0.00033	<0.00033	ND
Pond8-05	0.5 to 1.5 ft	17-Mar-08	0.0011 J	0.00058 J	<0.0012	0.042
Pond8-06	0 to 0.5 ft	17-Mar-08	<0.0021 Ui	0.00098 J	0.00034 JP	0.052
	0.5 to 1.5 ft	18-Mar-08	0.002	0.0011 J	<0.0018	0.150 [PSL-Eco]
Pond8-07	0 to 0.5 ft	17-Mar-08	<0.001	<0.001 Ui	<0.001 Ui	0.025
	0.5 to 1.5 ft	17-Mar-08	0.00095	0.00052	<0.0005 Ui	0.059
Pond8-08	0 to 0.5 ft	17-Mar-08	<0.0012 Ui	0.00094	<0.00085	0.027
	0.5 to 1.5 ft	17-Mar-08	0.00099	0.00092	<0.00058 Ui	0.041

		Sample Date / Analyte	PCB #187	PCB #206	PCB #209	Total PCB Congeners ⁶
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bss)	PSL-HH				0.22
		PSL-Eco				0.0598
Pond 8 West						
DP-4.14	0 to 0.5 ft	24-Apr-06	<0.00033	<0.00033	<0.00033	0.00088
DP-4.15	2 to 2.5 ft	20-Apr-06	<0.00033	<0.00033	<0.00033	0.0024
Pond8-01	0 to 0.5 ft	17-Mar-08	<0.0013	<0.0013	<0.0013	0.00050
	0.5 to 1.5 ft	18-Mar-08	<0.0011	<0.0011	<0.0011	0.0015
Pond8-02	0 to 0.5 ft	17-Mar-08	<0.00076	<0.00076	<0.00076	0.0029
	0.5 to 1.5 ft	18-Mar-08	0.0015	0.00075 J	<0.00084 Ui	0.069 [PSL-Eco]
Pond8-03	0 to 0.5 ft	17-Mar-08	<0.0014	<0.0014	<0.0014	0.0058
	0.5 to 1.5 ft	18-Mar-08	<0.0012	<0.0012	<0.0012	0.044
Pond8-04	0 to 0.5 ft	17-Mar-08	<0.002	<0.002	<0.002	ND
	0.5 to 1.5 ft	12-Mar-08	<0.0013	0.00027 J	<0.0013	0.010
Pond 1	•					
DP-7.9	0 to 0.5 ft	12-Apr-06	<0.00033	<0.00033	<0.00033	ND
DP-7.10	0 to 0.5 ft	12-Apr-06	<0.00034	<0.00034	<0.00034	ND
Pond1-01	0 to 0.5 ft	18-Mar-08	<0.0005	<0.0005	<0.0005	ND
	0.5 to 1.5 ft	14-Mar-08	<0.00067	<0.00067	<0.00067	ND
Pond1-02	0 to 0.5 ft	18-Mar-08	<0.00087	<0.00087	<0.00087	ND
Pond 2						
DP-7.11	2 to 2.5 ft	05-Apr-06	<0.00033	<0.00033	<0.00033	ND
DP-7.12	2 to 2.5 ft	05-Apr-06	<0.00033	<0.00033	<0.00033	ND
Pond2-01	0 to 0.5 ft	19-Mar-08	<0.0011	<0.0011	<0.0011	ND
	0.5 to 1.5 ft	13-Mar-08	<0.0011	<0.0011	<0.0011	0.0018
Pond2-02	0 to 0.5 ft	19-Mar-08	<0.0015	<0.0015	<0.0015	ND
	0.5 to 1.5 ft	13-Mar-08	<0.00098	<0.00098	<0.00098	ND
Pond 3						
DP-7.13	0 to 0.5 ft	06-Apr-06	<0.00033	<0.00033	<0.00033	0.0044
DP-7.14	6 to 6.5 ft	06-Apr-06	<0.00034	<0.00034	<0.00034	0.0020
DP-7.15	0 to 0.5 ft	06-Apr-06	<0.00034	<0.00034	<0.00034	ND
DP-7.16	4 to 4.5 ft	10-Apr-06	<0.00033	<0.00033	<0.00033	ND
Pond3-01	0.5 to 1.5 ft	13-Mar-08	<0.0014	<0.0014	<0.0014	ND
Pond3-02	0.5 to 1.5 ft	14-Mar-08	<0.0013	<0.0013	<0.0013	0.0056
Pond3-03	0.5 to 1.5 ft	14-Mar-08	<0.0012	<0.0012	<0.0012	0.0034
Pond3-04	0 to 0.5 ft	19-Mar-08	<0.0012	<0.0012	<0.0012	0.0011
Pond3-05	0.5 to 1.5 ft	14-Mar-08	<0.0011	<0.0011	<0.0011	0.0024
Pond3-06	0 to 0.5 ft	19-Mar-08	<0.0011	<0.0011	<0.0011	ND

		Sample Date / Analyte	PCB #187	PCB #206	PCB #209	Total PCB Congeners ⁶
Location ID	Depth (ft bac)	Units	mg/kg	mg/kg	mg/kg	mg/kg
	(IT DSS)	PSL-HH				0.22
		PSL-Eco	-		-	0.0598
Pond3-07	0 to 0.5 ft	19-Mar-08	<0.0013	<0.0013	<0.0013	ND
Pond3-08	0 to 0.5 ft	19-Mar-08	<0.0014	<0.0014	<0.0014	ND
Pond3-09	0 to 0.5 ft	19-Mar-08	<0.0018	<0.0018	<0.0018	ND
Pond 4						
DP-7.17	0 to 0.5 ft	13-Apr-06	<0.00033	<0.00033	<0.00033	ND
DP-7.18	0 to 0.5 ft	13-Apr-06	<0.00033	<0.00033	<0.00033	ND
Pond4-01	0 to 0.5 ft	18-Mar-08	<0.00052	<0.00052	<0.00052	ND

		Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(IT DSS)	PSL-HH	310	3400		17000	0.15	0.038	0.15
		PSL-Eco	0.0202	0.00671	0.00587	0.0572	0.108	0.15	10.4
Pond 5									
DP-5.63	0 to 0.5 ft	25-Apr-06	<0.019	<0.016	<0.023	<0.017	<0.015	<0.012	<0.011
	5 to 5.5 ft	25-Apr-06		<0.031	<0.022	<0.021	<0.028	<0.021	<0.024
	10 to 10.5 ft	25-Apr-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
Pond5-01	0 to 1 ft	14-Mar-08	0.11 [PSL-Eco]	0.021 [PSL-Eco]	0.074 [PSL-Eco]	0.019	<0.013 Ui	0.019	0.024
Pond5-02	0 to 1 ft	14-Mar-08	0.0028 J	<0.012	0.0016 J	0.0035 J	0.006 J	0.0064 J	0.0081 J
Pond5-03	0 to 0.5 ft	18-Mar-08	0.043 [PSL-Eco]	0.0066 J [PSL-Eco]	0.029 [PSL-Eco]	0.013	0.023	0.029	0.04
Pond 9									
DP-1.5	0 to 0.5 ft	27-Apr-06		<0.31	<0.22	<0.2	<0.27	<0.21	<0.24
	2 to 2.5 ft	27-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.022	<0.024
	7 to 7.5 ft	27-Apr-06		<0.031	<0.022	<0.02	<0.028	<0.021	<0.024
	12 to 12.5 ft	27-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.022	<0.024
	17 to 17.5 ft	27-Apr-06		<0.031	<0.022	<0.02	<0.028	<0.021	<0.024
North Dand	19.5 to 20 ft	27-Apr-06		<0.031	<0.022	<0.021	<0.028	<0.021	<0.024
	0 to 0 5 ft	17 Apr 06							· · · · ·
DP-4.7	0100.511	17-Api-06		<0.069	<0.083	<0.039	<0.057	<0.034	<0.061
	8 to 8.5 ft	17-Apr-06		<0.36	<0.33	<0.34	<0.22	<0.29	<0.34
	14 to 14.5 ft	17-Apr-06		<0.32	<0.22	<0.21	<0.28	<0.21	<0.24
	19 to 19.5 ft	17-Apr-06		<0.32	0.3 J [PSL-Eco]	<0.21	<0.28	<0.22	<0.24
North Pond-01	0 to 0.5 ft	19-Mar-08	0.0088 J	<0.022	0.0024 J	<0.022	0.011 J	<0.022	0.016 J
Pond 6									
DP-4.8	0 to 0.5 ft	26-Apr-06		<0.031	<0.022	<0.02	<0.028	<0.021	<0.024
	13 to 13.5 ft	26-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.021	<0.024
	18 to 18.5 ft	26-Apr-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
	23 to 23.5 ft	26-Apr-06		<0.0065 [<0.032]	<0.0078 [<0.022]	<0.0037 [<0.021]	<0.0054 [<0.028]	<0.0032 [<0.021]	<0.0057 [<0.024]
	28 to 28.5 ft	26-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.022	<0.024
	33 to 33.5 ft	26-Apr-06		<0.031	<0.022	<0.02	<0.028	<0.021	<0.024
DP-4.9	0.5 to 1 ft	25-Apr-06	<0.019	<0.016	<0.023	<0.016	<0.015	<0.012	<0.011
	6 to 6.5 ft	25-Apr-06	<0.056	<0.036	<0.033	<0.033	<0.021	<0.029	<0.033
	11 to 11.5 ft	25-Apr-06		<0.031 [<0.037]	<0.022 [<0.034]	<0.02 [<0.034]	<0.028 [<0.022]	<0.021 [<0.03]	<0.024 [<0.034]
	16 to 16.5 ft	25-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.022	<0.024
	21 to 21.5 ft	25-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.021	<0.024
	26 to 26.5 ft	25-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.021	<0.024
	31 to 31.5 ft	25-Apr-06		<0.0065	<0.0078	<0.0037	<0.0054	<0.0032	0.0059 J

		Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(IT DSS)	PSL-HH	310	3400		17000	0.15	0.038	0.15
		PSL-Eco	0.0202	0.00671	0.00587	0.0572	0.108	0.15	10.4
DP-4.10	0 to 0.5 ft	18-Apr-06		0.12 J [PSL-Eco]	0.46 [PSL-Eco]	<0.061	<0.082	<0.064	<0.072
	5 to 5.5 ft	18-Apr-06		<0.031	<0.022	<0.021	<0.028	<0.021	<0.024
	10 to 10.5 ft	18-Apr-06		<0.031	<0.022	<0.02	<0.028	<0.021	<0.024
	14.5 to 15 ft	18-Apr-06		<0.031	<0.022	<0.021	<0.028	<0.021	<0.024
Pond6-01	0 to 0.5 ft	18-Mar-08	0.022 J [PSL-Eco]	0.0045 J	0.02 J [PSL-Eco]	0.014 J	0.053	0.045 [PSL-HH]	0.081
	0.5 to 1.5 ft	11-Mar-08	0.011 J	0.0033 J	0.01 J [PSL-Eco]	0.005 J	0.02 J	0.017 J	0.026
Pond6-02	0 to 0.5 ft	18-Mar-08	0.029 [PSL-Eco]	0.0054 J	0.041 [PSL-Eco]	0.028	0.054	0.05 [PSL-HH]	0.1
	0.5 to 1.5 ft	12-Mar-08	0.082 [PSL-Eco]	0.047 [PSL-Eco]	0.4 [PSL-Eco]	0.15 [PSL-Eco]	0.13 [PSL-Eco]	0.17 [PSL-HH,PSL-Eco]	0.23 [PSL-HH]
Pond 7									
DP-4.11	0 to 0.5 ft	18-Apr-06		<0.071	0.086 J [PSL-Eco]	<0.067	<0.043	<0.058	0.075 J
	6 to 6.5 ft	17-Apr-06		<0.31	0.62 J [PSL-Eco]	<0.21	<0.28	<0.21	<0.24
	11 to 11.5 ft	17-Apr-06		<0.019	<0.023	<0.011	0.022 J	<0.0095	0.034 J
DP-4.12	0 to 0.5 ft	18-Apr-06		0.076 [PSL-Eco]	0.54 [PSL-Eco]	0.095 [PSL-Eco]	0.03 J	0.018 J	0.04 J
	6 to 6.5 ft	18-Apr-06		0.13 [PSL-Eco]	1.1 [PSL-Eco]	0.12 [PSL-Eco]	0.03 J	<0.03	0.04 J
	11 to 11.5 ft	18-Apr-06		<0.0065	<0.0078	0.0061 J	0.01 J	0.0073 J	0.0079 J
DP-4.13	0 to 0.5 ft	18-Apr-06		0.053 J [PSL-Eco]	0.42 [PSL-Eco]	0.048 J	0.019 J	0.018 J	0.035 J
	5 to 5.5 ft	18-Apr-06		<0.0065	<0.0078	<0.0037	0.011 J	<0.0032	0.032 J
Pond7-01	0 to 0.5 ft	18-Mar-08	0.089 [PSL-Eco]	0.043 [PSL-Eco]	0.41 [PSL-Eco]	0.15 [PSL-Eco]	0.14 [PSL-Eco]	0.21 [PSL-HH,PSL-Eco]	0.23 [PSL-HH]
	0.5 to 1.5 ft	12-Mar-08	0.074 [PSL-Eco]	0.044 [PSL-Eco]	0.38 [PSL-Eco]	0.19 [PSL-Eco]	0.13 [PSL-Eco]	0.2 [PSL-HH,PSL-Eco]	0.22 [PSL-HH]
Pond7-02	0 to 0.5 ft	18-Mar-08	0.098 [PSL-Eco]	0.054 [PSL-Eco]	0.47 [PSL-Eco]	0.17 [PSL-Eco]	0.14 [PSL-Eco]	0.21 [PSL-HH,PSL-Eco]	0.25 [PSL-HH]
	0.5 to 1.5 ft	12-Mar-08	0.029 [PSL-Eco]	0.027 [PSL-Eco]	0.26 [PSL-Eco]	0.13 [PSL-Eco]	0.16 [PSL-HH,PSL-Eco]	0.24 [PSL-HH,PSL-Eco]	0.29 [PSL-HH]
Pond 8 East									
DP-5.60	3 to 3.5 ft	20-Apr-06		<0.037	<0.034 [<0.17]	<0.034 [<0.17]	<0.022 [<0.11]	<0.03 [<0.15]	<0.034 [<0.17]
	8 to 8.5 ft	20-Apr-06		<0.073	<0.067	<0.069	<0.044	<0.059	<0.069
	12 to 12.5 ft	20-Apr-06		<0.18	<0.17	<0.17	<0.11	<0.15	<0.17
	16.5 to 17 ft	20-Apr-06		<0.033	<0.039	<0.019	0.039 J	0.021 J	0.034 J
DP-5.61	0 to 0.5 ft	19-Apr-06		<0.16	<0.11	<0.1	<0.14	<0.11	<0.12
	5 to 5.5 ft	19-Apr-06		<0.032	0.12 [PSL-Eco]	0.024 J	<0.028	<0.022	<0.024
	10 to 10.5 ft	19-Apr-06		<0.031	<0.022 [<0.022]	<0.02 [<0.02]	<0.027 [<0.027]	<0.021 [<0.021]	<0.024 [<0.024]
	15 to 15.5 ft	19-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.022	<0.024

		Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bss)	PSL-HH	310	3400		17000	0.15	0.038	0.15
		PSL-Eco	0.0202	0.00671	0.00587	0.0572	0.108	0.15	10.4
	20 to 20.5 ft	19-Apr-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
	25 to 25.5 ft	19-Apr-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
DP-5.62	0 to 0.5 ft	24-Apr-06		<1.6	<1.1	<1	<1.4	<1.1	<1.2
	5 to 5.5 ft	24-Apr-06		<1.6	<1.1	<1	<1.4	<1.1	<1.2
	10 to 10.5 ft	24-Apr-06		<0.093	0.35 [0.19 J] [PSL- Eco]	0.083 J [<0.061]	<0.082 [<0.082]	<0.063 [<0.063]	<0.071 [<0.071]
	15 to 15.5 ft	24-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.022	<0.024
	20 to 20.5 ft	24-Apr-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
Pond8-05	0.5 to 1.5 ft	17-Mar-08	0.047 [PSL-Eco]	0.013 [PSL-Eco]	0.057 [PSL-Eco]	0.027	0.14	0.2 [PSL-HH,PSL-Eco]	0.28 [PSL-HH]
Pond8-06	0 to 0.5 ft	17-Mar-08	0.24 [PSL-Eco]	0.067 [PSL-Eco]	0.089 [PSL-Eco]	<0.12 Ui	0.38 [PSL-HH,PSL-Eco]	0.57 [PSL-HH,PSL-Eco]	0.86 [PSL-HH]
	0.5 to 1.5 ft	18-Mar-08	0.23 [PSL-Eco]	0.062 [PSL-Eco]	0.072 [PSL-Eco]	<0.095 Ui	0.13	0.19 [PSL-HH,PSL-Eco]	0.29 [PSL-HH]
Pond8-07	0 to 0.5 ft	17-Mar-08	0.029 [PSL-Eco]	0.011 [PSL-Eco]	0.0089 J [PSL-Eco]	0.044	0.29 [PSL-HH,PSL-Eco]	0.43 [PSL-HH,PSL-Eco]	0.71 [PSL-HH]
	0.5 to 1.5 ft	17-Mar-08	0.02	0.038 [PSL-Eco]	0.024 [PSL-Eco]	0.15	1.1 D [PSL-HH,PSL-Eco]	1.7 D [PSL-HH,PSL-Eco]	2.5 D [PSL-HH]
Pond8-08	0 to 0.5 ft	17-Mar-08	0.041 [PSL-Eco]	0.018 [PSL-Eco]	0.022 [PSL-Eco]	0.087	0.83 [PSL-HH,PSL-Eco]	0.79 [PSL-HH,PSL-Eco]	1.2 [PSL-HH]
	0.5 to 1.5 ft	17-Mar-08	0.04 [PSL-Eco]	0.027 [PSL-Eco]	0.012 [PSL-Eco]	0.069	0.37 [PSL-HH,PSL-Eco]	0.48 [PSL-HH,PSL-Eco]	0.7 [PSL-HH]
Pond 8 West									
DP-4.14	0 to 0.5 ft	24-Apr-06		<0.031	<0.022	<0.021	<0.028	<0.021	<0.024
	4 to 4.5 ft	24-Apr-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
	7.5 to 8 ft	24-Apr-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
DP-4.15	0 to 0.5 ft	20-Apr-06		<0.18	<0.17	<0.17	<0.11	<0.15	<0.17
	2 to 2.5 ft	20-Apr-06		<0.18	<0.17	<0.17	<0.11	<0.15	<0.17
	/ to /.5 ft	20-Apr-06		<0.036	<0.033	<0.034	<0.022	<0.029	<0.034
	11.5 to 12 ft	20-Apr-06		<0.036	<0.034 [<0.034]	<0.034 [<0.034]	<0.022 [<0.022]	<0.03 [<0.03]	<0.034 [<0.034]
Pond8-01	0 to 0.5 ft	17-Mar-08	0.015	0.0072 J [PSL-Eco]	0.023 [PSL-Eco]	0.015	0.034	0.042 [PSL-HH]	0.059
	0.5 to 1.5 ft	18-Mar-08	0.041 [PSL-Eco]	0.016 [PSL-Eco]	0.12 [PSL-Eco]	0.079	0.18 [PSL-HH,PSL-Eco]	0.22 [PSL-HH,PSL-Eco]	0.28 [PSL-HH]
Pond8-02	0 to 0.5 ft	17-Mar-08	0.037 [PSL-Eco]	0.012 [PSL-Eco]	0.063 [PSL-Eco]	0.039	0.068	0.11 [PSL-HH]	0.14
	0.5 to 1.5 ft	18-Mar-08	0.13 [PSL-Eco]	0.048 [PSL-Eco]	0.24 [PSL-Eco]	0.12	0.17 [PSL-HH,PSL-Eco]	0.2 [PSL-HH,PSL-Eco]	0.27 [PSL-HH]
Pond8-03	0 to 0.5 ft	17-Mar-08	0.04 [PSL-Eco]	0.015 [PSL-Eco]	0.11 [PSL-Eco]	0.063	0.084	0.11 [PSL-HH]	0.13

		Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bss)	PSL-HH	310	3400		17000	0.15	0.038	0.15
		PSL-Eco	0.0202	0.00671	0.00587	0.0572	0.108	0.15	10.4
	0.5 to 1.5 ft	18-Mar-08	0.14 [PSL-Eco]	0.059 [PSL-Eco]	0.45 [PSL-Eco]	0.3	0.51 [PSL-HH,PSL-Eco]	0.58 [PSL-HH,PSL-Eco]	0.8 [PSL-HH]
Pond8-04	0 to 0.5 ft	17-Mar-08	0.013 J	0.0037 J	0.022 [PSL-Eco]	0.012 J	0.031	0.051 [PSL-HH]	0.074
	0.5 to 1.5 ft	12-Mar-08	0.012 J	0.0055 J	0.038 [PSL-Eco]	0.031	0.052	0.077 [PSL-HH]	0.11
SD-5.1	1.5 to 2 ft	05-Apr-06		<0.065	<0.079	<0.037	<0.054	<0.032	<0.058
SD-5.2	1.5 to 2 ft	05-Apr-06		<0.15	<0.11	<0.1	<0.14	<0.11	<0.12
Pond 1									
DP-7.9	0 to 0.5 ft	12-Apr-06		<0.0065	0.036 J [PSL-Eco]	0.013 J	0.012 J	0.0096 J	0.019 J
	0.5 to 1 ft	12-Apr-06		<0.0065	<0.0079	<0.0037	<0.0054	<0.0032	<0.0058
	5 to 5.5 ft	12-Apr-06		<0.0065	<0.0078	<0.0037	<0.0054	<0.0032	0.012 J
DP-7.10	0 to 0.5 ft	12-Apr-06		<0.032	<0.022	<0.021	<0.028	0.022 J	0.026 J
	5 to 5.5 ft	12-Apr-06		<0.036	<0.034	<0.034	<0.022	<0.03	<0.034
Pond1-01	0 to 0.5 ft	18-Mar-08	0.0053	0.0013 J	0.016 [PSL-Eco]	0.0077	0.012	0.017	0.022
	0.5 to 1.5 ft	14-Mar-08	0.013	0.0056 J	0.049 [PSL-Eco]	0.03	0.038	0.053 [PSL-HH]	0.067
Pond1-02	0 to 0.5 ft	18-Mar-08	0.033 [PSL-Eco]	0.013 [PSL-Eco]	0.14 [PSL-Eco]	0.081 [PSL-Eco]	0.13 [PSL-Eco]	0.16 [PSL-HH,PSL-Eco]	0.21 [PSL-HH]
Pond 2									
DP-7.11	2 to 2.5 ft	05-Apr-06		<0.63	0.47 J [PSL-Eco]	<0.41	<0.55	<0.43	<0.48
	7 to 7.5 ft	05-Apr-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
DP-7.12	2 to 2.5 ft	05-Apr-06		<0.013	<0.011	<0.011	<0.0098	<0.0099	<0.011
	7 to 7.5 ft	05-Apr-06		<0.013	<0.011	<0.011	<0.01	<0.01	<0.011
Pond2-01	0 to 0.5 ft	19-Mar-08	0.11 [PSL-Eco]	0.043 [PSL-Eco]	0.48 [PSL-Eco]	0.3 [PSL-Eco]	0.46 [PSL-HH,PSL-Eco]	0.53 [PSL-HH,PSL-Eco]	0.77 [PSL-HH]
	0.5 to 1.5 ft	13-Mar-08	0.04 [PSL-Eco]	0.017 [PSL-Eco]	0.19 [PSL-Eco]	0.12 [PSL-Eco]	0.17 [PSL-HH,PSL-Eco]	0.23 [PSL-HH,PSL-Eco]	0.32 [PSL-HH]
Pond2-02	0 to 0.5 ft	19-Mar-08	0.5 D [PSL-Eco]	0.29 D [PSL-Eco]	3.4 D [PSL-Eco]	1.3 D [PSL-Eco]	1.1 D [PSL-HH,PSL-Eco]	1.6 D [PSL-HH,PSL-Eco]	1.9 D [PSL-HH]
	0.5 to 1.5 ft	13-Mar-08	0.032 [PSL-Eco]	0.013 [PSL-Eco]	0.15 [PSL-Eco]	0.095 [PSL-Eco]	0.11 [PSL-Eco]	0.16 [PSL-HH,PSL-Eco]	0.2 [PSL-HH]
Pond 3									
DP-7.13	0 to 0.5 ft	06-Apr-06		<0.63	1 J [PSL-Eco]	0.68 J [PSL-Eco]	0.94 J [PSL-HH,PSL-Eco]	0.54 J [PSL-HH,PSL-Eco]	0.69 J [PSL-HH]
	7 to 7.5 ft	06-Apr-06		<0.031	<0.022	<0.02	<0.028	<0.021	<0.024
DP-7.14	1 to 1.5 ft	06-Apr-06		<0.31	0.94 [PSL-Eco]	<0.2	<0.27	<0.21	<0.24
	6 to 6.5 ft	06-Apr-06		<0.78	<0.55	<0.51	<0.69	<0.53	<0.6
	6.5 to 7 ft	06-Apr-06		<0.63	<0.44	<0.41	<0.56	<0.43	<0.48
	13 to 13.5 ft	06-Apr-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
DP-7.15	0 to 0.5 ft	06-Apr-06		<0.31	<0.22	<0.21	<0.28	<0.21	<0.24
	5 to 5.5 ft	06-Apr-06		<0.062	<0.044	<0.041	<0.055	<0.042	0.051 J
DP-7.16	4 to 4.5 ft	10-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.022	<0.024

		Sample Date / Analyte	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(IT DSS)	PSL-HH	310	3400		17000	0.15	0.038	0.15
		PSL-Eco	0.0202	0.00671	0.00587	0.0572	0.108	0.15	10.4
Pond3-01	0.5 to 1.5 ft	13-Mar-08	0.067 [PSL-Eco]	0.022 [PSL-Eco]	0.37 [PSL-Eco]	0.2 [PSL-Eco]	0.15 [PSL-Eco]	0.28 [PSL-HH,PSL-Eco]	0.29 [PSL-HH]
Pond3-02	0.5 to 1.5 ft	14-Mar-08	0.022 [PSL-Eco]	0.0091 J [PSL-Eco]	0.089 [PSL-Eco]	0.053	0.11 [PSL-Eco]	0.16 [PSL-HH,PSL-Eco]	0.2 [PSL-HH]
Pond3-03	0.5 to 1.5 ft	14-Mar-08	0.008 J	0.0042 J	0.035 [PSL-Eco]	0.011 J	0.037	0.054 [PSL-HH]	0.069
Pond3-04	0 to 0.5 ft	19-Mar-08	0.027 [PSL-Eco]	0.0085 J [PSL-Eco]	0.088 [PSL-Eco]	0.044	0.069	0.1 [PSL-HH]	0.13
Pond3-05	0.5 to 1.5 ft	14-Mar-08	0.018	0.0064 J	0.048 [PSL-Eco]	0.017	0.045	0.057 [PSL-HH]	0.073
Pond3-06	0 to 0.5 ft	19-Mar-08	0.043 [PSL-Eco]	0.021 [PSL-Eco]	0.18 [PSL-Eco]	0.11 [PSL-Eco]	0.22 [PSL-HH,PSL-Eco]	0.26 [PSL-HH,PSL-Eco]	0.36 [PSL-HH]
Pond3-07	0 to 0.5 ft	19-Mar-08	0.028 [PSL-Eco]	0.013 J [PSL-Eco]	0.094 [PSL-Eco]	0.031	0.048	0.062 [PSL-HH]	0.084
Pond3-08	0 to 0.5 ft	19-Mar-08	0.025 [PSL-Eco]	0.013 J [PSL-Eco]	0.099 [PSL-Eco]	0.045	0.078	0.1 [PSL-HH]	0.14
Pond3-09	0 to 0.5 ft	19-Mar-08	0.036 [PSL-Eco]	0.013 J [PSL-Eco]	0.091 [PSL-Eco]	0.077 [PSL-Eco]	0.12 [PSL-Eco]	0.16 [PSL-HH,PSL-Eco]	0.23 [PSL-HH]
Pond 4									
DP-7.17	0 to 0.5 ft	13-Apr-06		<0.0065	<0.0078	<0.0037	<0.0054	<0.0032	<0.0057
	5 to 5.5 ft	13-Apr-06		<0.0065	<0.0079	<0.0037	<0.0054	<0.0032	<0.0058
DP-7.18	0 to 0.5 ft	13-Apr-06		<0.032	<0.022	<0.021	<0.028	<0.022	<0.024
	0.5 to 1 ft	13-Apr-06		<0.031	<0.022	<0.02	<0.027	<0.021	<0.024
	5 to 5.5 ft	13-Apr-06		<0.0066	<0.0079	<0.0037	<0.0054	<0.0032	<0.0058
Pond4-01	0 to 0.5 ft	18-Mar-08	0.0033 J	0.00073 J	0.0071 [PSL-Eco]	0.0034 J	0.0058	0.0077	0.01

		Sample Date / Analyte	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bss)	PSL-HH		0.38	3.8	0.015	78	2300	2300
		PSL-Eco	0.17	0.24	0.166	0.033		0.423	0.0774
Pond 5									
DP-5.63	0 to 0.5 ft	25-Apr-06	<0.013	<0.017	<0.017	<0.014	<0.34	<0.015	<0.017
	5 to 5.5 ft	25-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	10 to 10.5 ft	25-Apr-06	<0.026	<0.027	0.029 J	<0.027		<0.032	<0.03
Pond5-01	0 to 1 ft	14-Mar-08	0.049	0.0047 J	0.019	0.0027 J	0.027	0.14	0.058
Pond5-02	0 to 1 ft	14-Mar-08	0.01 J	0.0028 J	0.0049 J	0.0018 J	0.0023 J	0.013	0.0023 J
Pond5-03	0 to 0.5 ft	18-Mar-08	0.048	0.011	0.037	0.0047 J	0.017	0.079	0.02
Pond 9								• •	
DP-1.5	0 to 0.5 ft	27-Apr-06	<0.26	<0.27	<0.27	<0.27		<0.32	<0.3
	2 to 2.5 ft	27-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031
	7 to 7.5 ft	27-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	12 to 12.5 ft	27-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031
	17 to 17.5 ft	27-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	19.5 to 20 ft	27-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
North Pond									
DP-4.7	0 to 0.5 ft	17-Apr-06	<0.12	<0.071	<0.05	<0.06		<0.043	<0.056
	8 to 8.5 ft	17-Apr-06	<0.27	<0.27	<0.24	<0.26		<0.35	<0.33
	14 to 14.5 ft	17-Apr-06	<0.26	<0.27	<0.27	<0.27		<0.32	<0.31
	19 to 19.5 ft	17-Apr-06	<0.26	<0.27	<0.27	<0.27		1.1 [PSL-Eco]	<0.31
North Pond-01	0 to 0.5 ft	19-Mar-08	0.018 J	<0.022	0.01 J	<0.022	0.0026 J	0.016 J	0.0026 J
Pond 6									
DP-4.8	0 to 0.5 ft	26-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	13 to 13.5 ft	26-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031
	18 to 18.5 ft	26-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	23 to 23.5 ft	26-Apr-06	<0.012 [<0.026]	<0.0067 [<0.027]	<0.0047 [<0.027]	<0.0057 [<0.027]		<0.004 [<0.032]	<0.0053 [<0.031]
	28 to 28.5 ft	26-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031
	33 to 33.5 ft	26-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
DP-4.9	0.5 to 1 ft	25-Apr-06	<0.013	<0.017	<0.017	<0.014	<0.34	<0.015	<0.017
	6 to 6.5 ft	25-Apr-06	<0.026	<0.026	<0.024	<0.025	<0.33	0.043 J	<0.032
	11 to 11.5 ft	25-Apr-06	<0.026 [<0.027]	<0.027 [<0.027]	<0.027 [<0.024]	<0.027 [<0.026]		<0.032 [<0.035]	<0.03 [<0.033]
	16 to 16.5 ft	25-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031
	21 to 21.5 ft	25-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031
	26 to 26.5 ft	25-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031
	31 to 31.5 ft	25-Apr-06	<0.012	<0.0067	<0.0047	<0.0057		0.0053 J	<0.0053

		Sample Date / Analyte	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene
Location ID	Depth ((t h c c)	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(n bss)	PSL-HH	-	0.38	3.8	0.015	78	2300	2300
		PSL-Eco	0.17	0.24	0.166	0.033		0.423	0.0774
DP-4.10	0 to 0.5 ft	18-Apr-06	<0.078	<0.081	<0.081	<0.081		0.42	0.11 J [PSL-Eco]
	5 to 5.5 ft	18-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	10 to 10.5 ft	18-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	14.5 to 15 ft	18-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
Pond6-01	0 to 0.5 ft	18-Mar-08	0.061	0.025 J	0.077	0.0099 J	0.043	0.18	0.011 J
	0.5 to 1.5 ft	11-Mar-08	0.024	0.008 J	0.019 J	0.0051 J	0.01 J	0.072	0.0077 J
Pond6-02	0 to 0.5 ft	18-Mar-08	0.08	0.03	0.09	0.0077 J	0.089	0.26	0.026
	0.5 to 1.5 ft	12-Mar-08	0.19 [PSL-Eco]	0.068	0.16	0.012	0.45	0.72 [PSL-Eco]	0.12 [PSL-Eco]
Pond 7									
DP-4.11	0 to 0.5 ft	18-Apr-06	<0.053	<0.052	0.064 J	<0.051		0.26	<0.065
	6 to 6.5 ft	17-Apr-06	<0.26	<0.27	<0.27	<0.27		1.2 [PSL-Eco]	<0.3
	11 to 11.5 ft	17-Apr-06	<0.034	<0.02	0.049 J	<0.017		0.025 J	<0.016
DP-4.12	0 to 0.5 ft	18-Apr-06	<0.012	0.011 J	0.062 J	<0.0057		0.61 [PSL-Eco]	0.16 [PSL-Eco]
	6 to 6.5 ft	18-Apr-06	<0.027	<0.027	0.066 J	<0.026		0.81 [PSL-Eco]	0.25 [PSL-Eco]
	11 to 11.5 ft	18-Apr-06	<0.012	<0.0067	0.017 J	<0.0057		0.011 J	0.019 J
DP-4.13	0 to 0.5 ft	18-Apr-06	<0.012	0.011 J	0.034 J	<0.0057		0.37	0.1 [PSL-Eco]
	5 to 5.5 ft	18-Apr-06	<0.012	<0.0067	0.031 J	<0.0057		0.02 J	<0.0053
Pond7-01	0 to 0.5 ft	18-Mar-08	0.3 [PSL-Eco]	0.065	0.16	0.013	0.26	0.76 [PSL-Eco]	0.13 [PSL-Eco]
	0.5 to 1.5 ft	12-Mar-08	0.26 [PSL-Eco]	0.071	0.16	0.011	0.34	0.82 [PSL-Eco]	0.13 [PSL-Eco]
Pond7-02	0 to 0.5 ft	18-Mar-08	0.29 [PSL-Eco]	0.074	0.17 [PSL-Eco]	0.013 J	0.29	0.9 [PSL-Eco]	0.14 [PSL-Eco]
	0.5 to 1.5 ft	12-Mar-08	0.3 [PSL-Eco]	0.082	0.16	0.011 J	0.29	0.99 [PSL-Eco]	0.13 [PSL-Eco]
Pond 8 East									
DP-5.60	3 to 3.5 ft	20-Apr-06	<0.027 [<0.13]	<0.027	<0.024 [<0.12]	<0.026		<0.035 [<0.17]	<0.033 [<0.16]
	8 to 8.5 ft	20-Apr-06	<0.054	<0.053	0.05 J	<0.052		<0.07	<0.066
	12 to 12.5 ft	20-Apr-06	<0.13	<0.13	<0.12	<0.13		<0.18	<0.17
	16.5 to 17 ft	20-Apr-06	<0.058	<0.034	0.072 J	<0.029		0.027 J	0.031 J
DP-5.61	0 to 0.5 ft	19-Apr-06	<0.13	<0.14	<0.14	<0.14		<0.16	<0.15
	5 to 5.5 ft	19-Apr-06	<0.026	<0.027	<0.027	<0.027		0.092	0.037 J
	10 to 10.5 ft	19-Apr-06	<0.026 [<0.026]	<0.027	<0.027 [<0.027]	<0.027		<0.032 [<0.032]	<0.03 [<0.03]
	15 to 15.5 ft	19-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031

		Sample Date / Analyte	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(IT DSS)	PSL-HH		0.38	3.8	0.015	78	2300	2300
		PSL-Eco	0.17	0.24	0.166	0.033		0.423	0.0774
	20 to 20.5 ft	19-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	25 to 25.5 ft	19-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
DP-5.62	0 to 0.5 ft	24-Apr-06	<1.3	<1.4	<1.4	<1.4		<1.6	<1.5
	5 to 5.5 ft	24-Apr-06	<1.3	<1.4	<1.4	<1.4		<1.6	<1.5
	10 to 10.5 ft	24-Apr-06	0.097 J [<0.077]	<0.08	0.083 J [<0.08]	<0.081		0.43 [0.25]	0.11 J [<0.09]
	15 to 15.5 ft	24-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031
	20 to 20.5 ft	24-Apr-06	<0.026	<0.027	0.053 J	<0.027		0.043 J	0.051 J
Pond8-05	0.5 to 1.5 ft	17-Mar-08	0.23 [PSL-Eco]	0.085	0.22	0.035 [PSL-HH,PSL-Eco]	0.048	0.5	0.044
Pond8-06	0 to 0.5 ft	17-Mar-08	0.68 [PSL-Eco]	0.25	0.5	0.11 [PSL-HH,PSL-Eco]	0.14	1.4	0.22
	0.5 to 1.5 ft	18-Mar-08	0.23 [PSL-Eco]	0.081	0.21	0.035 [PSL-HH,PSL-Eco]	0.094	0.58	0.26
Pond8-07	0 to 0.5 ft	17-Mar-08	0.83 [PSL-Eco]	0.19	0.49	0.17 [PSL-HH,PSL-Eco]	0.017	0.85	0.031
	0.5 to 1.5 ft	17-Mar-08	1.9 D [PSL-Eco]	0.77 D [PSL-HH,PSL-Eco]	1.9 D	0.4 D [PSL-HH,PSL-Eco]	0.03	2.6 D	0.054
Pond8-08	0 to 0.5 ft	17-Mar-08	0.99 [PSL-Eco]	0.35	1.2	0.23 [PSL-HH,PSL-Eco]	0.018	2.2	0.044
	0.5 to 1.5 ft	17-Mar-08	0.67 [PSL-Eco]	0.21	0.69	0.13 [PSL-HH,PSL-Eco]	0.03	1.5	0.063
Pond 8 West									
DP-4.14	0 to 0.5 ft	24-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	4 to 4.5 ft	24-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	7.5 to 8 ft	24-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
DP-4.15	0 to 0.5 ft	20-Apr-06	<0.13	<0.13	<0.12	<0.13		<0.17	<0.16
	2 to 2.5 ft	20-Apr-06	<0.13	<0.13	<0.12	<0.13		<0.17	<0.16
	7 to 7.5 ft	20-Apr-06	<0.026	<0.026	<0.024	<0.025		<0.034	<0.032
	11.5 to 12 ft	20-Apr-06	<0.027 [<0.027]	<0.027	0.047 J [<0.024]	<0.026		<0.035 [<0.035]	0.041 J [<0.033]
Pond8-01	0 to 0.5 ft	17-Mar-08	0.068	0.014	0.048	0.0083 J	0.027	0.13	0.023
	0.5 to 1.5 ft	18-Mar-08	0.23 [PSL-Eco]	0.08	0.21	0.015	0.12	0.68	0.056
Pond8-02	0 to 0.5 ft	17-Mar-08	0.1	0.033	0.077	0.012	0.07	0.31	0.044
	0.5 to 1.5 ft	18-Mar-08	0.2 [PSL-Eco]	0.068	0.18	0.015	0.19	1	0.16
Pond8-03	0 to 0.5 ft	17-Mar-08	0.11	0.036	0.088	0.011 J	0.11	0.38	0.049

		Sample Date / Analyte	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bss)	PSL-HH		0.38	3.8	0.015	78	2300	2300
		PSL-Eco	0.17	0.24	0.166	0.033		0.423	0.0774
	0.5 to 1.5 ft	18-Mar-08	0.53 [PSL-Eco]	0.21	0.59	0.036 [PSL-HH,PSL-Eco]	0.38	2.8	0.23
Pond8-04	0 to 0.5 ft	17-Mar-08	0.066	0.019 J	0.056	0.0098 J	0.023	0.12	0.015 J
	0.5 to 1.5 ft	12-Mar-08	0.097	0.031	0.058	0.01 J	0.05	0.19	0.025
SD-5.1	1.5 to 2 ft	05-Apr-06	<0.12	<0.068	<0.048	<0.057		0.059 J	<0.053
SD-5.2	1.5 to 2 ft	05-Apr-06	<0.13	<0.13	<0.13	<0.13		<0.16	<0.15
Pond 1									
DP-7.9	0 to 0.5 ft	12-Apr-06	<0.012	<0.0067	0.023 J	<0.0057		0.11	0.014 J
	0.5 to 1 ft	12-Apr-06	<0.012	<0.0067	<0.0048	<0.0057		0.012 J	<0.0053
	5 to 5.5 ft	12-Apr-06	<0.012	<0.0067	0.019 J	<0.0057		0.0067 J	<0.0053
DP-7.10	0 to 0.5 ft	12-Apr-06	<0.026	0.032 J	0.038 J	<0.027		0.14	<0.031
	5 to 5.5 ft	12-Apr-06	<0.027	<0.027	<0.024	<0.026		<0.035	<0.033
Pond1-01	0 to 0.5 ft	18-Mar-08	0.023	0.0052	0.014	0.0018 J	0.027	0.044	0.006
	0.5 to 1.5 ft	14-Mar-08	0.066	0.021	0.046	0.0041 J	0.052	0.15	0.019
Pond1-02	0 to 0.5 ft	18-Mar-08	0.18 [PSL-Eco]	0.062	0.14	0.015	0.2	0.53 [PSL-Eco]	0.084 [PSL-Eco]
Pond 2									
DP-7.11	2 to 2.5 ft	05-Apr-06	<0.52	<0.54	0.59 J [PSL-Eco]	<0.54		2.8 [PSL-Eco]	<0.61
	7 to 7.5 ft	05-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
DP-7.12	2 to 2.5 ft	05-Apr-06	<0.011	<0.014	<0.013	<0.0085		<0.012	<0.014
	7 to 7.5 ft	05-Apr-06	<0.011	<0.014	<0.013	<0.0086		<0.013	<0.015
Pond2-01	0 to 0.5 ft	19-Mar-08	0.58 [PSL-Eco]	0.21	0.53 [PSL-Eco]	0.041 [PSL-HH,PSL-Eco]	0.61	2 [PSL-Eco]	0.27 [PSL-Eco]
	0.5 to 1.5 ft	13-Mar-08	0.29 [PSL-Eco]	0.093	0.21 [PSL-Eco]	0.017 [PSL-HH]	0.21	0.71 [PSL-Eco]	0.091 [PSL-Eco]
Pond2-02	0 to 0.5 ft	19-Mar-08	2.6 D [PSL-Eco]	0.64 D [PSL-HH,PSL-Eco]	1.3 D [PSL-Eco]	0.15 D [PSL-HH,PSL-Eco]	1.8 D	7.8 D [PSL-Eco]	0.99 D [PSL-Eco]
	0.5 to 1.5 ft	13-Mar-08	0.21 [PSL-Eco]	0.061	0.13	0.012	0.15	0.47 [PSL-Eco]	0.067
Pond 3		-							
DP-7.13	0 to 0.5 ft	06-Apr-06	<0.52	0.82 J [PSL-HH,PSL-Eco]	1.4 [PSL-Eco]	<0.54		7.1 [PSL-Eco]	<0.61
	7 to 7.5 ft	06-Apr-06	<0.026	<0.027	0.058 J	<0.027		0.038 J	<0.03
DP-7.14	1 to 1.5 ft	06-Apr-06	<0.26	<0.27	<0.27	<0.27		1.2 [PSL-Eco]	<0.3
	6 to 6.5 ft	06-Apr-06	<0.65	<0.67	<0.68	<0.68		3 [PSL-Eco]	<0.76
	6.5 to 7 ft	06-Apr-06	<0.52	<0.54	<0.55	<0.55		2.1 [PSL-Eco]	<0.61
	13 to 13.5 ft	06-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
DP-7.15	0 to 0.5 ft	06-Apr-06	<0.26	<0.27	<0.27	<0.27		0.47 J [PSL-Eco]	<0.3
	5 to 5.5 ft	06-Apr-06	<0.052	<0.054	0.13 J	<0.054		0.068 J	<0.06
DP-7.16	4 to 4.5 ft	10-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031

Location ID Depth		Sample Date / Analyte	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Fluoranthene	Fluorene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bss)	PSL-HH		0.38	3.8	0.015	78	2300	2300
		PSL-Eco	0.17	0.24	0.166	0.033		0.423	0.0774
Pond3-01	0.5 to 1.5 ft	13-Mar-08	0.4 [PSL-Eco]	0.087	0.17 [PSL-Eco]	0.017 [PSL-HH]	0.24	0.87 [PSL-Eco]	0.14 [PSL-Eco]
Pond3-02	0.5 to 1.5 ft	14-Mar-08	0.2 [PSL-Eco]	0.058	0.14	0.013 J	0.072	0.34	0.03
Pond3-03	0.5 to 1.5 ft	14-Mar-08	0.07	0.022	0.04	0.0046 J	0.05	0.12	0.015
Pond3-04	0 to 0.5 ft	19-Mar-08	0.15	0.036	0.078	0.0096 J	0.1	0.27	0.041
Pond3-05	0.5 to 1.5 ft	14-Mar-08	0.068	0.022	0.055	0.0042 J	0.049	0.14	0.02
Pond3-06	0 to 0.5 ft	19-Mar-08	0.3 [PSL-Eco]	0.1	0.24 [PSL-Eco]	0.023 [PSL-HH]	0.24	0.75 [PSL-Eco]	0.16 [PSL-Eco]
Pond3-07	0 to 0.5 ft	19-Mar-08	0.085	0.024	0.053	0.0072 J	0.1	0.17	0.027
Pond3-08	0 to 0.5 ft	19-Mar-08	0.13	0.04	0.087	U 8600.0	0.11	0.28	0.066
Pond3-09	0 to 0.5 ft	19-Mar-08	0.21 [PSL-Eco]	0.052	0.18 [PSL-Eco]	0.015 J	0.16	0.51 [PSL-Eco]	0.14 [PSL-Eco]
Pond 4									
DP-7.17	0 to 0.5 ft	13-Apr-06	<0.012	<0.0067	<0.0047	<0.0057		<0.0041	<0.0053
	5 to 5.5 ft	13-Apr-06	<0.012	<0.0067	<0.0048	<0.0057		<0.0041	<0.0053
DP-7.18	0 to 0.5 ft	13-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.031
	0.5 to 1 ft	13-Apr-06	<0.026	<0.027	<0.027	<0.027		<0.032	<0.03
	5 to 5.5 ft	13-Apr-06	<0.012	<0.0068	<0.0048	<0.0057		<0.0041	<0.0053
Pond4-01	0 to 0.5 ft	18-Mar-08	0.014	0.0032 J	0.0068	0.00097 J	0.01	0.022	0.0017 J

		Sample Date / Analyte	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bss)	PSL-HH	0.15	3.6		1700				0.038
		PSL-Eco	0.2	0.176	0.204	0.195			1.61	
Pond 5										
DP-5.63	0 to 0.5 ft	25-Apr-06	<0.013	<0.018	<0.017	<0.013	ND	ND	ND	ND
	5 to 5.5 ft	25-Apr-06	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
	10 to 10.5 ft	25-Apr-06	<0.029	<0.034	0.062 J	<0.034	0.062	0.029	0.091	0.00029
Pond5-01	0 to 1 ft	14-Mar-08	0.018	0.44 [PSL-Eco]	0.34 [PSL-Eco]	0.27 [PSL-Eco]	1.1	0.55	0.90	0.027
Pond5-02	0 to 1 ft	14-Mar-08	0.0055 J	0.0051 J	0.0098 J	0.014	0.027	0.073	0.077	0.010
Pond5-03	0 to 0.5 ft	18-Mar-08	0.038	0.12	0.12	0.09	0.37	0.40	0.50	0.045 [PSL-HH]
Pond 9								-		
DP-1.5	0 to 0.5 ft	27-Apr-06	<0.29	<0.34	<0.31	<0.34	ND	ND	ND	ND
	2 to 2.5 ft	27-Apr-06	<0.029	<0.034	<0.032	<0.035	ND	ND	ND	ND
	7 to 7.5 ft	27-Apr-06	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
	12 to 12.5 ft	27-Apr-06	<0.029	<0.034	<0.032	<0.035	ND	ND	ND	ND
	17 to 17.5 ft	27-Apr-06	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
	19.5 to 20 ft	27-Apr-06	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
North Pond		17.1			1					
DP-4.7	0 to 0.5 ft	17-Apr-06	<0.048	<0.072	<0.036	<0.048	ND	ND	ND	ND
	8 to 8.5 ft	17-Apr-06	<0.32	<0.41	<0.3	<0.24	ND	ND	ND	ND
	14 to 14.5 ft	17-Apr-06	<0.29	<0.34	<0.32	<0.35	ND	ND	ND	ND
	19 to 19.5 ft	17-Apr-06	<0.29	0.73 [PSL-Eco]	0.74 [PSL-Eco]	1.1 [PSL-Eco]	1.8	2.2	2.1 [PSL-Eco]	ND
North Pond-01	0 to 0.5 ft	19-Mar-08	0.016 J	0.011 J	0.015 J	0.025	0.042	0.11	0.12	0.0044
Pond 6										
DP-4.8	0 to 0.5 ft	26-Apr-06	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
	13 to 13.5 ft	26-Apr-06	<0.029	<0.034	<0.032	< 0.035	ND	ND	ND	ND
	18 to 18.5 ft	26-Apr-06	<0.029	<0.034	<0.031	<0.034	ND	ND	ND	ND
	23 to 23.5 ft	26-Apr-06	<0.0045 [<0.029]	<0.0068 [<0.034]	<0.0034 [<0.032]	<0.0045 [<0.034]	ND [ND]	ND [ND]	ND [ND]	ND [ND]
	28 to 28.5 ft	26-Apr-06	<0.029	<0.034	<0.032	< 0.035	ND	ND	ND	ND
	33 to 33.5 ft	26-Apr-06	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
DP-4.9	0.5 to 1 ft	25-Apr-06	<0.013	<0.018	<0.017	<0.013	ND	ND	ND	ND
	6 to 6.5 ft	25-Apr-06	<0.031	<0.041	0.032 J	0.043 J	0.032	0.086	0.075	ND
	11 to 11.5 ft	25-Apr-06	<0.029 [<0.032]	<0.034 [<0.042]	<0.032 [<0.031]	<0.034 [<0.025]	ND [ND]	ND [ND]	ND [ND]	ND [ND]
	16 to 16.5 ft	25-Apr-06	<0.029	<0.034	<0.032	< 0.035	ND	ND	ND	ND
	21 to 21.5 ft	25-Apr-06	<0.029	<0.034	<0.032	<0.035	ND	ND	ND	ND
	26 to 26.5 ft	25-Apr-06	<0.029	<0.034	<0.032	<0.035	ND	ND	ND	ND
	31 to 31.5 ft	25-Apr-06	<0.0045	<0.0068	0.022 J	0.0069 J	0.022	0.018	0.035	0.00059

		Sample Date / Analyte	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bss)	PSL-HH	0.15	3.6		1700				0.038
		PSL-Eco	0.2	0.176	0.204	0.195			1.61	
DP-4.10	0 to 0.5 ft	18-Apr-06	<0.086	1.5 [PSL-Eco]	0.56 [PSL-Eco]	0.38 [PSL-Eco]	2.8	0.80	1.5	ND
	5 to 5.5 ft	18-Apr-06	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
	10 to 10.5 ft	18-Apr-06	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
	14.5 to 15 ft	18-Apr-06	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
Pond6-01	0 to 0.5 ft	18-Mar-08	0.058	0.21 [PSL-Eco]	0.15	0.15	0.48	0.74	0.75	0.077 [PSL-HH]
	0.5 to 1.5 ft	11-Mar-08	0.018 J	0.053	0.045	0.073	0.15	0.28	0.28	0.029
Pond6-02	0 to 0.5 ft	18-Mar-08	0.079	0.21 [PSL-Eco]	0.27 [PSL-Eco]	0.23 [PSL-Eco]	0.70	0.98	1.1	0.085 [PSL-HH]
	0.5 to 1.5 ft	12-Mar-08	0.17 [PSL-HH]	1.6 [PSL-Eco]	0.86 [PSL-Eco]	0.69 [PSL-Eco]	3.7	2.5	3.4 [PSL-Eco]	0.24 [PSL-HH,PSL-Eco]
Pond 7										
DP-4.11	0 to 0.5 ft	18-Apr-06	<0.063	0.23 [PSL-Eco]	0.26 [PSL-Eco]	0.34 [PSL-Eco]	0.58	0.74	0.83	0.0081
	6 to 6.5 ft	17-Apr-06	<0.29	1.8 [PSL-Eco]	1.3 [PSL-Eco]	1.3 [PSL-Eco]	3.7	2.5	3.2 [PSL-Eco]	ND
	11 to 11.5 ft	17-Apr-06	<0.013	<0.02	0.099 J	0.047 J	0.099	0.18	0.25	0.0061
DP-4.12	0 to 0.5 ft	18-Apr-06	<0.0045	1.4 [PSL-Eco]	0.81 [PSL-Eco]	0.55 [PSL-Eco]	3.1	1.3	2.3 [PSL-Eco]	0.027
	6 to 6.5 ft	18-Apr-06	<0.032	3 [PSL-Eco]	1.1 [PSL-Eco]	0.97 [PSL-Eco]	5.7	1.9	3.7 [PSL-Eco]	0.0077
	11 to 11.5 ft	18-Apr-06	<0.0045	<0.0068	0.099	0.019 J	0.12	0.072	0.190	0.0093
DP-4.13	0 to 0.5 ft	18-Apr-06	<0.0045	1.5 [PSL-Eco]	0.53 [PSL-Eco]	0.38 [PSL-Eco]	2.7	0.87	1.6	0.025
	5 to 5.5 ft	18-Apr-06	<0.0045	0.0085 J	0.015 J	0.019 J	0.024	0.11	0.11	0.0046
Pond7-01	0 to 0.5 ft	18-Mar-08	0.24 [PSL-HH,PSL-Eco]	2 [PSL-Eco]	0.97 [PSL-Eco]	0.83 [PSL-Eco]	4.1	3.0	3.9 [PSL-Eco]	0.29 [PSL-HH,PSL-Eco]
	0.5 to 1.5 ft	12-Mar-08	0.2 [PSL-HH]	1.6 [PSL-Eco]	0.9 [PSL-Eco]	0.97 [PSL-Eco]	3.7	3.0	3.8 [PSL-Eco]	0.28 [PSL-HH,PSL-Eco]
Pond7-02	0 to 0.5 ft	18-Mar-08	0.23 [PSL-HH,PSL-Eco]	2.3 [PSL-Eco]	1.1 [PSL-Eco]	0.97 [PSL-Eco]	4.6	3.3	4.2 [PSL-Eco]	0.29 [PSL-HH,PSL-Eco]
	0.5 to 1.5 ft	12-Mar-08	0.24 [PSL-HH,PSL-Eco]	0.52 [PSL-Eco]	0.86 [PSL-Eco]	0.9 [PSL-Eco]	2.3	3.4	3.8 [PSL-Eco]	0.33 [PSL-HH,PSL-Eco]
Pond 8 East										
DP-5.60	3 to 3.5 ft	20-Apr-06	<0.032	<0.042 [<0.2]	0.047 J [0.4]	<0.025 [<0.12]	0.047 [0.4]	ND [ND]	0.047 [0.4]	ND [ND]
	8 to 8.5 ft	20-Apr-06	<0.064	<0.083	0.24	<0.049	0.24	0.050	0.29	0.00050
	12 to 12.5 ft	20-Apr-06	<0.16	<0.21	0.49	<0.12	0.49	ND	0.49	ND
	16.5 to 17 ft	20-Apr-06	<0.023	<0.034	0.4	0.045 J	0.43	0.24	0.64	0.029
DP-5.61	0 to 0.5 ft	19-Apr-06	<0.15	<0.17	<0.16	<0.17	ND	ND	ND	ND
	5 to 5.5 ft	19-Apr-06	<0.029	0.34	0.13	0.14	0.65	0.23	0.45	ND
	10 to 10.5 ft	19-Apr-06	<0.029	<0.034 [<0.034]	<0.031 [<0.031]	<0.034 [<0.034]	ND [ND]	ND [ND]	ND [ND]	ND [ND]
	15 to 15.5 ft	19-Apr-06	<0.029	<0.034	<0.032	<0.035	ND	ND	ND	ND

		Sample Date / Analyte	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bss)	PSL-HH	0.15	3.6		1700			-	0.038
		PSL-Eco	0.2	0.176	0.204	0.195			1.61	
	20 to 20.5 ft	19-Apr-06	<0.029	<0.034	<0.031	<0.034	ND	ND	ND	ND
	25 to 25.5 ft	19-Apr-06	<0.029	<0.034	<0.031	<0.034	ND	ND	ND	ND
DP-5.62	0 to 0.5 ft	24-Apr-06	<1.5	<1.7	<1.6	<1.7	ND	ND	ND	ND
	5 to 5.5 ft	24-Apr-06	<1.5	<1.7	<1.6	<1.7	ND	ND	ND	ND
	10 to 10.5 ft	24-Apr-06	<0.086	0.82 [0.47]	0.43 [0.28]	0.54 [0.33]	1.8 [0.94]	1.2 [0.58]	1.7 [0.8] [PSL- Eco]	0.00083 [ND]
	15 to 15.5 ft	24-Apr-06	<0.029	<0.034	<0.032	<0.035	ND	ND	ND	ND
	20 to 20.5 ft	24-Apr-06	<0.028	<0.033	0.28	0.052 J	0.33	0.15	0.44	0.00053
Pond8-05	0.5 to 1.5 ft	17-Mar-08	0.21 [PSL-HH,PSL-Eco]	0.16	0.28	0.59	0.68	2.5	2.4 [PSL-Eco]	0.31 [PSL-HH,PSL-Eco]
Pond8-06	0 to 0.5 ft	17-Mar-08	0.63 [PSL-HH,PSL-Eco]	0.38	0.97	2.4	2.1	7.8	7.7 [PSL-Eco]	0.90 [PSL-HH,PSL-Eco]
	0.5 to 1.5 ft	18-Mar-08	0.2 [PSL-HH]	0.3	0.89	1.1	1.9	3.1	3.7 [PSL-Eco]	0.30 [PSL-HH,PSL-Eco]
Pond8-07	0 to 0.5 ft	17-Mar-08	0.64 [PSL-HH,PSL-Eco]	0.039	0.37	0.92	0.55	5.5	5.1 [PSL-Eco]	0.79 [PSL-HH,PSL-Eco]
	0.5 to 1.5 ft	17-Mar-08	2 D [PSL-HH,PSL-Eco]	0.054	0.83 D	2.9 D	1.2	18	0.23	2.8 [PSL-HH,PSL-Eco]
Pond8-08	0 to 0.5 ft	17-Mar-08	0.89 [PSL-HH,PSL-Eco]	0.044	0.65	2	0.92	11	9.3 [PSL-Eco]	1.4 [PSL-HH,PSL-Eco]
	0.5 to 1.5 ft	17-Mar-08	0.59 [PSL-HH,PSL-Eco]	0.044	0.9	1.3	1.2	6.6	6.2 [PSL-Eco]	0.80 [PSL-HH,PSL-Eco]
Pond 8 West										
DP-4.14	0 to 0.5 ft	24-Apr-06	<0.029	<0.034	<0.032	<0.034	ND	ND	ND	ND
	4 to 4.5 ft	24-Apr-06	<0.029	<0.034	<0.031	<0.034	ND	ND	ND	ND
	7.5 to 8 ft	24-Apr-06	<0.029	<0.034	<0.031	<0.034	ND	ND	ND	ND
DP-4.15	0 to 0.5 ft	20-Apr-06	<0.16	<0.21	<0.15	<0.12	ND	ND	ND	ND
	2 to 2.5 ft	20-Apr-06	<0.16	<0.21	<0.15	<0.12	ND	ND	ND	ND
	7 to 7.5 ft	20-Apr-06	<0.031	<0.041	<0.03	<0.024	ND	ND	ND	ND
	11.5 to 12 ft	20-Apr-06	<0.032	<0.042 [<0.042]	0.17 [<0.031]	0.031 J [<0.025]	0.21 [ND]	0.078 [ND]	0.29 [ND]	0.00047 [ND]
Pond8-01	0 to 0.5 ft	17-Mar-08	0.036	0.084	0.12	0.16	0.31	0.60	0.65	0.065 [PSL-HH]
	0.5 to 1.5 ft	18-Mar-08	0.19 [PSL-HH]	0.41	0.49	0.76	1.3	2.9	2.9 [PSL-Eco]	0.31 [PSL-HH,PSL-Eco]
Pond8-02	0 to 0.5 ft	17-Mar-08	0.085	0.23	0.29	0.33	0.79	1.3	1.4	0.16 [PSL-HH,PSL-Eco]
	0.5 to 1.5 ft	18-Mar-08	0.15	0.66	0.97	1.2	2.5	3.5	3.9 [PSL-Eco]	0.28 [PSL-HH,PSL-Eco]
Pond8-03	0 to 0.5 ft	17-Mar-08	0.094	0.45	0.38	0.4	1.2	1.4	1.7 [PSL-Eco]	0.16 [PSL-HH,PSL-Eco]

		Sample Date / Analyte	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ ⁴
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(IT DSS)	PSL-HH	0.15	3.6	-	1700				0.038
		PSL-Eco	0.2	0.176	0.204	0.195	-		1.61	-
	0.5 to 1.5 ft	18-Mar-08	0.46 [PSL-HH,PSL-Eco]	1.3	1.8	2.8	4.7	9.3	9.3 [PSL-Eco]	0.82 [PSL-HH,PSL-Eco]
Pond8-04	0 to 0.5 ft	17-Mar-08	0.058	0.073	0.1	0.13	0.26	0.62	0.64	0.080 [PSL-HH]
	0.5 to 1.5 ft	12-Mar-08	0.086	0.11	0.14	0.2	0.41	0.91	0.96	0.12 [PSL-HH]
SD-5.1	1.5 to 2 ft	05-Apr-06	<0.045	<0.068	0.053 J	0.061 J	0.053	0.12	0.11	ND
SD-5.2	1.5 to 2 ft	05-Apr-06	<0.14	<0.17	<0.16	<0.17	ND	ND	ND	ND
Pond 1										
DP-7.9	0 to 0.5 ft	12-Apr-06	<0.0045	0.079	0.1	0.095	0.24	0.27	0.32	0.013
	0.5 to 1 ft	12-Apr-06	<0.0045	<0.0068	0.012 J	0.01 J	0.012	0.022	0.022	ND
	5 to 5.5 ft	12-Apr-06	<0.0045	<0.0068	0.037 J	0.006 J	0.037	0.044	0.074	0.0014
DP-7.10	0 to 0.5 ft	12-Apr-06	<0.029	<0.034	0.088	0.13	0.088	0.39	0.34	0.028
	5 to 5.5 ft	12-Apr-06	<0.032	<0.041	<0.03	0.026 J	ND	0.026	0.026	ND
Pond1-01	0 to 0.5 ft	18-Mar-08	0.021	0.069	0.055	0.044	0.19	0.20	0.25	0.025
	0.5 to 1.5 ft	14-Mar-08	0.06	0.26 [PSL-Eco]	0.12	0.16	0.55	0.67	0.73	0.076 [PSL-HH]
Pond1-02	0 to 0.5 ft	18-Mar-08	0.18 [PSL-HH]	0.48 [PSL-Eco]	0.54 [PSL-Eco]	0.5 [PSL-Eco]	1.6	2.1	2.4 [PSL-Eco]	0.24 [PSL-HH,PSL-Eco]
Pond 2										
DP-7.11	2 to 2.5 ft	05-Apr-06	<0.58	0.85 J [PSL-Eco]	2 [PSL-Eco]	2.7 [PSL-Eco]	3.3	6.1	5.8 [PSL-Eco]	0.0059
	7 to 7.5 ft	05-Apr-06	<0.029	<0.034	<0.031	<0.034	ND	ND	ND	ND
DP-7.12	2 to 2.5 ft	05-Apr-06	<0.01	<0.008	<0.012	<0.014	ND	ND	ND	ND
	7 to 7.5 ft	05-Apr-06	<0.01	0.015 J	<0.012	<0.014	0.015	ND	ND	ND
Pond2-01	0 to 0.5 ft	19-Mar-08	0.53 [PSL-HH,PSL-Eco]	1.7 [PSL-Eco]	1.9 [PSL-Eco]	2 [PSL-Eco]	5.4	7.7	8.6 [PSL-Eco]	0.77 [PSL-HH,PSL-Eco]
	0.5 to 1.5 ft	13-Mar-08	0.25 [PSL-HH,PSL-Eco]	0.77 [PSL-Eco]	0.6 [PSL-Eco]	0.73 [PSL-Eco]	2.0	3.0	3.3 [PSL-Eco]	0.33 [PSL-HH,PSL-Eco]
Pond2-02	0 to 0.5 ft	19-Mar-08	2 D [PSL-HH,PSL-Eco]	12 D [PSL-HH,PSL- Eco]	8.3 D [PSL-Eco]	7.5 D [PSL-Eco]	29	27	33 [PSL-Eco]	2.3 [PSL-HH,PSL-Eco]
	0.5 to 1.5 ft	13-Mar-08	0.19 [PSL-HH]	0.65 [PSL-Eco]	0.4 [PSL-Eco]	0.49 [PSL-Eco]	1.6	2.0	2.3 [PSL-Eco]	0.23 [PSL-HH,PSL-Eco]
Pond 3	•						-			
DP-7.13	0 to 0.5 ft	06-Apr-06	<0.58	2 [PSL-Eco]	4.2 [PSL-Eco]	7.1 [PSL-Eco]	7.9	19	17 [PSL-Eco]	0.80 [PSL-HH,PSL-Eco]
	7 to 7.5 ft	06-Apr-06	<0.029	<0.034	0.035 J	0.058 J	0.035	0.15	0.15	0.00058
DP-7.14	1 to 1.5 ft	06-Apr-06	<0.29	2.9 [PSL-Eco]	1.5 [PSL-Eco]	0.93 [PSL-Eco]	5.3	2.1	3.4 [PSL-Eco]	ND
	6 to 6.5 ft	06-Apr-06	<0.72	1.1 J [PSL-Eco]	1.9 [PSL-Eco]	2.9 [PSL-Eco]	3.0	5.9	4.8 [PSL-Eco]	ND
	6.5 to 7 ft	06-Apr-06	<0.58	0.76 J [PSL-Eco]	1.4 [PSL-Eco]	2.2 [PSL-Eco]	2.2	4.3	3.6 [PSL-Eco]	ND
	13 to 13.5 ft	06-Apr-06	<0.029	<0.034	<0.031	<0.034	ND	ND	ND	ND
DP-7.15	0 to 0.5 ft	06-Apr-06	<0.29	<0.34	0.36 J [PSL-Eco]	0.46 J [PSL-Eco]	0.36	0.93	0.82	ND
	5 to 5.5 ft	06-Apr-06	<0.058	<0.068	<0.063	0.079 J	ND	0.33	0.26	0.0064
DP-7.16	4 to 4.5 ft	10-Apr-06	<0.029	<0.034	<0.032	<0.035	ND	ND	ND	ND

		Sample Date / Analyte	Indeno(1,2,3-cd)Pyrene	Naphthalene	Phenanthrene	Pyrene	LMW-PAH ¹⁰	HMW-PAH ¹¹	Total PAH ³	USEPA B(a)P TEQ⁴				
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
	(ft bss)	PSL-HH	0.15	3.6		1700				0.038				
		PSL-Eco	0.2	0.176	0.204	0.195			1.61	-				
Pond3-01	0.5 to 1.5 ft	13-Mar-08	0.32 [PSL-HH,PSL-Eco]	1.9 [PSL-Eco]	0.89 [PSL-Eco]	0.88 [PSL-Eco]	3.8	3.5	4.2 [PSL-Eco]	0.38 [PSL-HH,PSL-Eco]				
Pond3-02	0.5 to 1.5 ft	14-Mar-08	0.18 [PSL-HH]	0.42 [PSL-Eco]	0.23 [PSL-Eco]	0.38 [PSL-Eco]	0.93	1.8	1.8 [PSL-Eco]	0.23 [PSL-HH,PSL-Eco]				
Pond3-03	0.5 to 1.5 ft	14-Mar-08	0.065	0.15	0.092	0.12	0.37	0.60	0.64	0.078 [PSL-HH]				
Pond3-04	0 to 0.5 ft	19-Mar-08	0.13	0.5 [PSL-Eco]	0.3 [PSL-Eco]	0.28 [PSL-Eco]	1.1	1.3	1.5	0.15 [PSL-HH]				
Pond3-05	0.5 to 1.5 ft	14-Mar-08	0.061	0.26 [PSL-Eco]	0.12	0.16	0.54	0.69	0.75	0.082 [PSL-HH]				
Pond3-06	0 to 0.5 ft	19-Mar-08	0.3 [PSL-HH,PSL-Eco]	0.61 [PSL-Eco]	0.7 [PSL-Eco]	0.77 [PSL-Eco]	2.1	3.3	3.7 [PSL-Eco]	0.38 [PSL-HH,PSL-Eco]				
Pond3-07	0 to 0.5 ft	19-Mar-08	0.081	0.57 [PSL-Eco]	0.21 [PSL-Eco]	0.17	1.1	0.78	0.98	0.093 [PSL-HH]				
Pond3-08	0 to 0.5 ft	19-Mar-08	0.12	0.48 [PSL-Eco]	0.29 [PSL-Eco]	0.29 [PSL-Eco]	1.1	1.3	1.5	0.15 [PSL-HH]				
Pond3-09	0 to 0.5 ft	19-Mar-08	0.17 [PSL-HH]	0.34 [PSL-Eco]	0.56 [PSL-Eco]	0.56 [PSL-Eco]	1.4	2.2	2.6 [PSL-Eco]	0.23 [PSL-HH,PSL-Eco]				
Pond 4		•												
DP-7.17	0 to 0.5 ft	13-Apr-06	<0.0045	<0.0068	<0.0034	<0.0045	ND	ND	ND	ND				
	5 to 5.5 ft	13-Apr-06	<0.0045	<0.0068	<0.0034	<0.0045	ND	ND	ND	ND				
DP-7.18	0 to 0.5 ft	13-Apr-06	<0.029	<0.034	<0.032	<0.035	ND	ND	ND	ND				
	0.5 to 1 ft	13-Apr-06	<0.029	<0.034	<0.031	<0.034	ND	ND	ND	ND				
	5 to 5.5 ft	13-Apr-06	<0.0045	<0.0068	<0.0034	<0.0046	ND	ND	ND	ND				
Pond4-01	0 to 0.5 ft	18-Mar-08	0.013	0.039	0.027	0.022	0.092	0.11	0.12	0.012				
		Sample Date / Analyte	2-Butanone	Acetone	Benzene	Carbon Disulfide	Chlorobenzene	Ethanol	Isopropyl alcohol	Isopropylbenzene	Methylene Chloride	p-Isopropyl Toluene	Naphthalene	Toluene
-------------	------------------	--------------------------	------------	-------------------	----------	------------------	---------------	---------	-------------------	------------------	--------------------	---------------------	-------------	-----------
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bss)	PSL-HH	28000	61000	1.1	820	290		990000000	2100	11		3.6	5000
		PSL-Eco		0.0099	0.142	0.0239	0.291				0.159	-	0.176	1.22
Pond 5										•				
DP-5.63	0 to 0.5 ft	25-Apr-06	0.0043 J	0.017 J [PSL-Eco]	<0.00039	<0.00059	0.00051 J	<0.031	<0.0028	<0.00054	<0.00069	<0.00088	<0.00071	0.00071 J
	5 to 5.5 ft	25-Apr-06	0.0015 J	0.0052 J	<0.00021	<0.00032	0.0016 J	<0.017	<0.0015	<0.00029	0.00061 J	<0.00047	<0.00038	0.00095 J
	10 to 10.5 ft	25-Apr-06	<0.00029	0.00093 J	<0.00017	<0.00025	<0.00017	<0.013	<0.0012	<0.00023	0.00047 J	<0.00037	<0.0003	0.00056 J
Pond 9	•	•	•		•	•				•	•			
DP-1.5	0 to 0.5 ft	27-Apr-06	0.0041 J	0.015 J [PSL-Eco]	<0.00049	< 0.0034	0.0026 J	<0.071	<0.019	<0.0006	0.0016 J	<0.00058	<0.00065	<0.0004
	2 to 2.5 ft	27-Apr-06	0.00076 J	0.0061 J	<0.00021	<0.0013	<0.00033	<0.06	<0.0083	<0.00028	<0.0016	<0.00029	<0.00035	0.00022 J
	7 to 7.5 ft	27-Apr-06	0.001 J	0.0079 J	<0.00021	<0.0013	0.002 J	<0.059	<0.0082	<0.00028	<0.0015	<0.00028	<0.00035	0.00025 J
	12 to 12.5 ft	27-Apr-06	0.0011 J	0.006 J	<0.00023	<0.0015	0.0019 J	<0.066	<0.0091	<0.00031	<0.0017	<0.00031	<0.00039	0.00043 J
	17 to 17.5 ft	27-Apr-06	0.00092 J	0.0043 J	<0.00023	<0.0014	0.0015 J	<0.065	<0.0089	<0.0003	<0.0017	<0.00031	<0.00038	0.00026 J
	19.5 to 20 ft	27-Apr-06	<0.0016	0.0047 J	<0.00046	<0.0032	<0.00047	<0.068	<0.018	<0.00057	0.0022 J	<0.00055	<0.00062	0.0004 J
North Pond		1	1			1				1	1			
DP-4.7	0 to 0.5 ft	17-Apr-06	0.0018 J	0.006 J	<0.00025	<0.0016	<0.00039	<0.071	<0.0098	<0.00033	<0.0018	<0.00034	<0.072	<0.00023
	14 to 14.5 ft	17-Apr-06	0.0025 J	0.0099 J	<0.00028	<0.0018	<0.00043	<0.079	<0.011	0.00048 J	<0.002	0.0036 J	<0.00046	<0.00026
	19 to 19.5 ft	17-Apr-06	<0.0012	<0.0031			<0.00051	<0.094	<0.013	<0.00044	<0.0024	<0.00044		<0.00031
Pond 6	•									4	•			
DP-4.10	0 to 0.5 ft	18-Apr-06	<0.0031	<0.0026	<0.0009	<0.0063	<0.00091	<0.13	<0.034	<0.0011	<0.00059	<0.0011	<0.0012	<0.00074
	5 to 5.5 ft	18-Apr-06	<0.0017	0.0089 J			<0.00049	<0.071	<0.019	<0.0006	<0.00032	<0.00058		<0.0004
	10 to 10.5 ft	18-Apr-06	0.0021 J	0.008 J	<0.00046	<0.0032	<0.00046	<0.067	<0.017	<0.00056	<0.0003	<0.00054	<0.00061	0.00067 J
	14.5 to 15 ft	18-Apr-06	0.003 J	0.0069 J	<0.00046	<0.0032	<0.00047	<0.068	<0.018	<0.00057	<0.00031	<0.00055	<0.00062	0.0023 J
DP-4.8	0 to 0.5 ft	26-Apr-06	<0.0017	0.0029 J	<0.00051	<0.0035	<0.00051	<0.074	<0.019	<0.00062	0.00067 J	<0.0006	<0.034	0.00081 J
	13 to 13.5 ft	26-Apr-06	<0.0017	0.003 J			0.001 J	<0.073	<0.019	<0.00061	0.00073 J	<0.00059		0.00089 J

						r								
		Sample Date / Analyte	2-Butanone	Acetone	Benzene	Carbon Disulfide	Chlorobenzene	Ethanol	Isopropyl alcoho	Isopropylbenzene	Methylene Chloride	p-Isopropyl Toluene	Naphthalene	Toluene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bss)	PSL-HH	28000	61000	1.1	820	290		990000000	2100	11	-	3.6	5000
		PSL-Eco		0.0099	0.142	0.0239	0.291		-	-	0.159		0.176	1.22
	18 to 18.5 ft	26-Apr-06	<0.0018	0.0038 J			0.00059 J	<0.075	<0.02	<0.00063	0.00083 J	<0.00061		0.00087 J
	23 to 23.5 ft	26-Apr-06	<0.0017 [<0.0018]	0.0045 J [0.0032 J]			0.00075 J [<0.00052]	<0.074 [<0.075]	<0.019 [<0.02]	<0.00062 [<0.00063]	0.00077 J [<0.00034]	<0.0006 [<0.00061]		0.00082 J [<0.00042]
	28 to 28.5 ft	26-Apr-06	<0.0018	0.0082 J			<0.00052	<0.075	<0.02	<0.00063	0.00062 J	<0.00061		0.00067 J
	33 to 33.5 ft	26-Apr-06	0.0024 J	0.0084 J			<0.00052	<0.075	<0.02	<0.00063	0.00056 J	<0.00061		0.0006 J
DP-4.9	0.5 to 1 ft	25-Apr-06	0.0012 J	0.0049 J	<0.00032	<0.00049	<0.00034	0.23 J	0.003 J	<0.00045	<0.00058	<0.00073	<0.018	0.001 J
	6 to 6.5 ft	25-Apr-06	0.00044 J	0.0031 J	<0.00019	<0.00028	<0.00019	0.016 J	<0.0013	<0.00026	<0.00033	<0.00042	<0.041	0.00035 J
11 16	11 to 11.5 ft	25-Apr-06	0.0019 J [0.0019 J]	0.007 J [0.0061 J]	00022 [<0.00	<0.0014 [<0.0013]	<0.00034 [<0.00033]	<0.061 [<0.06]	<0.0085 [<0.0083]	<0.00029 [<0.00028]	<0.0016 [<0.0016]	<0.00029 [<0.00029]	0.00036 [<0.0003	0.0013 J [0.0011 J]
	16 to 16.5 ft	25-Apr-06	0.00084 J	0.0036 J	<0.00022	<0.0014	<0.00034	<0.061	<0.0085	<0.00029	<0.0016	<0.00029	<0.034	0.0014 J
	21 to 21.5 ft	25-Apr-06	0.0009 J	0.0048 J	<0.00023	<0.0014	<0.00036	<0.065	<0.0089	<0.0003	<0.0017	<0.00031	<0.00038	0.0013 J
	26 to 26.5 ft	25-Apr-06	0.0016 J	0.011 J [PSL-Eco]	<0.00024	<0.0015	0.002 J	<0.067	<0.0093	<0.00032	<0.0017	<0.00032	<0.034	0.00086 J
	31 to 31.5 ft	25-Apr-06	0.0014 J	0.0063 J	<0.00022	<0.0014	<0.00034	<0.063	<0.0086	<0.00029	<0.0016	<0.0003	<0.00037	0.00034 J
Pond 7														
DP-4.11	6 to 6.5 ft	17-Apr-06	<0.0013	<0.0034	<0.00036	<0.0023	<0.00056	<0.1	<0.014	<0.00048	<0.0026	<0.00048	<0.0006	0.00084 J
	11 to 11.5 ft	17-Apr-06	<0.00081	0.0034 J	<0.00023	<0.0014	<0.00036	<0.065	<0.0089	<0.0003	<0.0017	<0.00031	<0.02	<0.00021
DP-4.12	0 to 0.5 ft	18-Apr-06	<0.0014	<0.0036	<0.00038	<0.0024	<0.00059	<0.11	<0.015	<0.00051	<0.0028	<0.00051	<0.00063	0.0014 J
	6 to 6.5 ft	18-Apr-06	<0.0014	<0.0038	<0.0004	<0.0025	<0.00063	<0.11	<0.016	<0.00054	<0.003	<0.00055	<0.00067	<0.00038

		Sample Date / Analyte	2-Butanone	Acetone	Benzene	Carbon Disulfide	Chlorobenzene	Ethanol	Isopropyl alcohol	Isopropylbenzene	Methylene Chloride	p-Isopropyl Toluene	Naphthalene	Toluene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bss)	PSL-HH	28000	61000	1.1	820	290		9900000000	2100	11	-	3.6	5000
		PSL-Eco		0.0099	0.142	0.0239	0.291		-		0.159		0.176	1.22
	11 to 11.5 ft	18-Apr-06	<0.0016	<0.0014			<0.00048	<0.07	<0.018	<0.00059	<0.00032	<0.00057		<0.00039
DP-4.13	0 to 0.5 ft	18-Apr-06	<0.0016	<0.0013	<0.00046	<0.0032	<0.00047	<0.068	<0.018	<0.00057	<0.00031	<0.00055	<0.00062	<0.00038
	5 to 5.5 ft	18-Apr-06	<0.00074	0.0023 J	<0.00021	<0.0013	0.00049 J	<0.059	<0.0015	<0.00028	<0.0015	<0.00028	<0.00035	<0.0002
Pond 8 East														
DP-5.60	3 to 3.5 ft	20-Apr-06	<0.00071 [<0.0017]	0.0034 J [0.0074 J]	<0.0002 [<0.00051]	<0.0013 [<0.0035]	<0.00031 [<0.00051]	<0.057 [<0.074]	<0.0078 [<0.019]	<0.00027 [<0.00062]	<0.0015 [0.00051 J]	<0.00027 [<0.0006]	<0.042 [<0.2]	0.00054 J [0.00054 Jb]
	12 to 12.5 ft	20-Apr-06	0.00097 J	0.012 J [PSL-Eco]	<0.0002	<0.0012	<0.00031	<0.056	<0.0077	<0.00026	<0.0014	<0.00026	<0.21	0.00063 J
	16.5 to 17 ft	20-Apr-06	<0.00072	0.003 J	0.00059 J	<0.0013	<0.00032	<0.057	<0.0079	<0.00027	<0.0015	<0.00027	<0.00034	0.00068 J
DP-5.61	0 to 0.5 ft	19-Apr-06	0.0029 J	0.012 J [PSL-Eco]	<0.00036	<0.0023	<0.00056	<0.1	<0.014	<0.00048	<0.0026	<0.00048	<0.0006	0.00067 J
	5 to 5.5 ft	19-Apr-06	0.002 J	0.008 J	<0.00033	<0.0021	<0.00051	<0.094	<0.013	<0.00044	<0.0024	<0.00044	<0.00055	0.00038 J
	10 to 10.5 ft	19-Apr-06	0.0011 J [0.0013 J]	0.0031 J [0.0038 J]	<0.00019 [<0.00019]	<0.0012 [<0.0012]	<0.0003 [<0.0003]	<0.055 [<0.055]	<0.0076 [<0.0076]	<0.00026 [<0.00026]	<0.0014 [<0.0014]	<0.00026 [<0.00026]	<0.00032 [<0.00032]	0.0011 J [0.0018 J]
	15 to 15.5 ft	19-Apr-06	0.0087 J	0.026 [PSL-Eco]	<0.00023	<0.0014	0.0011 J	<0.065	<0.0089	<0.0003	<0.0017	<0.00031	<0.034	0.0033 J
	20 to 20.5 ft	19-Apr-06	0.0059 J	0.022 [PSL-Eco]	<0.00051	<0.0035	<0.00051	<0.074	<0.019	<0.00062	0.0011 J	<0.0006	<0.034	0.0032 J
	25 to 25.5 ft	19-Apr-06	0.0024 J	0.0072 J	<0.00051	<0.0036	<0.00052	<0.075	<0.02	<0.00063	<0.00034	<0.00061	<0.034	0.0016 J
DP-5.62	0 to 0.5 ft	24-Apr-06	0.0069 J	0.021 J [PSL-Eco]	<0.00034	<0.00052	<0.00036	<0.028	<0.0024	<0.00048	0.00092 J	<0.00077	<0.00063	0.0014 J
	10 to 10.5 ft	24-Apr-06	0.001 J [0.0019 J]	0.0058 J [0.0091 J]	<0.00032 [<0.00033]	<0.00049 [<0.0005]	<0.00034 [<0.00035]	<0.026 [<0.027]	<0.0023 [<0.0024]	<0.00045 [<0.00046]	<0.00058 [0.00064 J]	<0.00073 [<0.00075]	<0.00059 [<0.00061]	<0.00036 [0.001 J]
	15 to 15.5 ft	24-Apr-06	0.0012 J	0.0095 J	<0.0002	<0.00031	0.00065 J	<0.016	<0.0014	<0.00028	0.00073 J	<0.00045	<0.00037	0.00093 J

		Sample Date /	2-Butanone	Acetone	Benzene	Carbon Disulfide	Chlorobenzene	Fthanol	Isopropyl alcohol	Isopropylbenzene	Methylene Chloride	n-Isopropyl Toluene	Naphthalene	Toluene
	Depth	Analyte	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	mg/kg	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka
Location ID	(ft bss)	PSL-HH	28000	61000	1.1	820	290		990000000	2100	11		3.6	5000
		PSL-Eco		0.0099	0.142	0.0239	0.291				0.159		0.176	1.22
	20 to 20.5 ft	24-Apr-06	0.00069 J	0.0048 J	<0.00018	<0.00028	<0.00019	<0.015	<0.0013	<0.00025	0.00041 J	<0.00041	<0.033	0.00035 J
SD-5.1	1.5 to 2 ft	05-Apr-06	<0.00034	0.0039 J	<0.0002	<0.0003	<0.00021	<0.016	<0.0014	<0.00028	<0.00035	<0.00045	<0.068	<0.00022
SD-5.2	1.5 to 2 ft	05-Apr-06	<0.00032	<0.00046	<0.00018	<0.00028	<0.00019	<0.015	<0.0013	<0.00025	<0.00032	<0.00041	<0.00033	<0.0002
Pond 8 West														
DP-4.14	4 to 4.5 ft	24-Apr-06	0.00092 J	0.0064 J	<0.00018	<0.00027	0.00026 J	<0.014	<0.0013	<0.00025	<0.00032	<0.0004	<0.00033	<0.0002
	7.5 to 8 ft	24-Apr-06	0.0025 J	0.013 J [PSL-Eco]	<0.00021	<0.00031	0.0011 J	<0.017	<0.0015	<0.00029	0.00089 J	<0.00046	<0.00038	0.00096 J
DP-4.15	0 to 0.5 ft	20-Apr-06	0.0062 J	0.023 J [PSL-Eco]	<0.00039	<0.0025	<0.00061	<0.11	<0.015	<0.00052	<0.0029	<0.00053	<0.00065	0.0024 J
	7 to 7.5 ft	20-Apr-06	0.0021 J	0.0081 J	<0.00021		<0.00033				<0.0016			0.00091 J
	11.5 to 12 ft	20-Apr-06	0.0014 J [0.0014 J]	0.0092 J [0.0052 J]	<0.00023 [<0.0002]	<0.0014 [<0.0013]	0.00061 J [<0.00032]	<0.065 [<0.057]	<0.0089 [<0.0079]	<0.0003 [<0.00027]	<0.0017 [<0.0015]	<0.00031 [<0.00027]	<0.042 [<0.042]	0.00053 J [0.00081 J]
Pond 1							•							
DP-7.9	0 to 0.5 ft	12-Apr-06	<0.0016	<0.0014	<0.00048	<0.0033	<0.00048	<0.07	<0.018	<0.00059	<0.00032	<0.00057	<0.00064	<0.00039
	0.5 to 1 ft	12-Apr-06	<0.0018	0.0023 Jb	<0.00051	<0.0036	<0.00052	<0.075	<0.02	<0.00063	<0.00034	<0.00061	<0.00068	0.00066 J
	5 to 5.5 ft	12-Apr-06	0.0024 J	0.011 J [PSL-Eco]	<0.00046	<0.0032	0.0039 J	<0.068	<0.018	<0.00057	<0.00031	<0.00055	<0.00062	<0.00038
DP-7.10	0 to 0.5 ft	12-Apr-06	0.0016 J	0.0049 Jb	<0.00047	<0.0033	0.0014 J	<0.069	<0.018	<0.00058	<0.00031	<0.00056	<0.00063	0.00076 J
	5 to 5.5 ft	12-Apr-06	<0.0016	0.013 Jb [PSL-Eco]	<0.00048	<0.0033	<0.00048	<0.07	<0.018	<0.00059	<0.00032	<0.00057	<0.00064	<0.00039
Pond 2														
DP-7.11	2 to 2.5 ft	05-Apr-06	<0.0007	0.0047 J	<0.0004	<0.00061	<0.00042	<0.033	<0.0029	<0.00056	<0.00072	<0.00091	<0.00074	<0.00045

		Sample Date / Analyte	2-Butanone	Acetone	Benzene	Carbon Disulfide	Chlorobenzene	Ethanol	Isopropyl alcohol	Isopropylbenzene	Methylene Chloride	p-Isopropyl Toluene	Naphthalene	Toluene
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(ft bss)	PSL-HH	28000	61000	1.1	820	290		9900000000	2100	11	-	3.6	5000
		PSL-Eco		0.0099	0.142	0.0239	0.291				0.159		0.176	1.22
	7 to 7.5 ft	05-Apr-06	0.0022 J	0.016 J [PSL-Eco]	0.00028 J	<0.00028	0.0033 J	<0.015	<0.0013	<0.00025	<0.00032	<0.00041	<0.00033	0.00022 J
DP-7.12	2 to 2.5 ft	05-Apr-06	<0.00034	0.0029 J	<0.0002	<0.0003	<0.0002	<0.016	<0.0014	<0.00027	0.00068 J	<0.00044	<0.00036	<0.00022
	7 to 7.5 ft	05-Apr-06	0.0012 J	0.007 J	<0.00019	<0.00028	0.0012 J	<0.015	<0.0013	<0.00026	0.00085 J	<0.00042	<0.00034	<0.00021
Pond 3														
DP-7.13	0 to 0.5 ft	06-Apr-06	0.0051 J	0.2 J [PSL-Eco]	<0.00042	<0.0026	0.0013 J	5.4	0.5	<0.00056	<0.0031	<0.00056	<0.00069	<0.00039
DP-7.14	1 to 1.5 ft	06-Apr-06	0.0015 J	0.0057 J	<0.00038	<0.0024	<0.00059	<0.11	<0.015	<0.00051	<0.0028	<0.00051	<0.00063	<0.00036
	6 to 6.5 ft	06-Apr-06	0.0032 J	0.017 J [PSL-Eco]	<0.00045	<0.0028	<0.0007	<0.13	<0.018	<0.0006	<0.0033	<0.0006	<0.00074	<0.00042
	6.5 to 7 ft	06-Apr-06	0.0045 J	0.022 J [PSL-Eco]	<0.00036	<0.0023	<0.00056	<0.1	<0.014	<0.00048	<0.0026	<0.00048	<0.0006	<0.00034
DP-7.15	0 to 0.5 ft	06-Apr-06	0.003 J	0.013 J [PSL-Eco]	<0.00022	<0.0014	0.0012 J	0.19 J	<0.0086	<0.00029	<0.0016	<0.0003	<0.00037	<0.00021
	5 to 5.5 ft	06-Apr-06	<0.00032	0.0027 J	<0.00018	0.00039 J	0.0025 J	<0.015	<0.0013	<0.00025	<0.00032	<0.00041	0.00056 J	<0.0002
DP-7.16	4 to 4.5 ft	10-Apr-06	0.0012 J	0.0042 J	<0.00022	<0.0014	<0.00034	<0.063	<0.0086	<0.00029	<0.0016	<0.0003	<0.00037	0.0005 J
Pond 4														
DP-7.17	0 to 0.5 ft	13-Apr-06	<0.00036	0.0014 J	<0.00021	<0.00031	0.00069 J	<0.017	<0.0015	<0.00029	0.0012 J	<0.00046	<0.00038	<0.00023
	5 to 5.5 ft	13-Apr-06	<0.00031	0.0013 J	<0.00018	<0.00027	0.0028 J	<0.014	<0.0013	<0.00025	0.00086 J	<0.0004	<0.00033	<0.0002
DP-7.18	0 to 0.5 ft	13-Apr-06	<0.00031	0.0013 J	<0.00018	<0.00027	<0.00018	<0.014	<0.0013	<0.00025	0.00067 J	<0.0004	<0.00032	<0.0002
	0.5 to 1 ft	13-Apr-06	<0.00032	0.0025 J	<0.00019	<0.00028	<0.00019	<0.015	<0.0013	<0.00026	0.00067 J	<0.00042	<0.00034	<0.00021
	5 to 5.5 ft	13-Apr-06	<0.0003	0.00099 J	<0.00017	<0.00026	0.00021 J	<0.014	<0.0012	<0.00024	0.0011 J	<0.00039	<0.00032	<0.0002

		Sample Date /	2,3,7,8-TCDD TEQ	2,3,7,8-TCDD	2,3,7,8-TCDD	2,3,7,8-	1,2,3,7,8-	1,2,3,4,7,8-	1,2,3,6,7,8-	1,2,3,7,8,9-	1,2,3,4,6,7,8-
	Denth	Analyte	(Human/Mammal)'	TEQ (Bird)°	TEQ (Fish) ⁹	TCDD	PeCDD	HxCDD	HxCDD	HxCDD	HpCDD
Location ID	(ft bss)	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	()))	PSL-HH	4.6			4.6		94	94	94	
		PSL-Eco	21.5	21.5	21.5	-					
Pond 5	1	r r		r		r			r	r	-
DP-5.63	0 to 0.5 ft	25-Apr-06	23 [PSL-HH,PSL-Eco]	41 [PSL-Eco]	27 [PSL-Eco]	10 [PSL-HH]	1.7 J	1.67 J	5.28	3.39	84.1
Pond5-01	0 to 1 ft	14-Mar-08	70 [PSL-HH,PSL-Eco]	75 [PSL-Eco]	68 [PSL-Eco]	49.4 [PSL-HH]	4.79 J	5.65	20.1	11.9	235
Pond5-02	0 to 1 ft	14-Mar-08	30 [PSL-HH,PSL-Eco]	36 [PSL-Eco]	29 [PSL-Eco]	10.6 [PSL-HH]	4.85 J	5.21	18	10.9	193
Pond5-03	0 to 0.5 ft	18-Mar-08	20 [PSL-HH]	22 [PSL-Eco]	19	7.41 [PSL-HH]	3.24 J	3.92 J	12.6	7.86	156
Pond 9											
DP-1.5	2 to 2.5 ft	27-Apr-06	0.019	0.017	0.017	<0.0227	< 0.0369	<0.0373	<0.0378	<0.0379	0.222 J
Pond9-01	0 to 0.5 ft	18-Jun-09	7.9 [PSL-HH]	9.7	6.8	2.87	1.58 J	1.32 J	5.92	3.5 J	79.1
North Pond										•	
DP-4.7	0 to 0.5 ft	17-Apr-06	6.3 [PSL-HH]	19	6.2	1.62 J	1.27 J	<0.792	1.2 J	1.17 J	21.1
	14 to 14.5 ft	17-Apr-06	0.045	0.030	0.030	<0.0235	<0.0373	<0.0417	<0.0431	<0.0428	1.46 J
	19 to 19.5 ft	17-Apr-06	90 [PSL-HH,PSL-Eco]	307 [PSL-Eco]	99 [PSL-Eco]	18.5 [PSL-HH]	17.9	7.72	9.99	7.92	30.9
North Pond-01	0 to 0.5 ft	19-Mar-08	8.5 [PSL-HH]	9.9	6.5	<0.787	1.87 J	3.28 J	9.87 J	6.54 J	182
Pond 6											
DP-4.9	0.5 to 1 ft	25-Apr-06	2.1	3.4	1.9	0.253 J	0.421 J	0.325 J	2.41 J	1.01 J	29.9
	6 to 6.5 ft	25-Apr-06	0.28	1.4	0.27	<0.151	<0.109	<0.0417	0.168 J	0.119 J	1.25 J
DP-4.10	0 to 0.5 ft	18-Apr-06	175 [PSL-HH,PSL-Eco]	634 [PSL-Eco]	186 [PSL-Eco]	43.4 [PSL-HH]	34	10.9	14.7	12.8	56.8
	5 to 5.5 ft	18-Apr-06	0.023	0.22	0.011	<0.197	<0.142	<0.119	<0.118	<0.115	<0.347
Pond6-01	0 to 0.5 ft	18-Mar-08	3.7	8.0	3.0	0.734 J	0.523 J	0.78 J	3.76 J	2.04 J	42.1
	0.5 to 1.5 ft	11-Mar-08	16 [PSL-HH]	30 [PSL-Eco]	13	2.57	2.57 J	3.90 J	12.1	7.84 J	232
Pond6-02	0 to 0.5 ft	18-Mar-08	56 [PSL-HH,PSL-Eco]	164 [PSL-Eco]	54 [PSL-Eco]	13.0 [PSL-HH]	10.6	8.75	21.9	15.4	278
	0.5 to 1.5 ft	12-Mar-08	103 [PSL-HH,PSL-Eco]	344 [PSL-Eco]	106 [PSL-Eco]	25.0 [PSL-HH]	17.9	11.9	22.8	18.6	237
	1.5 to 2.5 ft	12-Mar-08	141 [PSL-HH,PSL-Eco]	440 [PSL-Eco]	140 [PSL-Eco]	37.8 [PSL-HH]	28.5	19.6	34.7	27.5	284
	2.5 to 3.5 ft	12-Mar-08	168 [PSL-HH,PSL-Eco]	497 [PSL-Eco]	169 [PSL-Eco]	44.7 [PSL-HH]	36	23.5	42.3	34.1	320
	4.5 to 5.5 ft	12-Mar-08	165 [PSL-HH,PSL-Eco]	561 [PSL-Eco]	171 [PSL-Eco]	50.3 [PSL-HH]	26	12.8	19.1	16.5	99.2
Pond 7											
DP-4.11	6 to 6.5 ft	17-Apr-06	1420 [PSL-HH,PSL-Eco]	3220 [PSL-Eco]	1618 [PSL-Eco]	198 [PSL-HH]	466	313 [PSL-HH]	465 [PSL-HH]	400 [PSL-HH]	1960
DP-4.12	6 to 6.5 ft	18-Apr-06	1480 [PSL-HH,PSL-Eco]	3410 [PSL-Eco]	1707 [PSL-Eco]	192 [PSL-HH]	476	342 [PSL-HH]	495 [PSL-HH]	430 [PSL-HH]	2000
	11 to 11.5 ft	18-Apr-06	0.027	0.24	0.012	<0.175	<0.245	<0.184	<0.177	<0.372	0.294 J
DP-4.13	0 to 0.5 ft	18-Apr-06	753 [PSL-HH,PSL-Eco]	1730 [PSL-Eco]	865 [PSL-Eco]	95.4 [PSL-HH]	235	171 [PSL-HH]	266 [PSL-HH]	235 [PSL-HH]	1070
Pond7-01	0 to 0.5 ft	18-Mar-08	1184 [PSL-HH,PSL-Eco]	2731 [PSL-Eco]	1317 [PSL-Eco]	188 [PSL-HH]	327	313 [PSL-HH]	476 [PSL-HH]	336 [PSL-HH]	1810
	0.5 to 1.5 ft	12-Mar-08	1349 [PSL-HH,PSL-Eco]	3065 [PSL-Eco]	1512 [PSL-Eco]	203 [PSL-HH]	391	372 [PSL-HH]	564 [PSL-HH]	444 [PSL-HH]	2200

		Sample Date /	2,3,7,8-TCDD TEQ	2,3,7,8-TCDD	2,3,7,8-TCDD	2,3,7,8-	1,2,3,7,8-	1,2,3,4,7,8-	1,2,3,6,7,8-	1,2,3,7,8,9-	1,2,3,4,6,7,8-
	Donth	Analyte	(Human/Mammal)'	TEQ (Bird)°	TEQ (Fish)	TCDD	PeCDD	HxCDD	HxCDD	HxCDD	HpCDD
Location ID	(ft bss)	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	()))))))))))))))))))	PSL-HH	4.6			4.6		94	94	94	
		PSL-Eco	21.5	21.5	21.5						
Pond7-02 0	0 to 0.5 ft	18-Mar-08	1227 [PSL-HH,PSL-Eco]	2800 [PSL-Eco]	1376 [PSL-Eco]	188 [PSL-HH]	341	311 [PSL-HH]	488 [PSL-HH]	358 [PSL-HH]	1810
0.).5 to 1.5 ft	12-Mar-08	1688 [PSL-HH,PSL-Eco]	3668 [PSL-Eco]	1848 [PSL-Eco]	264 [PSL-HH]	519	506 [PSL-HH]	760 [PSL-HH]	604 [PSL-HH]	3150
1.	.5 to 2.5 ft	12-Mar-08	1626 [PSL-HH,PSL-Eco]	3537 [PSL-Eco]	1784 [PSL-Eco]	273 [PSL-HH]	480	402 [PSL-HH]	659 [PSL-HH]	488 [PSL-HH]	2480
2.	2.5 to 3.5 ft	12-Mar-08	1518 [PSL-HH,PSL-Eco]	3425 [PSL-Eco]	1695 [PSL-Eco]	243 [PSL-HH]	424	366 [PSL-HH]	594 [PSL-HH]	473 [PSL-HH]	2220
4.	.5 to 5.5 ft	12-Mar-08	212 [PSL-HH,PSL-Eco]	658 [PSL-Eco]	218 [PSL-Eco]	55.8 [PSL-HH]	38.5	32.3	55.3	42.3	364
5.	5.5 to 6.5 ft	12-Mar-08	253 [PSL-HH,PSL-Eco]	635 [PSL-Eco]	276 [PSL-Eco]	47.8 [PSL-HH]	64.7	57	91.7	68.5	353
Pond 8 East											
DP-5.60 3	3 to 3.5 ft	20-Apr-06	0.88	1.2	0.79	<0.145	0.374 J	0.223 J	0.889 J	0.577 J	10.5
8	8 to 8.5 ft	20-Apr-06	0.66	0.85	0.57	<0.0302	0.276 J	0.191 J	0.739 J	0.627 J	9.31
DP-5.61 0	0 to 0.5 ft	19-Apr-06	134 [PSL-HH,PSL-Eco]	362 [PSL-Eco]	194 [PSL-Eco]	3.09	8.46	4.24	18.1	10.6	132
10	0 to 10.5 ft	19-Apr-06	0.0030	0.0010	0.0010	<0.0243	<0.0376	<0.0419	<0.0413	<0.0419	0.237 J
DP-5.62 C	0 to 0.5 ft	24-Apr-06	69 [PSL-HH,PSL-Eco]	57 [PSL-Eco]	56 [PSL-Eco]	4.11	24	24.9	81.8	51.8	1140
5	5 to 5.5 ft	24-Apr-06	57 [PSL-HH,PSL-Eco]	61 [PSL-Eco]	49 [PSL-Eco]	5.56 [PSL-HH]	16	14.8	52.7	43.2	996
10	0 to 10.5 ft	24-Apr-06	1.0	3.0	1.0	0.218 J	0.223 J	0.16 J	0.387 J	0.524 J	2.16 J
Pond8-05 0.).5 to 1.5 ft	17-Mar-08	123 [PSL-HH,PSL-Eco]	130 [PSL-Eco]	100 [PSL-Eco]	11.9 [PSL-HH]	36	49	175 [PSL-HH]	113 [PSL-HH]	1680
1.	.5 to 2.5 ft	17-Mar-08	60 [PSL-HH,PSL-Eco]	53 [PSL-Eco]	49 [PSL-Eco]	5.74 [PSL-HH]	16.4	23.8	80.5	54.8	881
2.	2.5 to 3.5 ft	17-Mar-08	87 [PSL-HH,PSL-Eco]	67 [PSL-Eco]	65 [PSL-Eco]	10.6 [PSL-HH]	26.8	29.3	113 [PSL-HH]	96 [PSL-HH]	1590
Pond8-06 C	0 to 0.5 ft	17-Mar-08	177 [PSL-HH,PSL-Eco]	148 [PSL-Eco]	141 [PSL-Eco]	14.0 [PSL-HH]	50.7	78.9	276 [PSL-HH]	163 [PSL-HH]	2790
0.).5 to 1.5 ft	18-Mar-08	132 [PSL-HH,PSL-Eco]	108 [PSL-Eco]	104 [PSL-Eco]	9.53 [PSL-HH]	36.4	54.3	195 [PSL-HH]	121 [PSL-HH]	2190
Pond8-07 C	0 to 0.5 ft	17-Mar-08	127 [PSL-HH,PSL-Eco]	87 [PSL-Eco]	96 [PSL-Eco]	5.51 [PSL-HH]	26.2	57.4	150 [PSL-HH]	122 [PSL-HH]	2700
0.).5 to 1.5 ft	17-Mar-08	96 [PSL-HH,PSL-Eco]	74 [PSL-Eco]	77 [PSL-Eco]	6.77 [PSL-HH]	27.1	43.3	115 [PSL-HH]	90.6	1720
1.	.5 to 2.5 ft	17-Mar-08	84 [PSL-HH,PSL-Eco]	72 [PSL-Eco]	72 [PSL-Eco]	6.83 [PSL-HH]	26.1	38.4	102 [PSL-HH]	76	1160
2.	2.5 to 3.5 ft	17-Mar-08	175 [PSL-HH,PSL-Eco]	140 [PSL-Eco]	143 [PSL-Eco]	11.4 [PSL-HH]	51.4	77.6	264 [PSL-HH]	155 [PSL-HH]	2690
3.	8.5 to 4.5 ft	17-Mar-08	104 [PSL-HH,PSL-Eco]	84 [PSL-Eco]	88 [PSL-Eco]	9.42 [PSL-HH]	32.3	47.1	132 [PSL-HH]	100 [PSL-HH]	1430
4.	.5 to 5.5 ft	17-Mar-08	203 [PSL-HH,PSL-Eco]	141 [PSL-Eco]	143 [PSL-Eco]	28.5 [PSL-HH]	58.3	67.6	273 [PSL-HH]	234 [PSL-HH]	4420
Pond8-08 C	0 to 0.5 ft	17-Mar-08	152 [PSL-HH,PSL-Eco]	106 [PSL-Eco]	117 [PSL-Eco]	5.71 [PSL-HH]	30.9	69.9	174 [PSL-HH]	142 [PSL-HH]	3260
0.).5 to 1.5 ft	17-Mar-08	109 [PSL-HH,PSL-Eco]	80 [PSL-Eco]	87 [PSL-Eco]	6.18 [PSL-HH]	27.3	50.8	127 [PSL-HH]	102 [PSL-HH]	2080
1.	.5 to 2.5 ft	17-Mar-08	176 [PSL-HH,PSL-Eco]	155 [PSL-Eco]	147 [PSL-Eco]	12.2 [PSL-HH]	55.9	74.4	264 [PSL-HH]	157 [PSL-HH]	2330
Pond8-14 C	0 to 0.5 ft	17-Jun-09	86 [PSL-HH,PSL-Eco]	80 [PSL-Eco]	71 [PSL-Eco]	5.88 [PSL-HH]	30.6	25.9	84.9	66.8	1260
Pond8-15 C	0 to 0.5 ft	17-Jun-09	4.0	3.2	3.1	0.278 J	1.36 J	1.18 J	4.55	3.06	64.8
Pond8-16 C	0 to 0.5 ft	17-Jun-09	155 [PSL-HH,PSL-Eco]	138 [PSL-Eco]	125 [PSL-Eco]	11.4 [PSL-HH]	56.5	52.5	187 [PSL-HH]	141 [PSL-HH]	2160
Pond8-17 C	0 to 0.5 ft	17-Jun-09	231 [PSL-HH,PSL-Eco]	200 [PSL-Eco]	186 [PSL-Eco]	16.3 [PSL-HH]	85.7	71.6	301 [PSL-HH]	195 [PSL-HH]	3210
Pond8-18 C	0 to 0.5 ft	17-Jun-09	215 [PSL-HH,PSL-Eco]	155 [PSL-Eco]	161 [PSL-Eco]	7.39 [PSL-HH]	54.1	74.7	236 [PSL-HH]	184 [PSL-HH]	4420
Pond 8 West			· · · ·								
DP-4.14 C	0 to 0.5 ft	24-Apr-06	21 [PSL-HH]	32 [PSL-Eco]	21	4.08	2.49 J	2.51 J	18	12.7	233
DP-4.15 2	2 to 2.5 ft	20-Apr-06	36 [PSL-HH,PSL-Eco]	32 [PSL-Eco]	26 [PSL-Eco]	2.41	9.15	9.73	41.3	28.5	861

		Sample Date / Analyte	2,3,7,8-TCDD TEQ (Human/Mammal) ⁷	2,3,7,8-TCDD TEQ (Bird) ⁸	2,3,7,8-TCDD TEQ (Fish) ⁹	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD
Location ID	Depth	Units	pq/q	pq/q	pq/q	pq/q	pq/q	pq/q	pq/q	pq/q	pq/q
200000000	(ft bss)	PSL-HH	4.6			4.6		94	94	94	
		PSL-Eco	21.5	21.5	21.5						
	7 to 7.5 ft	20-Apr-06	0.00029	0.000095	ND	<0.0974	<0.132	<0.201	<0.2	<0.194	<0.265
Pond8-01	0 to 0.5 ft	17-Mar-08	34 [PSL-HH,PSL-Eco]	44 [PSL-Eco]	27 [PSL-Eco]	3.19	6.43	12.7	30.3	25.6	599
	0.5 to 1.5 ft	18-Mar-08	77 [PSL-HH,PSL-Eco]	201 [PSL-Eco]	67 [PSL-Eco]	15.0 [PSL-HH]	15.8	13.7	78.1	41.9	433
	1.5 to 2.5 ft	18-Mar-08	66 [PSL-HH,PSL-Eco]	82 [PSL-Eco]	51 [PSL-Eco]	7.55 [PSL-HH]	17.1	18.4	104 [PSL-HH]	55.5	792
Pond8-02	0 to 0.5 ft	17-Mar-08	23 [PSL-HH,PSL-Eco]	44 [PSL-Eco]	19	3.22	4.47 J	6.68	19.5	14.1	278
	0.5 to 1.5 ft	18-Mar-08	46 [PSL-HH,PSL-Eco]	56 [PSL-Eco]	37 [PSL-Eco]	4.68 [PSL-HH]	11.2	14.6	68.4	37.8	645
Pond8-03	0 to 0.5 ft	17-Mar-08	49 [PSL-HH,PSL-Eco]	115 [PSL-Eco]	44 [PSL-Eco]	8.49 [PSL-HH]	10.1	12.7	35.9	25.9	440
	0.5 to 1.5 ft	18-Mar-08	79 [PSL-HH,PSL-Eco]	138 [PSL-Eco]	64 [PSL-Eco]	12.4 [PSL-HH]	17.1	16.4	117 [PSL-HH]	53.6	745
Pond8-04	0 to 0.5 ft	17-Mar-08	53 [PSL-HH,PSL-Eco]	77 [PSL-Eco]	45 [PSL-Eco]	6.44 [PSL-HH]	11.7 J	18.6	48.3	39.7	744
	0.5 to 1.5 ft	12-Mar-08	44 [PSL-HH,PSL-Eco]	99 [PSL-Eco]	38 [PSL-Eco]	7.68 [PSL-HH]	8.03 J	14.4	33.6	23.6	552
	1.5 to 2.5 ft	12-Mar-08	131 [PSL-HH,PSL-Eco]	225 [PSL-Eco]	110 [PSL-Eco]	18.3 [PSL-HH]	35	33.2	186 [PSL-HH]	94.6 [PSL-HH]	1010
	3.5 to 4.5 ft	12-Mar-08	13 [PSL-HH]	14	11	3.57	1.56 J	2.36 J	13.3	10.9	152
	4.5 to 5.5 ft	12-Mar-08	0.035	0.095	0.010	<0.122	<0.142	<0.246	<0.271	<0.256	2.18 J
Pond8-09	0 to 0.5 ft	18-Jun-09	105 [PSL-HH,PSL-Eco]	203 [PSL-Eco]	91 [PSL-Eco]	16.2 [PSL-HH]	32.3	18.9	109 [PSL-HH]	61.9	770
Pond8-10	0 to 0.5 ft	18-Jun-09	58 [PSL-HH,PSL-Eco]	70 [PSL-Eco]	47 [PSL-Eco]	5.87 [PSL-HH]	13.7	18.4	63.1	47.2	940
Pond8-11	0 to 0.5 ft	18-Jun-09	92 [PSL-HH,PSL-Eco]	136 [PSL-Eco]	73 [PSL-Eco]	11.2 [PSL-HH]	28	17.6	127 [PSL-HH]	62.9	933
Pond8-12	0 to 0.5 ft	18-Jun-09	71 [PSL-HH,PSL-Eco]	131 [PSL-Eco]	66 [PSL-Eco]	11.3 [PSL-HH]	20.3	14.9	42.6	36.2	587
Pond 1											
DP-7.9	0 to 0.5 ft	12-Apr-06	7.6 [PSL-HH]	28 [PSL-Eco]	8.1	1.75	1.43 J	0.6 J	0.871 J	0.688 J	4.48
DP-7.10	0 to 0.5 ft	12-Apr-06	1.0	4.3	1.1	0.324 J	<0.251	<0.104	0.231 J	<0.1	1.18 J
Pond1-01	0 to 0.5 ft	18-Mar-08	136 [PSL-HH,PSL-Eco]	410 [PSL-Eco]	148 [PSL-Eco]	28.7 [PSL-HH]	26.8	20.6	30.1	27.5	171
	0.5 to 1.5 ft	14-Mar-08	272 [PSL-HH,PSL-Eco]	869 [PSL-Eco]	282 [PSL-Eco]	66.9 [PSL-HH]	52.5	35.3	54.5	43.6	294
	1.5 to 2.5 ft	14-Mar-08	85 [PSL-HH,PSL-Eco]	291 [PSL-Eco]	89 [PSL-Eco]	22.6 [PSL-HH]	13.5	6.53	12.7	8.36	56.5
	2.5 to 3 ft	14-Mar-08	3.0	9.20	3.22	0.818	0.554 J	0.338 J	0.749 J	0.419 J	3.14
Pond1-02	0 to 0.5 ft	18-Mar-08	200 [PSL-HH,PSL-Eco]	588 [PSL-Eco]	200 [PSL-Eco]	47.7 [PSL-HH]	40.7	32.7	62.2	48.9	648
Pond 2											
DP-7.11	2 to 2.5 ft	05-Apr-06	131 [PSL-HH,PSL-Eco]	408 [PSL-Eco]	132 [PSL-Eco]	26.7 [PSL-HH]	24.7	14	26.9	26.3	728
DP-7.12	2 to 2.5 ft	05-Apr-06	0.047	0.30	0.019	<0.154	<0.148	<0.212	<0.211	<0.205	1.17 J
Pond2-01	0 to 0.5 ft	19-Mar-08	473 [PSL-HH,PSL-Eco]	1191 [PSL-Eco]	505 [PSL-Eco]	95.8 [PSL-HH]	117	104 [PSL-HH]	168 [PSL-HH]	136 [PSL-HH]	816
	0.5 to 1.5 ft	13-Mar-08	279 [PSL-HH,PSL-Eco]	873 [PSL-Eco]	282 [PSL-Eco]	68.0 [PSL-HH]	59.4	43.4	74.5	65.1	525
Pond2-02	0 to 0.5 ft	19-Mar-08	996 [PSL-HH,PSL-Eco]	2239 [PSL-Eco]	1089 [PSL-Eco]	158 [PSL-HH]	279	259 [PSL-HH]	436 [PSL-HH]	312 [PSL-HH]	1670
	0.5 to 1.5 ft	13-Mar-08	287 [PSL-HH,PSL-Eco]	819 [PSL-Eco]	300 [PSL-Eco]	60.9 [PSL-HH]	67.7	54.6	89.8	70.6	465
	1.5 to 2.5 ft	13-Mar-08	107 [PSL-HH,PSL-Eco]	366 [PSL-Eco]	105 [PSL-Eco]	31.2 [PSL-HH]	19.1	10.9	19.5	15.7	119
	2.5 to 3.5 ft	13-Mar-08	103 [PSL-HH,PSL-Eco]	338 [PSL-Eco]	103 [PSL-Eco]	26.2 [PSL-HH]	18.2	9.46	31	18.3	113
	4.5 to 5.5 ft	13-Mar-08	59 [PSL-HH,PSL-Eco]	208 [PSL-Eco]	59 [PSL-Eco]	15.6 [PSL-HH]	8.32	5.01	16.7	10.1	71.9

		Sample Date / Analyte	2,3,7,8-TCDD TEQ (Human/Mammal) ⁷	2,3,7,8-TCDD TEQ (Bird) ⁸	2,3,7,8-TCDD TEQ (Fish) ⁹	2,3,7,8- TCDD	1,2,3,7,8- PeCDD	1,2,3,4,7,8- HxCDD	1,2,3,6,7,8- HxCDD	1,2,3,7,8,9- HxCDD	1,2,3,4,6,7,8- HpCDD
Location ID	Depth	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(it bss)	PSL-HH	4.6			4.6		94	94	94	
		PSL-Eco	21.5	21.5	21.5						
Pond 3											
DP-7.13	0 to 0.5 ft	06-Apr-06	205 [PSL-HH,PSL-Eco]	625 [PSL-Eco]	215 [PSL-Eco]	37.7 [PSL-HH]	48.8	21.8	82.4	46.3	286
	7 to 7.5 ft	05-Apr-06	ND	ND	ND	<0.0923	<0.119	<0.117	<0.118	<0.113	<0.228
DP-7.14	6 to 6.5 ft	06-Apr-06	75 [PSL-HH,PSL-Eco]	209 [PSL-Eco]	70 [PSL-Eco]	13.3 [PSL-HH]	14.9	6.61 J	66.2	24.8	358
DP-7.15	0 to 0.5 ft	06-Apr-06	145 [PSL-HH,PSL-Eco]	343 [PSL-Eco]	160 [PSL-Eco]	21.1 [PSL-HH]	43.9	30.1	45.9	42.1	420
DP-7.16	4 to 4.5 ft	10-Apr-06	ND	ND	ND	<0.0968	<0.102	<0.194	<0.2	<0.191	<0.168
Pond3-01	0.5 to 1.5 ft	13-Mar-08	1285 [PSL-HH,PSL-Eco]	2793 [PSL-Eco]	1392 [PSL-Eco]	186 [PSL-HH]	379	397 [PSL-HH]	670 [PSL-HH]	508 [PSL-HH]	2760
	1.5 to 2.5 ft	13-Mar-08	126 [PSL-HH,PSL-Eco]	411 [PSL-Eco]	126 [PSL-Eco]	36.9 [PSL-HH]	23.1	13.6	24.9	18	170
	2.5 to 3.5 ft	13-Mar-08	69 [PSL-HH,PSL-Eco]	216 [PSL-Eco]	71 [PSL-Eco]	17.8 [PSL-HH]	12	7.05	23.3	10.8	105
	3.5 to 4.5 ft	13-Mar-08	16 [PSL-HH]	35 [PSL-Eco]	14.7	3.54	3.61 J	3.1 J	9.34	6.12	86.7
Pond3-02	0.5 to 1.5 ft	14-Mar-08	149 [PSL-HH,PSL-Eco]	405 [PSL-Eco]	130 [PSL-Eco]	29.6 [PSL-HH]	28.8	18.3	169 [PSL-HH]	76.9	512
	1.5 to 2.5 ft	14-Mar-08	11 [PSL-HH]	21	9.65	2.18	1.86 J	1.85 J	16.2	5.05 J	84
Pond3-03	0.5 to 1.5 ft	14-Mar-08	98 [PSL-HH,PSL-Eco]	366 [PSL-Eco]	94 [PSL-Eco]	27.1 [PSL-HH]	15.6	8.36	25	13.2	102
Pond3-04	0 to 0.5 ft	19-Mar-08	451 [PSL-HH,PSL-Eco]	1137 [PSL-Eco]	503 [PSL-Eco]	82.2 [PSL-HH]	108	94.5 [PSL-HH]	146 [PSL-HH]	121 [PSL-HH]	669
	1.5 to 2.5 ft	14-Mar-08	ND	ND	ND	<0.216	<0.15	<0.336	<0.363	<0.326	<0.447
Pond3-05	0.5 to 1.5 ft	14-Mar-08	53 [PSL-HH,PSL-Eco]	175 [PSL-Eco]	50 [PSL-Eco]	13.5 [PSL-HH]	9.35	5.61	25.8	11.9	129
	1.5 to 2.5 ft	14-Mar-08	34 [PSL-HH,PSL-Eco]	86 [PSL-Eco]	31 [PSL-Eco]	6.66 [PSL-HH]	5.98	4.69 J	30.9	11.9	154
Pond3-06	0 to 0.5 ft	19-Mar-08	175 [PSL-HH,PSL-Eco]	501 [PSL-Eco]	179 [PSL-Eco]	41.4 [PSL-HH]	33.5	28.1	55.9	47	695
Pond3-07	0 to 0.5 ft	19-Mar-08	99 [PSL-HH,PSL-Eco]	377 [PSL-Eco]	103 [PSL-Eco]	26.0 [PSL-HH]	12.9	6.73	13.3	9.2	82.5
Pond3-08	0 to 0.5 ft	19-Mar-08	191 [PSL-HH,PSL-Eco]	520 [PSL-Eco]	201 [PSL-Eco]	38.5 [PSL-HH]	44	37.1	64.7	52.5	435
Pond3-09	0 to 0.5 ft	19-Mar-08	117 [PSL-HH,PSL-Eco]	177 [PSL-Eco]	102 [PSL-Eco]	10.9 [PSL-HH]	20.2	39.4	80	77.7	1960
Pond 4											
DP-7.17	0 to 0.5 ft	13-Apr-06	0.020	0.016	0.016	<0.118	<0.147	<0.225	<0.244	<0.227	0.41 J
DP-7.18	0 to 0.5 ft	13-Apr-06	1.5	3.8	1.74	0.22 J	0.462 J	0.338 J	0.479 J	<0.446	1.95 J
Pond4-01	0 to 0.5 ft	18-Mar-08	51 [PSL-HH,PSL-Eco]	120 [PSL-Eco]	53 [PSL-Eco]	8.88 [PSL-HH]	13.8	12.3	19.6	17.2	116

		Sample Date / Analyte	OCDD	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	1,2,3,4,6,7,8- HpCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(IT DSS)	PSL-HH							-		
		PSL-Eco							-		
Pond 5											
DP-5.63	0 to 0.5 ft	25-Apr-06	553 B	1.53	0.939 J	24.8	2.28 J	4.34 D	9.42	1.39 J	28.7
Pond5-01	0 to 1 ft	14-Mar-08	1690	4.86 F	2.29 J	7.6	8.52	11.9	25.5	3.73 J	86.1
Pond5-02	0 to 1 ft	14-Mar-08	1610	3.53 F	2.32 J	8.9	11.4	11	21.6	5.65	62.3
Pond5-03	0 to 0.5 ft	18-Mar-08	1280	2.37 F	1.81 J	3.67 J	6.59	7.03	14.8	3.55 J	49.1
Pond 9											
DP-1.5	2 to 2.5 ft	27-Apr-06	1.58 J	<0.0308	<0.0318	<0.032	<0.0269	<0.0279	<0.0305	0.148 J	0.144 J,B
Pond9-01	0 to 0.5 ft	18-Jun-09	603	2.93 F	0.753 J	0.873 J	1.13 J	1.79 J	1.71 J	0.442 J	26.7
North Pond	-										
DP-4.7	0 to 0.5 ft	17-Apr-06	325	11	<3.38	4.72 J	<1.43	1.38 J	1.35 J	<0.596	4.46 J,B
	14 to 14.5 ft	17-Apr-06	11.2 B	<0.0255	<0.029	<0.0277	0.125 J	0.0862 J	<0.0312	<0.0491	0.57 J
	19 to 19.5 ft	17-Apr-06	48.7	178	57.2	78.9	16.7	20.6	23.6	7.82	12.8 B
North Pond-01	0 to 0.5 ft	19-Mar-08	1480	3.73	1.43 J	1.29 J	2.50 J	2.47 J	3.61 J	1.07 J	56.5
Pond 6											
DP-4.9	0.5 to 1 ft	25-Apr-06	215 B	0.996	0.406 J	1.21 J	0.451 J	0.515 J	0.704 J	0.161 J	6.53
	6 to 6.5 ft	25-Apr-06	6.79 B	0.928	0.227 J	0.352 J	0.0841 J	0.0728 J	0.0826 J	<0.0231	0.288 J
DP-4.10	0 to 0.5 ft	18-Apr-06	167 B	398	110	136	24.7	29.6 D	28.3 D	10.1	18.5
	5 to 5.5 ft	18-Apr-06	0.857 J	0.224 J	<0.248	<0.232	<0.0972	<0.0867	<0.097	<0.134	<0.0897
Pond6-01	0 to 0.5 ft	18-Mar-08	312	4.86 F	1.55 J	0.949 J	0.889 J	0.996 J	1.31 J	<0.226	12.1
	0.5 to 1.5 ft	11-Mar-08	2150	16.2 F	4.52 J	4.51 J	3.35 J	3.44 J	4.56 J	1.11 J	62.3
Pond6-02	0 to 0.5 ft	18-Mar-08	2200	103 F	32.5	26	12.6	14.4	16.9	4.64 J	66.7
	0.5 to 1.5 ft	12-Mar-08	1080	215 F	59.3	69.1	19.3	22.4	23.7	7.55	27.4
	1.5 to 2.5 ft	12-Mar-08	1280	285 F	93.3	60.8	34.8	40.7	43.7	14.2	42.7
	2.5 to 3.5 ft	12-Mar-08	1440	308 F	105	76.4	42.3	47.6	52.1	15.4	50
	4.5 to 5.5 ft	12-Mar-08	457	354 F	114	105	29.9	37.1	38	12.6	26.2
Pond 7											
DP-4.11	6 to 6.5 ft	17-Apr-06	3260 B	1190	623	1090	381	419 D	494 D	150 D	528 D
DP-4.12	6 to 6.5 ft	18-Apr-06	2940 B	1250	676	1190	402	459 D	549 D	173 D	579 D
	11 to 11.5 ft	18-Apr-06	0.722 J	0.24 J	<0.349	<0.341	<0.0842	<0.078	<0.0826	<0.105	<0.0652
DP-4.13	0 to 0.5 ft	18-Apr-06	1500 B	631	362	615	209	232 D	289 D	88.4	295
Pond7-01	0 to 0.5 ft	18-Mar-08	3350	1190 F	654	722	436	507	636	169	602
	0.5 to 1.5 ft	12-Mar-08	4180	1270 F	687	879	433	502	649	156	659

		Sample Date / Analyte	OCDD	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	1,2,3,4,6,7,8- HpCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(ft bss)	PSL-HH									
		PSL-Eco									
Pond7-02	0 to 0.5 ft	18-Mar-08	3200	1150 F	664	812	438	512	643	176	597
	0.5 to 1.5 ft	12-Mar-08	5450	1600	921	855	563	669	839	228	886
	1.5 to 2.5 ft	12-Mar-08	4790	1470 F	896	897	595	684	854	251	827
	2.5 to 3.5 ft	12-Mar-08	4010	1380 F	827	999	536	620	754	220	719
	4.5 to 5.5 ft	12-Mar-08	1370	407 F	138	114	54.1	63.2	70.8	22.2	63.8
	5.5 to 6.5 ft	12-Mar-08	670	312 F	147	151	84.7	95.1	116	32.2	102
Pond 8 East											
DP-5.60	3 to 3.5 ft	20-Apr-06	49.3 B	0.274 J	<0.122	0.379 J	0.136 J	0.209 J	0.219 J	<0.0435	1.31 J
	8 to 8.5 ft	20-Apr-06	44.5 B	0.192 J	0.103 J	0.252 J	<0.105	0.134 J	<0.143	<0.0522	1.04 J
DP-5.61	0 to 0.5 ft	19-Apr-06	498 B	10.9	7.52	315	19.4	53.2 D	122	15.8	60.8
	10 to 10.5 ft	19-Apr-06	1.56 J,B	<0.0349	<0.0307	<0.0283	<0.0216	<0.0204	<0.0217	<0.0317	0.0476 J
DP-5.62	0 to 0.5 ft	24-Apr-06	10100 B	3.33	2.92	9.01	12.7	11.2 D	14.4	2.94	253 D
	5 to 5.5 ft	24-Apr-06	4200 B	2.7	2.13 J	24.3	8.11 J	10.1 D	14	3.1 J	133 D
	10 to 10.5 ft	24-Apr-06	5.29 B	1.84	0.655 J	0.51 J	<0.214	0.239 J	0.205 J	0.471 J	0.422 J
Pond8-05	0.5 to 1.5 ft	17-Mar-08	11800	35.8 F	16.7	12.4 J	24.6	30.2	32.3	7.38 J	372
	1.5 to 2.5 ft	17-Mar-08	5830	6.59 F	6.09 J	6.32 J	13.5	25	21	5.06 J	188
	2.5 to 3.5 ft	17-Mar-08	5540	3.64	3.19 J	4.8 J	8.28 J	18.5	22.5	3.48 J	91.8
Pond8-06	0 to 0.5 ft	17-Mar-08	19100	22.1 F	14.7	10.4 J	35.6	50	49.1	11.6 J	608
	0.5 to 1.5 ft	18-Mar-08	14200	12.2 F	9.74 J	10.0 J	27.8	45.7	47.1	9.04 J	496
Pond8-07	0 to 0.5 ft	17-Mar-08	25800	3.49	4.71 J	5.86 J	39.4	32	41.5	7.31 J	1060
	0.5 to 1.5 ft	17-Mar-08	14500	6.48 F	5.39 J	4.66 J	23	23.8	27.9	4.99 J	481
	1.5 to 2.5 ft	17-Mar-08	8890	7.11 F	5.61 J	7.82 J	23.8	20.4	25	5.19 J	343
	2.5 to 3.5 ft	17-Mar-08	17600	9.27 F	13.8	16.6	44.7	57.4	60.2	14.7	561
	3.5 to 4.5 ft	17-Mar-08	9520	3.99 F	7.11	6.89	28.1	34.1	32.1	6.82	402
	4.5 to 5.5 ft	17-Mar-08	13800	3.29 F	2.91 J	7.17	15.5	16	24.2	3.93 J	162
Pond8-08	0 to 0.5 ft	17-Mar-08	27900	3.52	5.90 J	7.52 J	44.1	50.6	64.6	7.98 J	1410
	0.5 to 1.5 ft	17-Mar-08	17100	4.73	5.12 J	5.02 J	28.1	29.4	38.6	6.33 J	790
	1.5 to 2.5 ft	17-Mar-08	15800	18 F	14.5	19.4	38.4	53	61.7	13.6	533
Pond8-14	0 to 0.5 ft	17-Jun-09	9810	9.5 F	5.73 J	10.7 J	17.8	20.6	19.9	4.38 J	447
Pond8-15	0 to 0.5 ft	17-Jun-09	566	0.163 J	0.204 J	0.274 J	0.966 J	0.844 J	0.912 J	0.265 J	21
Pond8-16	0 to 0.5 ft	17-Jun-09	15200	18.1 F	10.2 J	12.3 J	30.3	34.9	32.1	8.99 J	568
Pond8-17	0 to 0.5 ft	17-Jun-09	20300	17.7 F	15.3	23.2	41.4	57.8	51	15.1	726
Pond8-18	0 to 0.5 ft	17-Jun-09	36400	4.65	7.24 J	12.8	59.8	65.8	69.8	11	2040
Pond 8 West											
DP-4.14	0 to 0.5 ft	24-Apr-06	618 B	1.07	1.24 J	20	2.01 J	6.8 D	7.61	1.18 J	15.2
DP-4.15	2 to 2.5 ft	20-Apr-06	4090 B	3.78	3.38 J	7.81	4.01 J	12.2	6.92	1.94 J	83.5

		Sample Date / Analyte	OCDD	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	1,2,3,4,6,7,8- HpCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(IT DSS)	PSL-HH									
		PSL-Eco									
	7 to 7.5 ft	20-Apr-06	0.95 J	<0.0861	<0.104	<0.0976	<0.0563	<0.0514	<0.0527	<0.0809	<0.0818
Pond8-01	0 to 0.5 ft	17-Mar-08	6290	18.7 F	7.98	5.24	8.19	10.1	13.2	2.26 J	165
	0.5 to 1.5 ft	18-Mar-08	2790	129 F	36.5	25	12.2	17.3	19.3	5.79	77.1
	1.5 to 2.5 ft	18-Mar-08	4770	30.6 F	12.3	9.52	10.8	24.4	20.7	5.77	132
Pond8-02	0 to 0.5 ft	17-Mar-08	2590	24.7 F	7.36	5.97	4.80 J	5.74	6.53	1.75 J	71.5
	0.5 to 1.5 ft	18-Mar-08	4210	18.4 F	8.47	8.85	7.62	21.1	14.7	3.72 J	114
Pond8-03	0 to 0.5 ft	17-Mar-08	3570	68.7 F	21.6	15.4	10.8	13.1	15.6	3.94 J	117
	0.5 to 1.5 ft	18-Mar-08	4220	67.4 F	24.8	22.1	12.4 J	22.5	21.9	6.85 J	110
Pond8-04	0 to 0.5 ft	17-Mar-08	6380	33.1 F	14.4	10.6 J	13.1	14.6	17.1	3.68 J	216
	0.5 to 1.5 ft	12-Mar-08	4680	62.0 F	16.3	10.4	8.70 J	9.37 J	11.4	3.00 J	135
	1.5 to 2.5 ft	12-Mar-08	6100	108 F	37.2	33.4	22.4	32.2	35.2	10.9 J	192
	3.5 to 4.5 ft	12-Mar-08	485	1.4 F	1.45 J	3.93	1.87 J	5.98	8	1.73 J	10.8
	4.5 to 5.5 ft	12-Mar-08	8.05	0.0903 J	<0.0578	<0.0655	<0.0305	<0.0307	<0.0333	<0.0385	0.192 J
Pond8-09	0 to 0.5 ft	18-Jun-09	4910	105 F	32.3	28.8	16	21.7	19	7.47 J	172
Pond8-10	0 to 0.5 ft	18-Jun-09	7740	21.6 F	8.69 J	12.4 J	13.3	14.6	15	3.77 J	282
Pond8-11	0 to 0.5 ft	18-Jun-09	5750	57.8 F	20.3	18.1	12.8	28.1	20.5	7.53 J	172
Pond8-12	0 to 0.5 ft	18-Jun-09	4610	59 F	28.5	23.5	16.6	22.6	20	6.59 J	188
Pond 1											
DP-7.9	0 to 0.5 ft	12-Apr-06	17	17.3	5.03	6.03	1.33 J	1.46 J	1.53 J	0.565 J	1.43 J
DP-7.10	0 to 0.5 ft	12-Apr-06	3.83 J	2.79	0.952 J	1.03 J	<0.243	0.3 J	0.289 J	<0.179	0.296 J
Pond1-01	0 to 0.5 ft	18-Mar-08	705	227 F	96.8	96.9	40.3	47.9	52	16.6	57.5
	0.5 to 1.5 ft	14-Mar-08	1210	541 F	216	149	77.8	92.6	99.4	28.3	100
	1.5 to 2.5 ft	14-Mar-08	274	180 F	58.6	60.9	16.7	21.9	22.3	7.73	20.5
	2.5 to 3 ft	14-Mar-08	15.7	5.21 F	1.93 J	2.09 J	0.604 J	0.775 J	0.812 J	0.32 J	0.97 J
Pond1-02	0 to 0.5 ft	18-Mar-08	3130	362 F	136	94.6	50.8	63.3	67.2	19.4	91.2
Pond 2			-								
DP-7.11	2 to 2.5 ft	05-Apr-06	6090	244	69.8	90.2	23.7	25.8 D	28.5	8.01	162
DP-7.12	2 to 2.5 ft	05-Apr-06	10.6	0.299 J	<0.233	<0.239	<0.0815	<0.0789	<0.0888	<0.146	0.195 J
Pond2-01	0 to 0.5 ft	19-Mar-08	2340	610 F	301	252	149	184	220	65.7	223
	0.5 to 1.5 ft	13-Mar-08	2200	555 F	177	136	61.6	76.8	85.6	25.9	102
Pond2-02	0 to 0.5 ft	19-Mar-08	2870	982 F	583	552	341	448	570	161	556
	0.5 to 1.5 ft	13-Mar-08	1670	476 F	180	152	74.1	97.8	115	32.1	126
	1.5 to 2.5 ft	13-Mar-08	804	250 F	81.4	44.4	24.6	30.3	32.3	11.4	42
	2.5 to 3.5 ft	13-Mar-08	493	215 F	71.8	59.4	21.9	28.5	30.9	11.1	30.4
	4.5 to 5.5 ft	13-Mar-08	374	138 F	43.2	35.4	12	14.8	16.4	6.09	19.9

		Sample Date / Analyte	OCDD	2,3,7,8- TCDF	1,2,3,7,8- PeCDF	2,3,4,7,8- PeCDF	1,2,3,4,7,8- HxCDF	1,2,3,6,7,8- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,7,8,9- HxCDF	1,2,3,4,6,7,8- HpCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(ft bss)	PSL-HH									
		PSL-Eco									
Pond 3											
DP-7.13	0 to 0.5 ft	06-Apr-06	833	350	111	155	37.8	47	51.5	16.7	43.9
	7 to 7.5 ft	05-Apr-06	<0.473	<0.0673	<0.124	<0.125	<0.0447	<0.041	<0.0431	<0.0588	<0.0601
DP-7.14	6 to 6.5 ft	06-Apr-06	1830	121	33.6	46.7	10.9	15.6	16.7	5.36 J	69.9
DP-7.15	0 to 0.5 ft	06-Apr-06	2160	146	67.3	102	40	43.2	50.7	16.4	123
DP-7.16	4 to 4.5 ft	10-Apr-06	<0.324	<0.0696	<0.181	<0.17	<0.0473	<0.0418	<0.0519	<0.0838	<0.0741
Pond3-01	0.5 to 1.5 ft	13-Mar-08	4380	1240 F	668	645	467	525	691	179	781
	1.5 to 2.5 ft	13-Mar-08	176	271 F	87.6	57.2	26	34.9	36.5	12.4	51
	2.5 to 3.5 ft	13-Mar-08	582	131 F	45.5	42.1	15.8	19.3	22.4	7.33	42.7
	3.5 to 4.5 ft	13-Mar-08	647	19.1 F	7.04	5.13	3.88 J	4.56 J	5.47	1.93 J	24.7
Pond3-02	0.5 to 1.5 ft	14-Mar-08	2250	253 F	76.2	63.5	21.3	34.5	37.9	12.1	56
	1.5 to 2.5 ft	14-Mar-08	486	10.2 F	4.51 J	3.91 J	2.67 J	3.45 J	5.32	1.74 J	31.2
Pond3-03	0.5 to 1.5 ft	14-Mar-08	472	263 F	72.4	42.8	19.1	24.7	27.3	8.1	28.4
Pond3-04	0 to 0.5 ft	19-Mar-08	2250	516 F	275	324	142	166	203	61.1	246
	1.5 to 2.5 ft	14-Mar-08	<1.81	<0.228	<0.267	<0.277	<0.183	<0.185	<0.205	<0.249	<0.279
Pond3-05	0.5 to 1.5 ft	14-Mar-08	850	120 F	35.1	21.4	10.1	13.6	15.9	4.60 J	36.4
	1.5 to 2.5 ft	14-Mar-08	973	50.1 F	17.2	15.8	7.73	10.5	13.5	3.9 J	55.9
Pond3-06	0 to 0.5 ft	19-Mar-08	3580	287 F	101	106	37.7	44.1	49.1	14.4	78.2
Pond3-07	0 to 0.5 ft	19-Mar-08	407	249 F	70.1	73.5	17.3	22.5	23.8	7.13	23.1
Pond3-08	0 to 0.5 ft	19-Mar-08	2380	284 F	118	111	52.9	63.3	72.2	22.8	116
Pond3-09	0 to 0.5 ft	19-Mar-08	17900	67.8 F	37.3	37.5	40.3	48.4	60.4	9.99	561
Pond 4											
DP-7.17	0 to 0.5 ft	13-Apr-06	1.66 J	<0.206	<0.287	<0.292	<0.0725	<0.063	0.125 J	<0.0995	0.272 J
DP-7.18	0 to 0.5 ft	13-Apr-06	3.67 J	1.65	0.841 J	1.18 J	0.45 J	0.424 J	0.494 J	0.281 J	0.599 J
Pond4-01	0 to 0.5 ft	18-Mar-08	499	60.9 F	30.7	23.7	17	20.5	25.2	7.18	39

		Sample Date / Analyte	1,2,3,4,7,8,9- HpCDF	OCDF	Total TCDD	Total PeCDD	Total HxCDD	Total HpCDD	Total TCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(It bss)	PSL-HH	-						
		PSL-Eco					-		
Pond 5	-								
DP-5.63	0 to 0.5 ft	25-Apr-06	1.47 J	65.8	19.2	15.3	45.7	154	106 D
Pond5-01	0 to 1 ft	14-Mar-08	4.72 J	221	91.8	47.3	153	458	231 D,M
Pond5-02	0 to 1 ft	14-Mar-08	4.90 J	169	42.1	50.6	154	427	166 D,M
Pond5-03	0 to 0.5 ft	18-Mar-08	3.29 J	147	33	34.4	111	344	110 D,M
Pond 9									
DP-1.5	2 to 2.5 ft	27-Apr-06	<0.0797	0.446 J,B	<0.0227	<0.0369	<0.0377	0.43	<0.0308
Pond9-01	0 to 0.5 ft	18-Jun-09	1.46 J	54.7	9.65	15.3	49.1	161	26.9
North Pond	•								
DP-4.7	0 to 0.5 ft	17-Apr-06	<0.446	28.2	15.3	11.5	11.6	39.7	184
	14 to 14.5 ft	17-Apr-06	<0.069	1.25 J	0.177	0.122	1	2.86	0.147
	19 to 19.5 ft	17-Apr-06	4.06	4.65 J	326	199	117	54.4	2820
North Pond-01	0 to 0.5 ft	19-Mar-08	3.53 J	161	8.04	9.92 J	78.8	394	56.2
Pond 6	-								
DP-4.9	0.5 to 1 ft	25-Apr-06	0.383 J	18.5	3.77	4.33	21	59.3	18.1 D
	6 to 6.5 ft	25-Apr-06	<0.0255	0.603 J	1.6	0.935	1.54	2.32	14.1
DP-4.10	0 to 0.5 ft	18-Apr-06	4.71	11.8	572	333	196	102	5820
	5 to 5.5 ft	18-Apr-06	<0.106	<0.258	<0.197	<0.249	<0.291	<0.347	1.82
Pond6-01	0 to 0.5 ft	18-Mar-08	0.775 J	31.2	9.02	4.69 J	32.3	97	67
	0.5 to 1.5 ft	11-Mar-08	3.08 J	194	32.3	19.5	92.8	488	231
Pond6-02	0 to 0.5 ft	18-Mar-08	5.57	198	221	115	212	595	1420
	0.5 to 1.5 ft	12-Mar-08	7.93	48.4	429	195	250	454	3460
	1.5 to 2.5 ft	12-Mar-08	13	62.1	632	293	349	516	4560 D,M
	2.5 to 3.5 ft	12-Mar-08	14.6	69.3	800	380	431	580	5050 D,M
	4.5 to 5.5 ft	12-Mar-08	7.76	26.5	659	247	231	189	5640
Pond 7									
DP-4.11	6 to 6.5 ft	17-Apr-06	126	213	5570	6270	6360	3420	22900 D
DP-4.12	6 to 6.5 ft	18-Apr-06	143	227	6270	6920	7300	3450	25600 D
	11 to 11.5 ft	18-Apr-06	<0.0813	<0.267	<0.175	<0.314	<0.381	0.5	1.89
DP-4.13	0 to 0.5 ft	18-Apr-06	71	118	3140	3590	3840	1840	13000 D
Pond7-01	0 to 0.5 ft	18-Mar-08	133	260	6670	5180	6230	3330	23900 D,M
	0.5 to 1.5 ft	12-Mar-08	137	218	7170	6100	7750	4060	25700

De		Sample Date / Analyte	1,2,3,4,7,8,9- HpCDF	OCDF	Total TCDD	Total PeCDD	Total HxCDD	Total HpCDD	Total TCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(IT DSS)	PSL-HH							
		PSL-Eco							
Pond7-02	0 to 0.5 ft	18-Mar-08	137	252	6700	5050	6320	3330	22700 D,M
	0.5 to 1.5 ft	12-Mar-08	203	295	9450	8070	10400	5740	32800
	1.5 to 2.5 ft	12-Mar-08	199	348	8020	6590	8400	4500	29200 D,M
	2.5 to 3.5 ft	12-Mar-08	169	287	7500	6250	7780	4020	27000 D,M
	4.5 to 5.5 ft	12-Mar-08	17	52.7	992	484	617	659	6990
	5.5 to 6.5 ft	12-Mar-08	23.8	39	1310	971	1240	661	5640 D,M
Pond 8 East									
DP-5.60	3 to 3.5 ft	20-Apr-06	0.114 J	3.06 J	0.589	1.79	8.55	20.9	4.68
	8 to 8.5 ft	20-Apr-06	0.136 J	2.88 J	<0.0302	0.913	7.09	17.5	2.67
DP-5.61	0 to 0.5 ft	19-Apr-06	5.79	55.8	56.6	119	223	265	1760 D
	10 to 10.5 ft	19-Apr-06	<0.0237	<0.0459	<0.0243	<0.0376	0.147	0.41	<0.0349
DP-5.62	0 to 0.5 ft	24-Apr-06	14.2	804	26.9	79.7	492	1910	68.7 D
	5 to 5.5 ft	24-Apr-06	8.01 J	422	24.8	72.3	467	1650	147 D
	10 to 10.5 ft	24-Apr-06	0.14 J	0.362 J	13.8	10.1	15.3	3.47	33.9
Pond8-05	0.5 to 1.5 ft	17-Mar-08	22.8	1050	89.7	137	1070	3150	601
	1.5 to 2.5 ft	17-Mar-08	12.8	502	37.4	71	510	1750	139 D,M
	2.5 to 3.5 ft	17-Mar-08	7.34 J	255	60.5	143	977	2790	180 D,M
Pond8-06	0 to 0.5 ft	17-Mar-08	32.1	1680	81.7	191	1510	5140	368 D,M
	0.5 to 1.5 ft	18-Mar-08	28	1500	54.5	137	1090	4090	292 D,M
Pond8-07	0 to 0.5 ft	17-Mar-08	66	5660	32.4	97.5	834	4480	84.6
	0.5 to 1.5 ft	17-Mar-08	28.9	1880	43.3	97.8	661	2930	134
	1.5 to 2.5 ft	17-Mar-08	21.5	1220	36.5	88.3	566	2040	129
	2.5 to 3.5 ft	17-Mar-08	36.9	1240	66	179	1250	4620	186 D,M
	3.5 to 4.5 ft	17-Mar-08	23.1	932	38.6	108	767	2700	104 D,M
	4.5 to 5.5 ft	17-Mar-08	9.54	385	101	271	2450	7650	151 D,M
Pond8-08	0 to 0.5 ft	17-Mar-08	75.2	6120	35.2	122	1060	5790	156 D,M
	0.5 to 1.5 ft	17-Mar-08	37.2	3020	33.1	104	794	3810	133
	1.5 to 2.5 ft	17-Mar-08	32.4	1390	72.7	202	1470	4420	373 D,M
Pond8-14	0 to 0.5 ft	17-Jun-09	28.4	1760	47.2	124	459 *	2220	179 *
Pond8-15	0 to 0.5 ft	17-Jun-09	1.32 J	78.3	1.54	5.72	26	145	3.97
Pond8-16	0 to 0.5 ft	17-Jun-09	33.2	1590	63.6	219	994	4190	305 D,M/J
Pond8-17	0 to 0.5 ft	17-Jun-09	39.4	1580	88.4	302	1490	6180	381 D,M/J
Pond8-18	0 to 0.5 ft	17-Jun-09	118	8450	38.8	211	1290	7870	183 D,M/J
Pond 8 West									
DP-4.14	0 to 0.5 ft	24-Apr-06	0.646 J	8.3	16.6	33.2	190	378	110 D
DP-4.15	2 to 2.5 ft	20-Apr-06	6.14	218	18.6	45.2	353	1490	81.1 D

		Sample Date / Analyte	1,2,3,4,7,8,9- HpCDF	OCDF	Total TCDD	Total PeCDD	Total HxCDD	Total HpCDD	Total TCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(ft bss)	PSL-HH							
		PSL-Eco							
	7 to 7.5 ft	20-Apr-06	<0.0975	<0.444	<0.115	<0.207	<0.198	<0.265	<0.144
Pond8-01	0 to 0.5 ft	17-Mar-08	12.2	939	46.7	44.3	219	1040	272
	0.5 to 1.5 ft	18-Mar-08	7.1	205	178	110	653	828	1710
	1.5 to 2.5 ft	18-Mar-08	10.5	306	69.7	88.2	714	1540	466 D,M
Pond8-02	0 to 0.5 ft	17-Mar-08	5.61	246	40	29	135	504	334
	0.5 to 1.5 ft	18-Mar-08	8.25	289	43.9	55.4	477	1350	284
Pond8-03	0 to 0.5 ft	17-Mar-08	9.25	364	113	72.5	254	795	990
	0.5 to 1.5 ft	18-Mar-08	9.93 J	242	134	109	887	1450	1170
Pond8-04	0 to 0.5 ft	17-Mar-08	13.7	821	83.5	74.9	337	1380	576
	0.5 to 1.5 ft	12-Mar-08	8.03 J	462	89.9	55.5	238	1020	819
	1.5 to 2.5 ft	12-Mar-08	15.2	437	188	172	1300	1950	1550
	3.5 to 4.5 ft	12-Mar-08	0.975 J	9.66	15.5	19.2	113	263	79.4 D,M
	4.5 to 5.5 ft	12-Mar-08	<0.0424	0.594 J	0.384 J	<0.142	1.89 J	3.98	1.39
Pond8-09	0 to 0.5 ft	18-Jun-09	12.1 J	440	182	178	666	1440	1530
Pond8-10	0 to 0.5 ft	18-Jun-09	17.8	1010	54.8	89.2	353	1750	357
Pond8-11	0 to 0.5 ft	18-Jun-09	12.6	364	121	156	740	1810	874
Pond8-12	0 to 0.5 ft	18-Jun-09	14.3	564	159	159	290	996	1120
Pond 1									
DP-7.9	0 to 0.5 ft	12-Apr-06	<0.295	1.81 J	20.1	14.4	9.33	8.38	242
DP-7.10	0 to 0.5 ft	12-Apr-06	<0.0709	<0.251	3.77	1.77	1.93	1.98	39.1
Pond1-01	0 to 0.5 ft	18-Mar-08	11.9	43.1	503	324	377	307	3250
	0.5 to 1.5 ft	14-Mar-08	20.1	68.6	1140	660	673	526	8690 D,M
	1.5 to 2.5 ft	14-Mar-08	4.3 J	29	286	123	123	104	2380 D,M
	2.5 to 3 ft	14-Mar-08	0.211 J	0.941 J	10.5	5.09	6.92	5.83	83.8
Pond1-02	0 to 0.5 ft	18-Mar-08	21.6	145	796	437	645	1140	5540 D,M
Pond 2									
DP-7.11	2 to 2.5 ft	05-Apr-06	19.9	605	389	265	222	1080	3550
DP-7.12	2 to 2.5 ft	05-Apr-06	<0.239	1.04 J	<0.154	<0.148	<0.209	1.17	1.25
Pond2-01	0 to 0.5 ft	19-Mar-08	54.4	161	2280	1620	2110	1450	9690 D,M
	0.5 to 1.5 ft	13-Mar-08	22.7	105	1230	743	911	891	8270
Pond2-02	0 to 0.5 ft	19-Mar-08	135	255	5080	4140	5370	2990	19300 D,M
	0.5 to 1.5 ft	13-Mar-08	27.5	117	1270	888	1110	832	7480 D,M
	1.5 to 2.5 ft	13-Mar-08	7.89	105	394	183	184	204	3270 D,M
	2.5 to 3.5 ft	13-Mar-08	6.44	50.2	334	156	276	213	2960 D,M
	4.5 to 5.5 ft	13-Mar-08	4.24	30.8	204	83.7	151	142	1980

		Sample Date / Analyte	1,2,3,4,7,8,9- HpCDF	OCDF	Total TCDD	Total PeCDD	Total HxCDD	Total HpCDD	Total TCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g	pg/g
	(n bss)	PSL-HH	-		-				
		PSL-Eco	-		-				
Pond 3									
DP-7.13	0 to 0.5 ft	06-Apr-06	11.3	26.4	632	527	852	532	5240
	7 to 7.5 ft	05-Apr-06	<0.0674	<0.301	<0.0923	<0.259	<0.116	<0.228	<0.0673
DP-7.14	6 to 6.5 ft	06-Apr-06	5.72 J	100	163	132	500	761	1680
DP-7.15	0 to 0.5 ft	06-Apr-06	18.4	190	444	531	519	711	2370
DP-7.16	4 to 4.5 ft	10-Apr-06	<0.0855	<0.237	<0.0968	<0.102	<0.195	<0.168	<0.0696
Pond3-01	0.5 to 1.5 ft	13-Mar-08	178	308	7690	6780	9460	5040	24100
	1.5 to 2.5 ft	13-Mar-08	8.58	109	461	219	233	300	3640 D,M
	2.5 to 3.5 ft	13-Mar-08	5.16	67.5	225	120	163	198	1750 D,M
	3.5 to 4.5 ft	13-Mar-08	2.16 J	45.7	69.9	41.7	79.7	162	293
Pond3-02	0.5 to 1.5 ft	14-Mar-08	9.69	73.2	414	244	1600	1030	3750
	1.5 to 2.5 ft	14-Mar-08	1.65 J	51.8	33.8	21.2	88.7	161	181
Pond3-03	0.5 to 1.5 ft	14-Mar-08	4.70 J	34.7	362	151	232	202	3750
Pond3-04	0 to 0.5 ft	19-Mar-08	51.8	237	1790	1320	1700	1180	9350
	1.5 to 2.5 ft	14-Mar-08	<0.323	<1.24	<0.216	<0.15	<0.363	<0.447	<0.228
Pond3-05	0.5 to 1.5 ft	14-Mar-08	3.99 J	66.7	175	82.6	207	243	1660
	1.5 to 2.5 ft	14-Mar-08	3.84 J	86	98.9	57.8	187	297	712
Pond3-06	0 to 0.5 ft	19-Mar-08	19.6	161	650	329	538	1220	4550
Pond3-07	0 to 0.5 ft	19-Mar-08	4.53 J	42.7	312	120	135	145	3530
Pond3-08	0 to 0.5 ft	19-Mar-08	22.9	189	799	554	784	784	4990
Pond3-09	0 to 0.5 ft	19-Mar-08	44.3	1500	221	200	577	3020	1130
Pond 4									
DP-7.17	0 to 0.5 ft	13-Apr-06	<0.192	0.61 J	<0.118	<0.147	<0.232	0.773	0.177
DP-7.18	0 to 0.5 ft	13-Apr-06	<0.0838	<0.272	5.83	4.97	5.69	3.52	28.6
Pond4-01	0 to 0.5 ft	18-Mar-08	6.55	47.3	260	195	258	208	1040

		Sample Date / Analyte	Total PeCDF	Total HxCDF	Total HpCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g
	(IT DSS)	PSL-HH	-		
		PSL-Eco			
Pond 5					
DP-5.63	0 to 0.5 ft	25-Apr-06	287 D	148 D	79.4
Pond5-01	0 to 1 ft	14-Mar-08	484 D,M	384	250
Pond5-02	0 to 1 ft	14-Mar-08	380 D,M	313	182
Pond5-03	0 to 0.5 ft	18-Mar-08	292 D,M	216	143
Pond 9					
DP-1.5	2 to 2.5 ft	27-Apr-06	<0.0319	0.148 B	0.144 B
Pond9-01	0 to 0.5 ft	18-Jun-09	23.5	34	62.3
North Pond	•	•			
DP-4.7	0 to 0.5 ft	17-Apr-06	47	13.9	17 B
	14 to 14.5 ft	17-Apr-06	0.37	0.911	1.47
	19 to 19.5 ft	17-Apr-06	842 D	209	31 B
North Pond-01	0 to 0.5 ft	19-Mar-08	31.1	69.9	154
Pond 6					
DP-4.9	0.5 to 1 ft	25-Apr-06	14.8 D	13.3	18.5
	6 to 6.5 ft	25-Apr-06	2.69	0.739	0.565
DP-4.10	0 to 0.5 ft	18-Apr-06	1400 D	266 D	41.5
	5 to 5.5 ft	18-Apr-06	<0.24	<0.102	<0.097
Pond6-01	0 to 0.5 ft	18-Mar-08	21.5	18.4	29.3
	0.5 to 1.5 ft	11-Mar-08	76.9	83.5	168
Pond6-02	0 to 0.5 ft	18-Mar-08	457	183	176
	0.5 to 1.5 ft	12-Mar-08	878	218	76.8
	1.5 to 2.5 ft	12-Mar-08	1330 D,M	374	110
	2.5 to 3.5 ft	12-Mar-08	1500 D,M	434	121
	4.5 to 5.5 ft	12-Mar-08	1560	345	63.4
Pond 7					
DP-4.11	6 to 6.5 ft	17-Apr-06	10300 D	3890 D	1050 D
DP-4.12	6 to 6.5 ft	18-Apr-06	11400 D	4310 D	1200 D
	11 to 11.5 ft	18-Apr-06	0.0906	0.0798	<0.0727
DP-4.13	0 to 0.5 ft	18-Apr-06	5880 D	2250 D	592
Pond7-01	0 to 0.5 ft	18-Mar-08	12100 D,M	5080 D,M	1260
	0.5 to 1.5 ft	12-Mar-08	12300	5110	1330

		Sample Date / Analyte	Total PeCDF	Total HxCDF	Total HpCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g
	(IT DSS)	PSL-HH			
		PSL-Eco			
Pond7-02	0 to 0.5 ft	18-Mar-08	12000 D,M	5040 D,M	1250
	0.5 to 1.5 ft	12-Mar-08	16000	6690	1800
	1.5 to 2.5 ft	12-Mar-08	14800 D,M	6500 D,M	1670
	2.5 to 3.5 ft	12-Mar-08	13500 D,M	5790 D,M	1420
	4.5 to 5.5 ft	12-Mar-08	2240	628	152
	5.5 to 6.5 ft	12-Mar-08	2420 D,M	898	209
Pond 8 East					
DP-5.60	3 to 3.5 ft	20-Apr-06	4.49	3.93	4.19
	8 to 8.5 ft	20-Apr-06	2.67	2.59	3.17
DP-5.61	0 to 0.5 ft	19-Apr-06	4180 D	1580 D	157
	10 to 10.5 ft	19-Apr-06	0.159	0.166	0.0923
DP-5.62	0 to 0.5 ft	24-Apr-06	145 D	340 D	749 D
	5 to 5.5 ft	24-Apr-06	324 D	275 D	400 D
	10 to 10.5 ft	24-Apr-06	6.52	2.29	0.756
Pond8-05	0.5 to 1.5 ft	17-Mar-08	375	662 D,M	1050
	1.5 to 2.5 ft	17-Mar-08	221	396	537
	2.5 to 3.5 ft	17-Mar-08	360 D,M	335	284
Pond8-06	0 to 0.5 ft	17-Mar-08	517 D,M	1120 D,M	1740
	0.5 to 1.5 ft	18-Mar-08	596 D,M	974 D,M	1450
Pond8-07	0 to 0.5 ft	17-Mar-08	201	1010 D,M	3520
	0.5 to 1.5 ft	17-Mar-08	194 D,M	638 D,M	1470
	1.5 to 2.5 ft	17-Mar-08	175	526	1070
	2.5 to 3.5 ft	17-Mar-08	423 D,M	1190 D,M	1550
	3.5 to 4.5 ft	17-Mar-08	401	708	1160
	4.5 to 5.5 ft	17-Mar-08	498	430	479
Pond8-08	0 to 0.5 ft	17-Mar-08	448 D,M	1450 D,M	4090
	0.5 to 1.5 ft	17-Mar-08	316	909	2230
	1.5 to 2.5 ft	17-Mar-08	618 D,M	1230 D,M	1510
Pond8-14	0 to 0.5 ft	17-Jun-09	188 D,M/J	359 D,M/J	1350
Pond8-15	0 to 0.5 ft	17-Jun-09	9.08	25.5	65.4
Pond8-16	0 to 0.5 ft	17-Jun-09	343 D,M/J	794 D,M/J	1650
Pond8-17	0 to 0.5 ft	17-Jun-09	617	1240	2010
Pond8-18	0 to 0.5 ft	17-Jun-09	563 D,M/J	1830 D,M/J	6230
Pond 8 West					
DP-4.14	0 to 0.5 ft	24-Apr-06	237 D	118 D	31.7
DP-4.15	2 to 2.5 ft	20-Apr-06	116 D	146 D	244

		Sample Date / Analyte	Total PeCDF	Total HxCDF	Total HpCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g
	(ft bss)	PSL-HH	-		
		PSL-Eco			
	7 to 7.5 ft	20-Apr-06	<0.179	<0.0592	<0.089
Pond8-01	0 to 0.5 ft	17-Mar-08	142	218	554
	0.5 to 1.5 ft	18-Mar-08	514	238	216
	1.5 to 2.5 ft	18-Mar-08	295	361	390
Pond8-02	0 to 0.5 ft	17-Mar-08	113	112	199
	0.5 to 1.5 ft	18-Mar-08	215	286	343
Pond8-03	0 to 0.5 ft	17-Mar-08	312	219	318
	0.5 to 1.5 ft	18-Mar-08	434	339	319
Pond8-04	0 to 0.5 ft	17-Mar-08	237	296	614
	0.5 to 1.5 ft	12-Mar-08	249	192	394
	1.5 to 2.5 ft	12-Mar-08	587	530	525
	3.5 to 4.5 ft	12-Mar-08	217	106	27.1
	4.5 to 5.5 ft	12-Mar-08	0.858 J	0.603 J	0.562 J
Pond8-09	0 to 0.5 ft	18-Jun-09	494	303 D,M/J	473
Pond8-10	0 to 0.5 ft	18-Jun-09	189	310 D,M/J	838
Pond8-11	0 to 0.5 ft	18-Jun-09	395	385	483
Pond8-12	0 to 0.5 ft	18-Jun-09	442	306 D,M/J	482
Pond 1					
DP-7.9	0 to 0.5 ft	12-Apr-06	61.7	14.4 B	3
DP-7.10	0 to 0.5 ft	12-Apr-06	10.6	1.59 B	0.296
Pond1-01	0 to 0.5 ft	18-Mar-08	1310 D,M	460	118
	0.5 to 1.5 ft	14-Mar-08	2860 D,M	878 D,M	208
	1.5 to 2.5 ft	14-Mar-08	739 D,M	194	48.1
	2.5 to 3 ft	14-Mar-08	26.4	7.59	2.12
Pond1-02	0 to 0.5 ft	18-Mar-08	1890 D,M	589	224
Pond 2					
DP-7.11	2 to 2.5 ft	05-Apr-06	902 D	327 B,D	509
DP-7.12	2 to 2.5 ft	05-Apr-06	<0.236	<0.0952	0.195
Pond2-01	0 to 0.5 ft	19-Mar-08	4560 D,M	1710 D,M	481
	0.5 to 1.5 ft	13-Mar-08	2460	737	234
Pond2-02	0 to 0.5 ft	19-Mar-08	9990 D,M	4220 D,M	1160
	0.5 to 1.5 ft	13-Mar-08	2590 D,M	935 D,M	279
	1.5 to 2.5 ft	13-Mar-08	1020 D,M	285	111
	2.5 to 3.5 ft	13-Mar-08	952 D,M	275	78
	4.5 to 5.5 ft	13-Mar-08	582	155	52.8

		Sample Date / Analyte	Total PeCDF	Total HxCDF	Total HpCDF
Location ID	Depth	Units	pg/g	pg/g	pg/g
	(ft bss)	PSL-HH	-		
		PSL-Eco	-		
Pond 3					
DP-7.13	0 to 0.5 ft	06-Apr-06	1610 D	471 B	99
	7 to 7.5 ft	05-Apr-06	<0.124	<0.0463	<0.0636
DP-7.14	6 to 6.5 ft	06-Apr-06	556	280 B	183
DP-7.15	0 to 0.5 ft	06-Apr-06	1050	480 B,D	287
DP-7.16	4 to 4.5 ft	10-Apr-06	<0.175	<0.0534	<0.0791
Pond3-01	0.5 to 1.5 ft	13-Mar-08	11800	5300	1630
	1.5 to 2.5 ft	13-Mar-08	1100 D,M	322	129
	2.5 to 3.5 ft	13-Mar-08	621 D,M	253	113
	3.5 to 4.5 ft	13-Mar-08	106	64.9	64.4
Pond3-02	0.5 to 1.5 ft	14-Mar-08	1060	387	156
	1.5 to 2.5 ft	14-Mar-08	113	109	85.7
Pond3-03	0.5 to 1.5 ft	14-Mar-08	987	272	75.6
Pond3-04	0 to 0.5 ft	19-Mar-08	4000	1660	575
	1.5 to 2.5 ft	14-Mar-08	<0.277	<0.249	<0.323
Pond3-05	0.5 to 1.5 ft	14-Mar-08	478	183	102
	1.5 to 2.5 ft	14-Mar-08	304	211	147
Pond3-06	0 to 0.5 ft	19-Mar-08	1380 D,M	423	207
Pond3-07	0 to 0.5 ft	19-Mar-08	940	219	61.9
Pond3-08	0 to 0.5 ft	19-Mar-08	1680	632	280
Pond3-09	0 to 0.5 ft	19-Mar-08	622	847 D,M	1360
Pond 4					
DP-7.17	0 to 0.5 ft	13-Apr-06	<0.29	0.284 B	0.272
DP-7.18	0 to 0.5 ft	13-Apr-06	8.93	3.72 B	0.844
Pond4-01	0 to 0.5 ft	18-Mar-08	474	216	84.3

Table 4-36 Pesticides Detected in Sediment

		Sample Date / Analyte	4,4'-DDD	4,4'-DDE	Aldrin	Alpha-BHC	Alpha-Chlordane	Dieldrin	Endosulfan I	Endrin Aldehyde	Gamma-Chlordane	Heptachlor Epoxide	Heptachlor
Location ID	Depth	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	(it bss)	PSL-HH	2.3	1.6	0.033	0.077	0.43	0.035			0.43	0.053	0.13
		PSL-Eco	0.00488	0.00316	0.002	0.006		0.0019		0.48		0.00247	0.00065
Pond 8 East													
Pond8-07	0 to 0.5 ft	17-Mar-08	0.013 [PSL-Eco]	0.003 P	<0.002	<0.002	0.0045	0.0023 [PSL-Eco]	<0.002 Ui	<0.002	0.0072	0.00035 J	<0.002
	0.5 to 1.5 ft	17-Mar-08	0.0032 P	0.002 P	<0.001 Ui	<0.001 Ui	0.0028	<0.001 Ui	<0.001 Ui	<0.001 Ui	0.0041	<0.001	<0.001 Ui
Pond8-08	0 to 0.5 ft	17-Mar-08	0.0046 P	0.0055 [PSL-Eco]	<0.0017 Ui	<0.0017 Ui	0.0023	<0.0024 Ui	<0.0017 Ui	<0.0017 Ui	0.0029	<0.0017 Ui	0.0015 JP [PSL-Eco]
	0.5 to 1.5 ft	17-Mar-08	0.0057 P [PSL-Eco]	0.0046 [PSL-Eco]	0.00059 JP	0.0011 JP	0.0048 P	<0.0012 Ui	0.0012 JP	0.0013 P	0.0034	<0.0012	<0.0012 Ui
Pond 8 West													
Pond8-04	0 to 0.5 ft	17-Mar-08	<0.0039	<0.0039 Ui	<0.0039	<0.0039	<0.0039	<0.0039	<0.0039 Ui	<0.0039 Ui	0.00058 JP	<0.0039	<0.0039 Ui
	0.5 to 1.5 ft	12-Mar-08	<0.0025 Ui	<0.0025 Ui	<0.0025 Ui	<0.0025 Ui	<0.0025 Ui	<0.0063 Ui	<0.0025 Ui	<0.0025 Ui	<0.0025 Ui	<0.0025 Ui	<0.0025 Ui

Table 4-37 Dissolved Metals Detected in Surface Water

Location ID	Sample Date / Analyte	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	PSL	30	150	-	2.2		23	9
	WQO	6	10	1000	0.04	50	50	9
Pond 5								
DP-5.63 (Shallow)	25-Apr-06	<1	<1	31	<1	1.2	<1	<1
DP-5.63 (Deep)	25-Apr-06	<1	1.9	35	<1	<1	2.1	<1
Pond 9	•	•	•					
DP-1.5	27-Apr-06	<1	8.5	32	<1	<1	<1	4.2
North Pond	• •				•			
DP-4.7	17-Apr-06	<1 [<1]	<1 [<1]	28 [30]	<1 [<1]	<1 [<1]	<1 [<1]	1.1 [<1]
Pond 6	1							
DP-4.8	26-Apr-06	<1	2.4	220	<1	1.1	1.9	<1
DP-4.9	25-Apr-06	<1	2.3	460	<1	1	2.6	<1
DP-4.10	18-Apr-06	<1	<1	260	<1	1.2	<1	1.1
Drainage-B1	12-Jul-06	<1	<1	530	<1	<1	<1	<1
(Pond 6 Outfall)	09-Mar-07	0.37 J [0.27 J]	0.96 J [1.1]	130 [51]	<1.0 [<1.0]	<1.0 [<1.0]	0.24 J [0.24 J]	<1.0 [<1.0]
	13-Jun-07	0.19 J	1.3	400	0.071 J [WQO]	0.39 J	0.29 J	0.84 J
	04-Sep-07	0.28 J [0.29 J]	0.85 J [0.87 J]	400 [410]	<1.0 [<1.0]	0.41 J [0.28 J]	0.16 J [0.16 J]	0.49 J [0.26 J]
	10-Dec-07	<1.0 J/UB [<1.0 J/UB]	0.84 J [0.79 J]	270 [260]	<1.0 [<1.0]	1.2 /J [<1.0 J/UB]	0.45 J [0.36 J]	<1.0 J/UB [<1.0]
	26-Mar-08	<1.0 J/UB	0.43 J	250	0.25 J [WQO]	1.1	0.089 J	4.2
	04-Mar-09	<1.0	<1.0	220	<1.0	<1.0	<1.0	1.0 /J
	15-Sep-09	<1.0	<1.0	530	<1.0	<1.0	<1.0	<1.0
Pond 7								
DP-4.11	17-Apr-06	<1	2.4	850	<1	<1	1.1	<1
DP-4.12	18-Apr-06	<1	2.8	910	<1	<1	<1	<1
DP-4.13	18-Apr-06	<1	3.3	1000	<1	<1	<1	2.6
Miscellaneous								
SW-4.1	24-Jan-06	<1	<1	180	<1	<1	<1	<1
SW-4.2	27-Jun-06	<1	<1	320	<1	<1	1.1	1.2
Pond 8 East								
DP-5.60	20-Apr-06	<1	1.4	31	<1	<1	<1	<1
DP-5.61	19-Apr-06	<1 [<1]	<1 [<1]	28 [28]	<1 [<1]	2.1 [2.1]	<1 [<1]	2 [2.3]
DP-5.62	24-Apr-06	<1	<1	39	<1	<1	<1	<1
Pond 8 West								
DP-4.14	24-Apr-06	<1	1.7	180	<1	<1	1.2	<1
DP-4.15	20-Apr-06	<1	3.3	180	<1	<1	<1	<1

Table 4-37 Dissolved Metals Detected in Surface Water

	Sample Date /	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper
Location ID	Analyte							
	Units	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	PSL WOO	30	150		2.2		23	9
	WQU	0	10	1000	0.04	50	50	9
Drainage-B	03-Apr-06	<1	<1	32	<1	<1	<1	1.1
(Pond 8 Outfall)	09-Mar-07	0.24 J	1.7	51	<1.0	<1.0	0.23 J	<1.0
	13-Jun-07	0.12 J [<1.0]	0.65 J [0.77 J]	45 [46]	<1.0 [<1.0]	0.25 J [0.33 J]	0.24 J [0.23 J]	0.41 J [0.51 J]
	04-Sep-07	0.28 J [0.15 J]	0.76 J [0.79 J]	59 [59]	<1.0 [<1.0]	0.35 J [0.28 J]	0.33 J [0.26 J]	<1.0 [<1.0]
	10-Dec-07	<1.0 J/UB [<1.0 J/UB]	0.32 J [0.20 J]	50 [44]	<1.0 [<1.0]	<1.0 J/UB [<1.0 J/UB]	0.090 J [0.098 J]	<1.0 J/UB [<1.0 J/UB]
	26-Mar-08	<1.0 J/UB	0.49 J	53	0.25 J [WQO]	1.2	0.14 J	3.8
	24-Sep-08	<1.0 [<1.0]	3.4 [3.2]	81 [81]	<1.0 [<1.0]	0.39 J [0.64 J]	0.59 J [0.54 J]	<1.2 [<1.2]
	04-Mar-09	<1.0	<1.0	34	<1.0	<1.0	<1.0	1.3 /J
	17-Sep-09	<1.0 [<1.0]	1.0 [1.3]	61 [64]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]
Pond 1								
DP-7.9	12-Apr-06	<1	3.6	77	<1	110 [WQO]	<1	1.1
DP-7.10	12-Apr-06	<1	4.6	110	<1	2.8	<1	1.8
Pond 2							•	
DP-7.11	05-Apr-06	<1	2.4	140	<1	<1	<1	<1
DP-7.12	05-Apr-06	<1	2.3	120	<1	<1	<1	<1
Pond 3								
DP-7.13	06-Apr-06	<1	2.7	110	<1	8.5	<1	1.4
DP-7.14	06-Apr-06	<1	<1	88	<1	<1	<1	<1
DP-7.15				400				
(Shallow)	06-Apr-06	<1	<1	130	<1	6.3	<1	<1
DP-7.15 (Deep)	06-Apr-06	<1	<1	130	<1	6.2	<1	<1
DP-7.16	10-Apr-06	<1	1.2	160	<1	<1	<1	<1
Pond 4								
DP-7.17	13-Apr-06	<1	<1	48	<1	<1	<1	2
DP-7.18	13-Apr-06	<1	1.1	54	<1	1	<1	2.2

Table 4-37 Dissolved Metals Detected in Surface Water

	Sample Date	/ Lead	Mercurv	Molvbdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Location ID	Analyte									
	DEI	μg/L 2.5	µg/∟	μg/∟ 370	μg/L 52	μ <u>g</u> /L	μg/L 0.36	µg/∟ 12	µg/∟ 20	μg/L 120
	WQQ	0.2	0.05	10	52	5	3.4	17	50	120
Pond 5		0.2	0.00				0			
DP-5.63	05.400									4.0
(Shallow)	25-Apr-06	<1	<0.2	<1	<1	<1	<1	<1	<1	4.9
DP-5.63 (Deep)	25-Apr-06	<1	<0.2	<1	<1	<1	<1	<1	<1	2.1
Pond 9										
DP-1.5	27-Apr-06	<1	<0.2	7	<1	<1	<1	<1	1.7	<5
North Pond										
DP-4.7	17-Apr-06	<1 [<1]	<0.2 [<0.2]	<1 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	15 [15]
Pond 6										
DP-4.8	26-Apr-06	<1	<0.2	1	1.6	<1	<1	<1	<1	11
DP-4.9	25-Apr-06	<1	<0.2	<1	1.5	<1	<1	<1	1	7
DP-4.10	18-Apr-06	<1	<0.2	1.8	1.1	<1	<1	<1	<1	21
Drainage-B1	12-Jul-06	<1	<0.2	3.6	<1	<1	<1	<1	<1	12
(Pond 6 Outfall)	09-Mar-07	<1.0 [<1.0]	<0.20 [<0.20]	6.1 [3.6]	2.1 [0.97 J]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	2.7 [2.0]	13 [19]
	13-Jun-07	0.29 J [WQO]	<0.20	3.1	1.6	0.18 J	<1.0	0.022 J	2.4	12
	04-Sep-07	0.081 J [<1.0]	<0.20 [<0.20]	4.9 [4.9]	1.7 [2.1]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]		9.7 [14]
	10-Dec-07	<1.0 [<1.0]	<0.20 [<0.20]	4.2 [4.1]	1.6 [1.3]	0.13 J [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 J/UB [<1.0 J/UB]	5.5 /J [<5.0 J/UB]
	26-Mar-08	1.4 [WQO]	<0.20	3.3	4.5	0.11 J	<1.0	<1.0		31
	04-Mar-09	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0		8.2
	15-Sep-09	<1.0	<0.20	<1.0	<1.0	<1.0	<1.0	<1.0		19
Pond 7										
DP-4.11	17-Apr-06	<1	<0.2	7.9	1.3	<1	<1	<1	<1	7.2
DP-4.12	18-Apr-06	<1	<0.2	8.5	1.1	<1	<1	<1	<1	11
DP-4.13	18-Apr-06	<1	<0.2	7.4	1.1	<1	<1	<1	1.3	21
Miscellaneous						-	-			
SW-4.1	24-Jan-06	<1	<0.2	2.9	1.8	1.2	<1	<1	<1	69
SW-4.2	27-Jun-06	<1	<0.2	9	1.9	<1	<1	<1	<1	19
Pond 8 East						-	-			
DP-5.60	20-Apr-06	<1	<0.2	<1	<1	<1	<1	<1	<1	3.6
DP-5.61	19-Apr-06	<1 [<1]	<0.2 [<0.2]	<1 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	<1 [<1]	25 [26]
DP-5.62	24-Apr-06	<1	<0.2	<1	<1	<1	<1	<1	<1	10
Pond 8 West									-	
DP-4.14	24-Apr-06	<1	<0.2	<1	1.1	<1	<1	<1	<1	12
DP-4.15	20-Apr-06	<1	<0.2	2.5	1.3	<1	<1	<1	1.4	6.6

Table 4-37 Dissolved Metals Detected in Surface Water

	Sample Date / Analyte	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Location ID	Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
	PSL	2.5		370	52	5	0.36	12	20	120
	WQO	0.2	0.05	10	52	5	3.4	1.7	50	120
Drainage-B	03-Apr-06	<1	<0.2	3.2	<1	<1	<1	<1	<1	4.9
(Pond 8 Outfall)	09-Mar-07	0.14 J	<0.20	3.6	0.98 J	<1.0	<1.0	<1.0	2.8	24
	13-Jun-07	0.18 J [<1.0]	<0.20 [<0.20]	1.1 [1.1]	0.64 J [0.47 J]	<1.0 [<1.0]	<1.0 [<1.0]	0.056 J [0.034 J]	0.91 J [1.4]	3.1 J [7.1]
	04-Sep-07	<1.0 [<1.0]	<0.20 [<0.20]	1.3 [0.92 J]	0.55 J [0.42 J]	0.087 J [<1.0]	0.047 J [<1.0]	<1.0 [<1.0]		3.0 J [4.8 J]
	10-Dec-07	<1.0 [<1.0]	0.099 J [<0.20] [WQO]	9.9 [8.4]	<1.0 J/UB [<1.0 J/UB]	<1.0 [0.10 J]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0 J/UB]	19 /J [6.5 /J]
	26-Mar-08	1.5 [WQO]	<0.20	4.1	4.8	<1.0	<1.0	<1.0		33
	24-Sep-08	<1.0 [<1.0]	<0.20 [<0.20]	1.2 [1.2]	0.64 J [0.35 J]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]		2.9 J [3.4 J]
	04-Mar-09	<1.0	<0.20	2.5	<1.0	<1.0	<1.0	<1.0		15
	17-Sep-09	<1.0 [<1.0]	<0.20 [<0.20]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]	<1.0 [<1.0]		<5.0 [6.3]
Pond 1							•			
DP-7.9	12-Apr-06	<1	<0.2	13 [WQO]	<1	<1	<1	<1	20	3.2
DP-7.10	12-Apr-06	<1	<0.2	6.2	<1	<1	<1	<1	2.9	23
Pond 2										
DP-7.11	05-Apr-06	<1	<0.2	1.1	<1	<1	<1	<1	<1	1.9
DP-7.12	05-Apr-06	<1	<0.2	1	<1	<1	<1	<1	<1	1.2
Pond 3										
DP-7.13	06-Apr-06	<1	<0.2	1.7	<1	<1	<1	<1	2	8.7
DP-7.14	06-Apr-06	<1	<0.2	<1	<1	<1	<1	<1	<1	7.5
DP-7.15 (Shallow)	06-Apr-06	<1	<0.2	1.2	<1	<1	<1	<1	<1	19
DP-7.15 (Deep)	06-Apr-06	<1	<0.2	1.2	<1	<1	<1	<1	<1	13
DP-7.16	10-Apr-06	<1	<0.2	<1	<1	<1	<1	<1	<1	3.8
Pond 4										
DP-7.17	13-Apr-06	<1	<0.2	<1	1.1	<1	<1	<1	1.3	5.7
DP-7.18	13-Apr-06	<1	<0.2	<1	1.1	<1	<1	<1	1.5	6.4

Table 4-38 Total Petroleum Hydrocarbons Detected in Surface Water

	Sample Date / Analyte	Gasoline C6-C8	Gasoline C8-C10	Total Gasoline (C6-C10) ¹	Diesel C16-C24	Total Diesel (C10-C24) ²	Motor Oil C24-C36
Location ID	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Looution ib	RBSC-ali_gw	0.597	1.22	1.22	1.22	1.22	31.3
	RBSC-aro_gw		0.31	0.31	0.47	0.47	0.47
	RWQCB			0.05		0.1	0.175
	WQO			-		-	
Pond 6							
Drainage-B1	12-Jul-06	<0.05	<0.05	ND	<0.05	ND	<0.3
(Pond 6 Outfall)	09-Mar-07	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.05 [<0.05]	ND [ND]	<0.3 [0.11 J]
	13-Jun-07	0.015 J	0.023 J	0.038	<0.05	ND	<0.3
	04-Sep-07	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.05 [<0.05]	ND [ND]	<0.3 [<0.3]
	10-Dec-07	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.05 [<0.05]	ND [ND]	<0.3 [<0.3]
Miscellaneous							
SW-4.1	24-Jan-06				0.065	0.065	<0.3
SW-4.2	27-Jun-06				< 0.05	ND	<0.3
Pond 8 West							
Drainage-B	03-Apr-06	<0.05	<0.05	ND	< 0.05	ND	<0.3
(Pond 8 Outfall)	09-Mar-07	<0.05	<0.05	ND	0.035 HJY	0.035	0.24 J [RWQCB]
	06-Apr-07	<0.05	<0.05	ND	< 0.05	ND	<0.3
	11-Apr-07	<0.05	<0.05	ND	< 0.05	ND	<0.3
	13-Jun-07	0.016 J [0.018 J]	<0.05 [<0.05]	0.016 [0.018]	<0.05 [<0.05]	ND [ND]	<0.3 [<0.3]
	04-Sep-07	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.05 [<0.05]	ND [ND]	<0.3 [<0.3]
	10-Dec-07	<0.05 J/UB [<0.05]	<0.05 [<0.05]	ND /UB [ND]	<0.05 [<0.05]	ND [ND]	<0.3 [<0.3]
	26-Mar-08	<0.05	<0.05 J/UB	ND /UB	0.016 J	0.016	<0.3
	24-Sep-08	0.011 J	<0.05	0.011	< 0.05	ND	<0.3
	04-Mar-09	<0.05 J/UB	<0.05 J/UB	ND /UB	< 0.05	ND	<0.3
	17-Sep-09	<0.05 [<0.05]	<0.05 [<0.05]	ND [ND]	<0.05 [<0.05]	ND [ND]	<0.3 [<0.3]

Table 4-39 Semi-Volatile Organic Compounds Detected in Surface Water

Location ID	Sample Date / Analyte	4-Methylphenol
	Units	μg/L
	OPhh	
	WQO	35
Pond 6		
Drainage-B1	09-Mar-07	<9.5 [<10]
(Pond 6 Outfall)	13-Jun-07	1.1 J
	04-Sep-07	<9.9 [<9.5]
	10-Dec-07	<11 [<10]

Table 4-40 Polycyclic Aromatic Hydrocarbons Detected in Surface Water

	Sample Date / Analyte	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene
Location ID	Units	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	µg/L
	PSL		0.73	0.027	0.014	0.014	0.014	0.014	0.014	0.014
	WQO	-	9600	0.0044	0.0044	0.0044		0.0044	0.0044	0.0044
Pond 6			1							
Drainage-B1	12-Jul-06	<0.23	<0.02	<0.01	<0.02	<0.01	<0.02	<0.008	<0.009	<0.02
(Pond 6 Outfall)	09-Mar-07	<0.1 [0.02 J]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	13-Jun-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	04-Sep-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	10-Dec-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	26-Mar-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	04-Mar-09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	15-Sep-09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Miscellaneous										
SW-4.1	24-Jan-06	<0.09	0.02 J	<0.005	<0.007	<0.009	<0.009	<0.005	<0.006	<0.008
SW-4.2	27-Jun-06	<0.23	<0.02	0.07 J [WQO]	0.07 J [WQO]	0.09 J [WQO]	0.25	0.02 J [WQO]	0.12 [WQO]	0.13 J [WQO]
Pond 8 West										
Drainage-B	03-Apr-06	<0.23	0.02 J	0.01 J [WQO]	<0.02	0.02 J [WQO]	0.04 J	<0.008	<0.009	0.08 J [PSL & WQO]
(Pond 8 Outfall)	24-May-06	<0.24	<0.02	<0.01	<0.02	<0.01	<0.02	<0.008	<0.009	<0.02
Drainage-B	09-Mar-07	0.02 J	<0.1	<0.1	<0.1	<0.1	<0.1	<9.8	<9.8	<0.1
(Pond 8 Outfall)	06-Apr-07	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
	11-Apr-07	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
	13-Jun-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<10 [<9.6]	<0.1 [<0.1]
	04-Sep-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	10-Dec-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	26-Mar-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	24-Sep-08	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]
	04-Mar-09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
	17-Sep-09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Table 4-40 Polycyclic Aromatic Hydrocarbons Detected in Surface Water

	Sample Date /	Fluoranthene	Fluorene	Indeno(1.2.3-cd)Pvrene	Naphthalene	Phenanthrene	Pvrene	Total PAH ³	USEPA B(a)P
Location ID	Analyte					ug/l			TEQ*
	PSL	μg/L 1.9	<u>µg/L</u> 3.9	0.014	12	<u>µg/∟</u> 6.3	0.014	μ <u>g</u> /L 	μ <u>g</u> /L
	WQO	300	1300	0.0044	17	-	960		0.014
Pond 6									
Drainage-B1	12-Jul-06	<0.01	<0.03	<0.009	<0.09	<0.007	<0.01	ND	ND
(Pond 6 Outfall)	09-Mar-07	<0.1 [0.04 J]	<0.1 [0.009 J]	<0.1 [<0.1]	<0.1 [0.06 J]	<0.1 [0.05 J]	<0.1 [0.03 J]	ND [0.11]	ND [ND]
	13-Jun-07	<0.1	<0.1	<0.1	0.02 J	<0.1	<0.1	ND	ND
	04-Sep-07	0.01 J [0.007 J]	<0.1 [<0.1]	<0.1 [<0.1]	0.03 J [0.03 J]	0.02 J [0.01 J]	0.008 J [<0.1]	0.028 [0.01]	ND [ND]
	10-Dec-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
	26-Mar-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	ND
	04-Mar-09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	ND
	15-Sep-09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	ND
Miscellaneous									
SW-4.1	24-Jan-06	0.06 J	0.05 J	<0.006	<0.07	0.1	0.01 J	0.18	ND
SW-4.2	27-Jun-06	0.27	<0.03	0.05 J	<0.09	0.19	0.15	1.1	0.22
Pond 8 West								-	-
Drainage-B	03-Apr-06	0.24	<0.03	0.03 J [WQO]	0.11 J	0.19	0.17	0.56	0.086 [WQO]
(Pond 8 Outfall)	24-May-06	<0.01	<0.03	<0.009	<0.09	<0.007	<0.01	ND	ND
Drainage-B	09-Mar-07	0.03 J	<0.1	<0.1	0.06 J	0.04 J	0.03 J	0.09	ND
(Pond 8 Outfall)	06-Apr-07	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	ND	ND
	11-Apr-07	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	ND	ND
	13-Jun-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [0.02 J]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
	04-Sep-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
	10-Dec-07	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
	26-Mar-08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	ND
	24-Sep-08	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	<0.1 [<0.1]	ND [ND]	ND [ND]
	04-Mar-09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	ND	ND
	17-Sep-09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	ND

Table 4-41 Volatile Organic Compounds Detected in Surface Water

Location ID	Sample Date / Analyte	1,4- Dichlorobenzene	Acetone	Bromomethan e	Ethanol	lsopropyl alcohol	Methylene Chloride	p-Isopropyl Toluene	Toluene	Xylenes, m,p-	Xylenes, Total⁵
	Units	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L
	PSL	15	1500				2200		9.8	13	13
	WQO	5	6300	48	760000	160000	4.7		42	17	17
Pond 6								•	•		
Drainage-B1	12-Jul-06	<0.5	<10	<1	<1000	<100	<10	<0.5	1.5	<0.5	ND
(Pond 6 Outfall)	09-Mar-07	0.05 J [<0.5]	1.7 J [1.5 J]	0.4 J [<1.0]	<1000 [<1000]	1.5 J [<100]	0.4 J [0.4 J]	<0.5 [<0.5]	<0.5 [0.1 J]	<0.5 [<0.5]	ND [ND]
	13-Jun-07	<0.5	9.3 J	<1.0	28 J	140	3.4 J	0.1 J	9.7	<0.5	ND
	04-Sep-07	<0.5 [<0.5]	1.3 J [1.2 J]	<1.0 [<1.0]	<1000 [<1000]	<100 [<100]	<10 [<10]	<0.5 [<0.5]	0.1 J [0.1 J]	<0.5 [<0.5]	ND [ND]
	10-Dec-07	<0.5 [<0.5]	<10 [<10 J/UB]	<1.0 [<1.0]	<1000 [<1000]	<100 [<100]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
Miscellaneous											
SW-4.1	24-Jan-06	<0.5	<10	<1	<1000	<100	<10	<0.5	1.3	0.6	0.6
SW-4.2	27-Jun-06	<0.5	<10	<1	<1000	<100	<10	<0.5	<0.5	<0.5	ND
Pond 8 West											
Drainage-B	03-Apr-06	<0.5	<10	<1	<1000	<100	<10	<0.5	<0.5	<0.5	ND
(Pond 8 Outfall)	09-Mar-07	<9.8	2.1 J	0.4 J	<1000	4.2 J	0.4 J	<0.5	0.2 J	<0.5	ND
	13-Jun-07	<10 [<9.6]	2.3 J [2.2 J]	<1.0 [<1.0]	<1000 [<1000]	48 J [32 J]	3.1 J [3.1 J]	<0.5 [<0.5]	0.2 J [0.2 J]	<0.5 [<0.5]	ND [ND]
	04-Sep-07	<9.8 [<9.5]	1.1 J [<10]	<1.0 [<1.0]	<1000 [<1000]	<100 [<100]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
	10-Dec-07	<9.9 [<9.6]	<10 [<10]	<1.0 [<1.0]	<1000 [<1000]	<100 [<100]	<10 [<10]	<0.5 [<0.5]	<0.5 [<0.5]	<0.5 [<0.5]	ND [ND]
	26-Mar-08	<0.5	<10	<1.0	<1000	<100	<10	<0.5	0.2 J	<0.5	ND
	24-Sep-08	<0.5	2.4 J	<1.0	<1000	<100	<10	<0.5	0.4 J	<0.5	ND
	04-Mar-09	<0.5	<10	<1.0	<1000	<100	<10	<0.5	<0.5	<0.5	ND
	17-Sep-09	<0.5 [<0.5]	<10 [<10 J/UB]	<1.0 [<1.0]	<1000 [<1000]	<100 [<100]	<10 [<10]	<0.5 [<0.5]	< 0.5 [< 0.5]	<0.5 [<0.5]	ND [ND]

Table 4-42 Dioxins Detected in Surface Water

Location ID	Sample Date / Analyte	2,3,7,8-TCDD TEQ (Human/Mammal) ⁷	2,3,7,8-TCDD TEQ (Bird) ⁸	2,3,7,8-TCDD TEQ (Fish) ⁹	1,2,3,4,6,7,8- HpCDD	OCDD	2,3,7,8- TCDF	2,3,4,7,8- PeCDF	1,2,3,6,7,8- HxCDF	2,3,4,6,7,8- HxCDF	1,2,3,4,6,7,8- HpCDF
	Units	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L
	PSL										
	WQO	0.013	0.013	0.013							
Pond 6											
Drainage-B1	12-Jul-06	ND	ND	ND	<1.39	<4.1	<1.38	<1.49	<0.821	<0.85	<1.19
(Pond 6 Outfall)	09-Mar-07	ND [1.6] [WQO]	ND [3.0] [WQO]	ND [0.86] [WQO]	<0.714 [59.4]	<2.15 [627]	<0.435 [2.23 J]	<0.543 [<0.543]	<0.285 [4.15 J]	<0.317 [<0.317]	<0.373 [20.9 J]
	13-Jun-07	ND	ND	ND	<3.04	<3.08	<1.04	<2.13	<1.29	<1.41	<1.49
	04-Sep-07	3.2 [0.010] [WQO]	13 [0.0030] [WQO]	3.6 [0.0030] [WQO]	40.5 [<5.22]	322 [33.4 J]	7.04 [<0.923]	6.17 J [<1.16]	<1.44 [<0.836]	<1.68 [<1.06]	11.9 J [<1.51]
	10-Dec-07	0.0030 [ND]	0.0010 [ND]	0.0010 [ND]	<1.87 [<2.14]	8.79 J [<3.85]	<0.636 [<0.849]	<1.58 [<1.43]	<0.359 [<0.462]	<0.386 [<0.459]	<0.779 [<0.682]
	26-Mar-08	0.0020	0.0010	0.0010	<1.22	5.14 J	<0.457	<0.757	< 0.333	<0.368	<0.559
	04-Mar-09	0.021 [WQO]	0.0030	0.0028	1.76 J	10 J	< 0.469	<1.02	< 0.314	<0.278	<0.637
	15-Sep-09	ND	ND	ND	<3.1	<7.5	<0.439	<1.28	<0.702	<0.672	<1.26
	16-Mar-10	ND	ND	ND	<1.33	<3.09	<0.253	<0.521	<0.419	<0.455	<0.495
	23-Sep-10	ND	ND	ND	<3.45	<7.4	<0.803	<1.37	<1.88	<2.07	<2.78
Pond 8 West											
Drainage-B	24-May-06	ND	ND	ND	<0.792	<2.02	<1.11	<0.638	<0.527	<0.649	<0.971
(Pond 8 Outfall)	09-Mar-07	1.7 [WQO]	3.5 [WQO]	0.85 [WQO]	65.1	555	2.81 J	<0.543	4.02 J	<0.317	18.5 J
	06-Apr-07	2.9 [WQO]	1.6 [WQO]	2.2 [WQO]	82.2	559	<0.435	<0.543	3.02 J	1.56 J	34.6
	11-Apr-07	0.079 [WQO]	0.026 [WQO]	0.026 [WQO]	5.07 J	29.7 J	<0.435	<0.543	<0.285	<0.317	1.76 J
	13-Jun-07	0.0050 [ND]	0.0020 [ND]	0.0020 [ND]	<3.93 [<3.45]	18.3 J [<4.99]	<1.01 [<1]	<3.2 [<3.02]	<1.46 [<1.4]	<1.54 [<1.52]	<1.65 [<1.43]
	04-Sep-07	ND [ND]	ND [ND]	ND [ND]	<3.21 [<4.01]	<7.08 [<7.72]	<1.06 [<0.961]	<1.54 [<1.71]	<0.637 [<0.956]	<0.776 [<1.14]	<1.12 [<1.53]
	10-Dec-07	0.0050 [0.061]	0.0020 [0.024]	0.0020 [0.024] [WQO]	<3.98 [3.51 J]	15 J [18.9 J]	<1.05 [<0.654]	<2.72 [<1.39]	<1.08 [<0.47]	<1.08 [<0.51]	<1.46 [1.79 J]
	26-Mar-08	0.089 [WQO]	0.028 [WQO]	0.028 [WQO]	5.65 J	41.5 J	<0.722	<1.34	<0.984	<1.09	1.75 J
	24-Sep-08	0.014 [WQO]	0.0050	0.0050	<9.68	46.5 J	<2.38	<4.3	<1.74	<1.89	<3.37
	04-Mar-09	0.14 [WQO]	0.04 [WQO]	0.04 [WQO]	8.7 J	86.5	<0.498	<1.29	<1.13	<0.979	2.24 J
	17-Sep-09	0.12 [0.0090] [WQO]	0.017 [0.0030] [WQO]	0.017 [0.0030] [WQO]	9.18 J [<5.25]	77.1 [30.2 J]	<0.64 [<0.53]	<2.2 [<1.35]	<1.14 [<1.38]	<1.12 [<1.16]	<3.32 [<2.7]
	16-Mar-10	0.17 /J [0.37 /J] [WQO]	0.054 /J [0.12 /J] [WQO]	0.054 /J [0.12 /J] [WQO]	11.1 J [24.5 J]	63.3 [148]	<0.471 [<1.08]	<0.638 [<1.88]	<0.727 [<1.59]	<0.741 [<1.64]	3.49 J [7.64 J]
	23-Sep-10	1.1 [WQO]	0.65 [WQO]	0.65 [WQO]	43	267	<1.68	<1.37	4.66 J	<1.69	11.5 J

Table 4-42 Dioxins Detected in Surface Water

Location ID	Sample Date / Analyte	1,2,3,4,7,8,9- HpCDF	OCDF	Total TCDD	Total HxCDD	Total HpCDD	Total TCDF	Total PeCDF	Total HxCDF	Total HpCDF
	Units	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L
	PSL									
	WQO	-						-		
Pond 6										
Drainage-B1	12-Jul-06	<1.22	<3.26	<1.06	<2.41	<1.39	<1.29	<1.06	<0.913	<1.2
(Pond 6 Outfall)	09-Mar-07	<0.54 [<0.54]	<1.01 [52.9]	ND [ND]	ND [16.1 J]	ND [119]	ND [21.2 D,M]	ND [26.3 D,M]	ND [45 D,M]	ND [48]
	13-Jun-07	<1.99	<2.38	<1.34	<3.03	<3.04	<1.04	<2.13	<1.73	<1.99
	04-Sep-07	<2.04 [<2.71]	30.9 J [<5.39]	3.64 J [<0.884]	19.3 J [<3.92]	94.8 [<5.22]	158 D,M [6.83	83.5 D,M [7.32	29.1 [<1.7]	31 [<2.71]
	10-Dec-07	<1.17 [<1.06]	<2.42 [<2.61]	<0.669 [<0.928]	<2.55 [<2.84]	<1.87 [<2.14]	<0.636 [<0.849]	<1.58 [<1.43]	<0.585 [<0.732]	<1.17 [<1.06]
	26-Mar-08	<0.754	<2.46	<0.687	<2.06	<1.22	<0.457	<0.757	<0.43	<0.754
	04-Mar-09	<0.827	<2.59	<1.03	<1.46	4.22 J	<0.469	<1.02	<0.47	<0.827
	15-Sep-09	<2.18	<4.92	<0.75	<2.03	<3.1	<0.439	<1.28	<1.4	<2.18
	16-Mar-10	<0.647	<1.51	<0.957	<0.978	<1.33	<0.253	<0.521	<0.531	<0.647
	23-Sep-10	<4.06	<4.6	<1.43	<3.63	<3.45	<0.803	<1.37	<2.07	<4.06
Pond 8 West										
Drainage-B	24-May-06	<0.82	<2.11	<0.765	<0.756	<0.792	<1.11	<0.671	<0.649	<0.896
(Pond 8 Outfall)	09-Mar-07	<0.54	63.5	ND	19 J	121	43.6 D,M	23.1 D,J,M	39.4 D,M	46
	06-Apr-07	2.68 J	113	ND	25.5	140	13.6 D,M	19.4 D,J,M	47 D,M	86.8
	11-Apr-07	<0.54	4.99 J	ND	ND	9.85 J	ND	ND	ND	4.08 J
	13-Jun-07	<2.35 [<2.11]	<4.19 [<3.4]	<1.4 [<1.45]	<2.69 [<3.23]	<3.93 [<3.45]	<1.01 [<1]	<3.2 [<3.02]	<2.01 [<1.93]	<2.35 [<2.11]
	04-Sep-07	<2.09 [<2.59]	<5.55 [<5.56]	<1.15 [<1.21]	<3.91 [<3.5]	<3.21 [<4.01]	<1.06 [<0.961]	<1.54 [<1.71]	<1.28 [<1.78]	<2.09 [<2.59]
	10-Dec-07	<2.3 [<1.11]	<4.42 [6.4 J]	<1.2 [<0.868]	<5.83 [<1.81]	<3.98 [6.61 J]	<1.05 [<0.654]	<2.86 [<1.39]	<1.64 [<0.802]	<2.3 [5.26 J]
	26-Mar-08	<0.642	7.48 J	<0.817	<1.86	10.8 J	<0.722	<1.34	<1.42	4.53 J
	24-Sep-08	<4.71	<10.2	<1.92	<5.69	<9.68	<2.38	<4.3	<2.49	<4.71
	04-Mar-09	<0.567	4.35 J	<1.09	6.84 J	21.1 J	<0.498	<1.29	<1.67	4.68 J
	17-Sep-09	<5.29 [<3.99]	<10.8 [<7.57]	<0.683 [<0.641]	<2.93 [<2.69]	19.4 J [<5.25]	<0.64 [<0.53]	<2.2 [2.06 J]	3.17 J [<3.14]	<5.29 [<3.99]
	16-Mar-10	<0.664 [<1.66]	12.2 J [26.4 J]	<0.823 [<1.54]	2.3 J [6.33 J]	21.1 J [46.4]	<0.471 [<1.08]	<0.638 [<1.88]	2.82 J [9.54 J]	8.99 [19.2]
	23-Sep-10	<3.12	36.4 J	<1.75	21.4 J	83.4	6.61	9.08 D,J,M	34.5 D,M/J	30.2

Table 4-43 Chlorophenols Detected in Surface Water

Location ID	Sample Date / Analyte	Pentachlorophenol		
Location ID	Units	µg/L		
	PSL	15		
	WQO			
Pond 6				
Drainage-B1	09-Mar-07	0.20 J [0.30 J]		
(Pond 6 Outfall)	13-Jun-07	<0.30		
Pond 8 West				
Drainage-B	09-Mar-07	0.30 J		
(Pond 8 Outfall)	13-Jun-07	<0.30 [<0.30]		

Notes for Tables 4-44 through 4-58 Statistical Summary

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility Fort Bragg, California

Footnotes:	
1	Sum of concentrations reported for gasoline carbon ranges C6-C8 and C8-C10.
2	Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C24.
3	Sum of 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g),hi)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene and pyrene.
4	
	Calculated using the OEHHA (2005) TEFs plus the USEPA (2000) Region 4 TEF for dibenzo(ah)anthracene (USEPA, 2000). Non-detects excluded.
5	Sum of m,p-Xylene and o-Xylene
6	Total PCB congener concentration is twice the sum of detected PCB congeners.
7	Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for human/mammal. NDs excluded.
8	Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for birds. NDs excluded.
9	Calculated using 2005 WHO (Van den Berg et al., 2006) TEFs for fish. NDs excluded.
10	Sum of 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene and phenanthrene.
11	Sum of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1.2,3-cd)pyrene and pyrene.
a	For TPH, exceedances are based on the groundwater RBSC for the aliphatic fraction of TPH.
b	For TPH, exceedances are based on the RWQCB TPH limits.
с	Site-specific background concentration
d	Excavated samples were not included
e	For TPH, exceedances are based on the direct contact and indoor air RBSC for the aliphatic fraction of TPH.
f	For TPH, exceedances are based on the leaching to groundwater criteria.
g	For metals, Eco PSL incoporates site-specific background concentration as developed in Appendix Table D-2
h	Total PSL exceedances is defined as the total number of exceedances of the more conservative of the HH and Eco PSLs.

а b с d e f g h

ACI ACI	ations: area of interest
B(a)P	Benzo(a)pyrene
есо	ecological
HH	human health
HMW	high molecular weight
HpCDD	heptachlorodibenzo-p-dioxin
HpCDF	heptachlorodibenzofuran
HxCDD	hexachlorodibenzo-p-dioxin
HxCDF	hexachlorodibenzofuran
LGW	leaching to groundwater
LMW	low molecular weight
mg/kg	milligram(s) per kilogram
mg/L	milligram(s) per liter
MTBE	Methyl tertiary butyl ether
NA	not available; not applicable
OCDD	octachlorodibenzo- <i>p</i> -dioxin
OCDF	octachlorodibenzofuran
PAH PCB PCDD PCDF PeCDD PeCDF PeCDF Pg/g pg/L PSL	polycyclic aromatic hydrocarbons polychlorinated biphenyl polychlorinated dibenzo-p-dioxin polychlorinated dibenzofuran pentachlorodibenzofuran pentachlorodibenzofuran picogram(s) per gram picogram(s) per liter Primary Screening Level
RBSC RWQCB	Risk based screening criteria for TPH fractions. North Coast Regional Water Quality Control Board taste and odor thresholds; TPHd value is based on taste and odor threshold (CVRWQCB, 2004; TPHg and TPHmo values are based on MRL because actual thresholds are less than this; all this is in accordance with an NCRWQCB (2008) request. semivolatile organic compound
TCDD	tetrachlorodibenzo- <i>p</i> -dioxin
TCDF	tetrachlorodibenzofuran
TEQ	Toxic equivalent
Total Diesel	Sum of concentrations reported for diesel carbon ranges C10-C12, C12-C16, and C16-C24
Total Gasoline	Sum of concentrations reported for gasoline carbon ranges C6-C8 and C8-C10
TPH	Total Petroleum Hydrocarbons

Notes for Tables 4-44 through 4-58 Statistical Summary

Remedial Investigation Report Operable Unit E Former Georgia-Pacific Wood Products Facility Fort Bragg, California

μg/L microgram(s) per liter USEPA United States Environmental Protection Agency

volatile organic compound

VOC

1/18/2013 Tables 4-46 to 4-50Summary Stats_SO_AUG2012DRAFT_RTC.xls
Table 4-44 Grab Groundwater Statistical Summary

Constituent	Units	Number of	Number of	Detection	Range (of De	tections	Location of Maximum	Arithmetic	Number o	of Exceedance Samples	es / Number of
Constituent	onits	Detects	Samples	Frequency %	Range		lections	Detection	Mean	PSL ^a	WQO ^b	Background ^c
Metals			•					•			•	
Antimony	µg/L	5	45	11%	1.1	-	4	OUE-HA-020	1.98	0/45	0/45	5/45
Arsenic	µg/L	30	45	67%	1.1	-	16	HSA-4.6	3.88	5/45	30/45	22/45
Barium	µg/L	44	45	98%	8.3	-	2400	HSA-4.4	490	7/45	7/45	43/45
Chromium	µg/L	14	45	31%	1.1	-	8	HSA-4.4	1.29	0/45	0/45	9/45
Cobalt	µg/L	18	45	40%	1	-	15.5	HSA-6.29(1/18/2006)	1.93	1/45	0/45	18/45
Copper	µg/L	17	45	38%	1	-	43	OUE-DP-001	6.41	0/45	0/45	15/45
Lead	µg/L	2	46	4%	1.4	-	51	HSA-4.4	1.66	1/46	2/46	2/46
Molybdenum	µg/L	21	45	47%	1.4	-	55	OUE-HA-020	6.8	0/45	10/45	21/45
Nickel	µg/L	25	45	56%	1.4	-	30	OUE-HA-020	4.3	0/45	2/45	25/45
Selenium	µg/L	5	45	11%	1.7	-	6.5	P4-16	0.8	0/45	0/45	5/45
Thallium	µg/L	1	45	2%	1.8	-	1.8	HSA-6.29	0.618	0/45	1/45	1/45
Vanadium	µg/L	27	45	60%	1.1	-	38	HSA-4.4	3.43	1/45	0/45	14/45
Zinc	µg/L	18	45	40%	3.7	-	150	OUE-DP-046	13.8	0/45	0/45	5/45
Total Petroleum Hydro	ocarbons (TPH)	•					•			•	
Gasoline C6-C8	mg/L	0	3	0%	NA	-	NA	NA	0.025	0/3	0/3	NA
Gasoline C8-C10	mg/L	0	3	0%	NA	-	NA	NA	0.025	0/3	0/3	NA
Total Gasoline	mg/L	2	12	17%	0.11	-	0.17	P3-47	0.0506	0/12	2/12	NA
Diesel C10-C12	ma/L	5	60	8%	0.0099	-	0.025	OUE-DP-025	0.0653	0/60	0/60	NA
Diesel C12-C16	ma/L	6	60	10%	0.01	-	1.6	OUE-DP-025(11/6/2010)	0.0841	1/60	0/60	NA
Diesel C16-C24	ma/L	27	60	45%	0.0097	-	16	HSA-4.5	0.548	3/60	0/60	NA
Total Diesel (C10- C24) ²	mg/L	37	68	54%	0.0097	-	200	P3-46	8.23	7/69	14/69	NA
Motor Oil C24-C36	ma/L	23	61	38%	0.11	-	130	HSA-4.5	2.78	2/61	15/61	NA
Semi-Volatile Organic	Compounds (SVOC)										
4-Methylphenol	<u>ua/L</u>	5	34	15%	1.3	-	11	OUE-DP-032	4.74	0/34	0/34	NA
Benzoic acid	ua/L	3	34	9%	13	-	32	OUE-DP-038 (Deep)	23.4	0/34	0/34	NA
Benzvl Alcohol	ua/L	1	34	3%	1.5	-	1.5	OUE-DP-032	4.64	0/34	0/34	NA
bis(2-Ethvlhexvl)Phthal	ua/L	3	34	9%	2.3	-	14	OUE-DP-028	4.87	1/34	1/34	NA
Phenol	ua/L	2	34	6%	3.2	-	6.2	OUE-HA-024	4.73	0/34	0/34	NA
Resorcinol	ua/L	1	27	4%	14	-	14	OUE-DP-027(6/25/2010)	9.7	0/27	0/27	NA
Polycyclic Aromatic H	lydrocarbons (PAH)										
	·	/						OUE-DP-039	[[
2-Methylnaphthalene	µg/L	10	43	23%	0.02	-	0.2	(Shallow),OUE-DP-040	0.0705	0/43	0/43	
	15	-	-					(Deep)				NA
Acenaphthene	ua/L	11	55	20%	0.02	-	1.1	OUE-HA-016	0.0777	0/55	0/55	NA
Acenaphthylene	μg/L	13	55	24%	0.02	-	1.8	HSA-4.4	0.0983	0/55	0/55	NA
Anthracene	ua/L	10	55	18%	0.02	-	0.5	OUE-DP-040 (Deep)	0.0659	0/55	0/55	NA
Benzo(a)anthracene	ua/L	13	55	24%	0.005	-	1.5	OUE-DP-040 (Deep)	0.0801	11/55	7/55	NA
Benzo(a)pyrene	ua/L	12	55	22%	0.01	-	1.9	OUE-DP-040 (Deep)	0.0853	1/55	12/55	NA
Benzo(b)fluoranthene	ua/L	13	55	24%	0.02	-	2.2	OUE-DP-040 (Deep)	0.0897	9/55	6/55	NA

Table 4-44 Grab Groundwater Statistical Summary

Constituent	Units	Number of	Number of	Detection	Range o	f Def	tections	Location of Maximum	Arithmetic	Number of	of Exceedance Samples	es / Number of
oonstituent	onita	Detects	Samples	Frequency %	Range o	1 0 0	leenons	Detection	Mean	PSL ^a	WQO ^b	Background ^c
Benzo(g,h,i)perylene	µg/L	8	55	15%	0.02	-	1.8	OUE-DP-040 (Deep)	0.0845	0/55	0/55	NA
Benzo(k)fluoranthene	µg/L	6	55	11%	0.01	-	0.9	OUE-DP-040 (Deep)	0.0637	1/55	1/55	NA
Chrysene	µg/L	19	55	35%	0.02	-	1.7	OUE-DP-040 (Deep)	0.0864	2/55	2/55	NA
Dibenz(a,h)anthracene	µg/L	3	55	5%	0.16	-	0.4	OUE-DP-040 (Deep)	0.0609	3/55	3/55	NA
Fluoranthene	µg/L	25	55	46%	0.02	-	3.9	OUE-DP-040 (Deep)	0.144	0/55	0/55	NA
Fluorene	µg/L	9	55	16%	0.02	-	2.1	HSA-4.6	0.113	0/55	0/55	NA
Indeno(1,2,3-cd)Pyrene	µg/L	5	55	9%	0.04	-	1.5	OUE-DP-040 (Deep)	0.0767	5/55	3/55	NA
Naphthalene	µg/L	28	55	51%	0.02	-	26	HSA-4.6	0.572	6/55	1/55	NA
Phenanthrene	µg/L	29	55	53%	0.02	-	2.2	OUE-DP-040 (Deep)	0.138	0/55	0/55	NA
Pyrene	µg/L	25	55	46%	0.02	-	3.6	OUE-DP-040 (Deep)	0.143	0/55	0/55	NA
Total PAH ³	µg/L	34.0	55.0	62%	0.0	-	19.1	OUE-DP-040 (Deep)	1.1	0/55	0/55	NA
USEPA B(a)P TEQ ⁴	µg/L	22	55	40%	0.0002	-	2.9	OUE-DP-040 (Deep)	0.178	2/55	14/55	NA
Volatile Organic Com	pounds (VOC)	•	•					· · · · ·			•	
1,1-Dichloroethane	µg/L	0	38	0%	NA	-	NA	NA	0.25	0/38	0/38	NA
1,1-Dichloroethene	µg/L	0	38	0%	NA	-	NA	NA	0.25	0/38	0/38	NA
1,2,4-Trimethylbenzene	µg/L	1	38	3%	0.2	-	0.2	OUE-DP-001	0.249	0/38	0/38	NA
1,4-Dichlorobenzene	µg/L	1	40	3%	0.1	-	0.1	OUE-DP-001	0.246	0/40	0/40	NA
2-Butanone	μg/L	7	38	18%	0.5	-	1.4	OUE-DP-034,OUE-DP-	4.26	0/38	0/38	NIA
								038 (Deep)				INA
2 Chlorotoluono		2	20	50/	0.0		0.0	(Shallow) OUE DD 020	0.004	0/20	0/20	
z-Chiorololuene	µg/L	2	30	5%	0.9	-	0.9	(Shallow),OUE-DP-039	0.284	0/38	0/38	NIA
A		00	00	040/	4.0		00	(Deep)	0.00	0/00	0/00	NA NA
Acetone	µg/L	23	38	61%	1.3	-	36	HSA-4.5	0.86	0/38	0/38	NA NA
Derizerie Oarkan Disulfida	µg/L	6	40	15%	0.1	-	0.0	H5A-4.5	0.245	0/40	3/40	NA NA
Carbon Disuitide	µg/L	24	38	63%	0.1	-	1.8		0.376	0/38	10/38	NA NA
Chloromethane	µg/L	2	38	5%	0.2	-	0.2	00E-DP-033,00E-DP-	0.484	0/38	0/38	NA
Isopropyl alconol	µg/L	1	9	11%	170	-	170	HSA-4.6	63.3	0/9	0/9	NA
Methylene Chloride	µg/L	13	38	34%	0.1	-	0.6	OUE-DP-038 (Deep)	3.41	0/38	0/38	NA
МТВЕ	ua/L	2	40	5%	0.2	-	0.2	OUE-DP- 003(6/30/2010).OUE-DP-	0.248	0/40	0/40	
	1-5-	_						004				NA
Naphthalene	µg/L	1	38	3%	3	-	3	HSA-4.6	1.05	1/38	0/38	NA
p-Isopropyl Toluene	µg/L	2	38	5%	0.1	-	1	HSA-4.6	0.266	0/38	0/38	NA
Tetrachloroethene	ua/L	1	38	3%	2.6	-	2.6	OUE-DP-001	0.312	0/38	1/38	NA
Toluene	ua/L	18	40	45%	0.1	-	1.2	HSA-4.6	0.283	0/40	0/40	NA
Xylenes, m,p-	μg/L	3	40	8%	0.1	-	0.3	OUE-DP-001	0.246	0/40	0/40	NA
Xylenes, Total ⁵	μg/L	3	40	8%	0.1	-	0.3	OUE-DP-001	0.2	0/40	0/40	NA

Table 4-45 Monitoring Well Groundwater Statistical Summary

Constituent	onstituent Units Number of Detection Bamples Prequency % Range of Detects		otactions	Location of Maximum	Arithmetic	c Number of Exceedances / Number of Samples					
Constituent	Onits	Detects	Samples	Frequency %	Range of D	elections	Detection	Mean	PSL ^a	WQO ^b	Background ^c
Metals			•						•	•	•
Antimony	μg/L	22	135	16%	0.074 -	1.1	MW-5.9 (5/12/2005)	4.6	0/135	0/135	3/135
Arsenic	µg/L	106	147	72%	0.32 -	37	MW-5.16 (6/16/2010)	5.32	30/147	106/147	53/147
Barium	μg/L	142	143	99%	11 -	9600	MW-4.1 (12/8/2004)	590	20/143	20/143	130/143
Beryllium	μg/L	5	102	5%	0.057 -	0.17	MW-5.9 (12/12/2007)	0.573	0/102	0/102	0/102
Cadmium	µg/L	6	135	4%	0.046 -	0.245	MW-5.9(9/6/2007)	0.766	0/135	6/135	0/135
Chromium	μg/L	39	135	29%	0.2 -	2.3	MW-4.2 (3/7/2006)	1.3	0/135	0/135	12/135
Cobalt	µg/L	47	135	35%	0.058 -	2.1	MW-3.14,MW-3.14,MW- 3.14,MW-4.3R(10/10/2007)	1.88	0/135	0/135	14/135
Copper	µg/L	45	135	33%	0.27 -	13	MW-4.4(5/22/2006)	1.5	0/135	0/135	12/135
Lead	µg/L	32	135	24%	0.055 -	0.58	MW-4.2 (3/6/2007)	0.563	0/135	9/135	0/135
Mercury	µg/L	10	135	7%	0.036 -	0.31	MW-4.3R(12/11/2007)	0.0994	0/135	0/135	0/135
Molybdenum	µg/L	24	135	18%	0.35 -	2.6	MW-5.16 (12/11/2009)	1.99	0/135	0/135	21/135
Nickel	µg/L	62	135	46%	0.12 -	4.1	MW-5.16 (12/11/2009)	2.12	0/135	0/135	24/135
Selenium	µg/L	7	134	5%	0.14 -	23	MW-5.7 (9/23/2004)	1.04	0/134	1/134	3/134
Silver	µg/L	5	135	4%	0.042 -	0.23	MW-5.9(9/6/2007)	0.768	0/135	0/135	0/135
Thallium	µg/L	8	135	6%	0.032 -	1.3	MW-5.9 (5/12/2005)	0.768	0/135	4/135	1/135
Vanadium	µg/L	23	102	23%	0.52 -	2.5	MW-4.2 (3/7/2006),MW-4.3 (12/5/2006)	1.57	0/102	0/102	0/102
Zinc	µg/L	91	135	67%	1.7 -	77	MW-4.1 (12/8/2004)	9.66	0/135	0/135	24/135
Total Petroleum Hydroc	arbons (TPH)										
Gasoline C6-C8	mg/L	11	106	10%	0.0066 -	0.02	MW-5.8 (9/6/2006)	0.0212	0/106	0/106	NA
Gasoline C8-C10	mg/L	20	106	19%	0.0073 -	0.021	MW-5.7 (12/12/2007)	0.0199	0/106	0/106	NA
Total Gasoline (C6-C10) ¹	mg/L	20	138	15%	0.0093 -	0.037	MW-5.7 (12/12/2007)	0.0225	0/138	0/138	NA
Diesel C10-C12	ma/L	2	106	2%	0.01 -	0.013	MW-3.14 (3/26/2008)	0.0218	0/106	0/106	NA
Diesel C12-C16	ma/l	3	106	3%	0.02 -	0.029	MW-5.7 (12/5/2006)	0.0221	0/106	0/106	NA
Diesel C16-C24	ma/L	19	106	18%	0.011 -	0.044	MW-4.3 (5/22/2006)	0.0232	0/106	0/106	NA
Total Diesel	mg/L	22	153	14%	0.011 -	0.076	MW-4.3 (1/28/2004)	0.0236	0/153	0/153	NA
Motor Oil C24-C36	ma/l	15	146	10%	0.039 -	0.32	MW-4 4 (12/8/2004)	0 123	0/146	2/146	NA
Polychlorinated Biphen	vis (PCB)	10	110	1070	0.000	0.02		0.120	0/110	2/110	
PCB #8		1	76	1%	0.01 -	0.01	MW-5 9 (3/7/2006)	0.0158	0/76	0/76	NA
PCB #128	μg/L μg/l	1	76	1%	0.015 -	0.015	MW-5.9 (5/22/2006)	0.0155	0/76	0/76	NA
PCB #138	<u>µg/L</u>	1	76	1%	0.12 -	0.12	MW-5.9 (5/22/2006)	0.0173	0/76	1/76	NA
PCB #153	ug/l	1	76	1%	0.12 -	0.12	MW-5.9 (5/22/2006)	0.0173	0/76	1/76	NA
PCB #170	ug/l	1	76	1%	0.12 -	0.12	MW-5.9 (5/22/2006)	0.0171	0/76	1/76	NA
PCB #180	<u>µg/</u>	1	76	1%	0.2 -	0.2	MW-5.9 (5/22/2006)	0.018	0/76	1/76	NA
PCB #187	<u>µg/</u>	1	76	1%	0.061 -	0.061	MW-5.9 (5/22/2006)	0.016	0/76	0/76	NA
PCB #195		1	76	1%	0.022 -	0.022	MW-5.9 (5/22/2006)	0.016	0/76	0/76	NA
Total PCB	µg/L	2	76	3%	0.02 -	1.3	MW-5.9 (5/22/2006)	0.66	1/76	1/76	NA

Table 4-45 Monitoring Well Groundwater Statistical Summary

Constituent Semi-Volatile Organic Co	Unite	Number of	Number of	Detection	Damas of	Detections	Location of Maximum	Arithmetic	Num N	ber of Excee umber of Sa	edances / mples
Constituent	Units	Detects	Samples	Frequency %	Range of	Detections	Detection	Mean	PSL ^a	WQO ^b	Background ^c
Semi-Volatile Organic Co	mpounds (S	SVOC)							•		
Benzoic acid	µg/L	1	96	1%	0.93	- 0.93	MW-5.7 (8/17/2005)	17.6	0/96	0/96	NA
bis(2-Ethylhexyl)Phthalate	µg/L	11	96	12%	0.72	- 7.7	MW-4.3 (3/6/2007)	3.33	3/96	3/96	NA
Polycyclic Aromatic Hyd	rocarbons (l	PAH)									
Acenaphthene	µg/L	8	124	6%	0.01	- 0.04	MW-4.3R(10/10/2007)	0.124	0/124	0/124	NA
Acenaphthylene	µg/L	2	124	2%	0.01	- 0.01	MW-4.2, MW-5.7 (9/5/2007)	0.176	0/124	0/124	NA
Anthracene	µg/L	1	124	1%	0.01	- 0.01	MW-4.3R(10/10/2007)	0.0583	0/124	0/124	NA
Benzo(a)anthracene	µg/L	2	124	2%	0.01	- 0.02	MW-4.2 (9/5/2007)	0.0574	0/124	0/124	NA
Benzo(a)pyrene	µg/L	1	124	1%	0.01	- 0.01	MW-4.5 (10/10/2007)	0.0389	0/124	1/124	NA
Benzo(b)fluoranthene	µg/L	1	124	1%	0.01	- 0.01	MW-4.2 (9/5/2007)	0.063	0/124	0/124	NA
Benzo(g,h,i)perylene	µg/L	3	124	2%	0.01	- 0.04	MW-4.5 (9/24/2008)	0.063	0/124	0/124	NA
Chrysene	µg/L	1	124	1%	0.01	- 0.01	MW-4.5 (10/10/2007)	0.0578	0/124	0/124	NA
Dibenz(a,h)anthracene	µg/L	1	124	1%	0.01	- 0.01	MW-4.2 (9/5/2007)	0.0636	1/124	1/124	NA
Fluoranthene	µg/L	5	124	4%	0.01	- 0.05	MW-5.7 (11/9/2005, 5/22/2006)	0.0637	0/124	0/124	NA
Fluorene	µg/L	9	124	7%	0.007	- 0.06	MW-5.7 (12/12/2007)	0.0647	0/124	0/124	NA
Indeno(1,2,3-cd)Pyrene	µg/L	2	124	2%	0.01	- 0.01	MW-4.2 (9/5/2007),MW-4.5 (10/10/2007)	0.0576	0/124	0/124	NA
Naphthalene	µg/L	18	124	15%	0.009	- 0.055	MW-4.3R(10/10/2007)	0.112	0/124	0/124	NA
Phenanthrene	µg/L	17	124	14%	0.009	- 0.26	MW-5.7 (9/23/2004)	0.0597	0/124	0/124	NA
Pyrene	µg/L	2	124	2%	0.01	- 0.02	MW-4.5 (10/10/2007)	0.058	0/124	0/124	NA
Total PAH ³	µg/L	18	124	15%	0.009	- 0.26	MW-5.7 (9/23/2004)	0.0795	0/124	0/124	NA
USEPA B(a)P TEQ ⁴	µg/L	2	124	2%	0.012	- 0.014	MW-4.2 (9/5/2007)	0.013	0/124	2/124	NA
Volatile Organic Compou	Inds (VOC)								<u>.</u>		
1,1,1-Trichloroethane	µq/l	0	123	0%	NA	- NA	NA	0.187	0/123	0/123	NA
1,1,2-Trichloroethane	µg/l	0	123	0%	NA	- NA	NA	0.192	0/123	0/123	NA
1,1-Dichloroethane	µg/L	1	123	1%	0.07	- 0.07	MW-4.4(12/5/2006)	0.186	0/123	0/123	NA
1,1-Dichloroethene	µg/L	0	123	0%	NA	- NA	NA	0.197	0/123	0/123	NA
1,2,4-Trichlorobenzene	µg/L	1	123	1%	0.1	- 0.1	MW-5.7 (3/6/2007)	0.204	0/123	0/123	NA
1,2-Dichloroethane	µg/L	0	123	0%	NA	- NA	ŇA	0.19	0/123	0/123	NA
1,4-Dichlorobenzene	µg/L	2	123	2%	0.05	- 0.05	MW-4.3(3/6/2007),MW-5.9 (9/6/2007)	0.192	0/123	0/123	NA
2-Butanone	µg/L	1	123	1%	0.2	- 0.2	MW-5.7 (12/5/2006)	3.57	0/123	0/123	NA
2-Chlorotoluene	µg/L	0	123	0%	NA	- NA	ŇA	0.191	0/123	0/123	NA
4-Chlorotoluene	µg/L	0	123	0%	NA	- NA	NA	0.187	0/123	0/123	NA
4-Methyl-2-Pentanone	µg/L	1	123	1%	0.2	- 0.2	MW-5.7 (9/6/2006)	3.56	0/123	0/123	NA
Acetone	µg/L	25	123	20%	0.5	- 180	MW-5.16 (3/18/2010)	5.46	0/123	0/123	NA
Benzene	µg/L	1	123	1%	0.09	- 0.09	MW-4.2 (5/22/2006)	0.185	0/123	0/123	NA
Bromodichloromethane	µg/L	0	123	0%	NA	- NA	NA	0.188	0/123	0/123	NA

Table 4-45 Monitoring Well Groundwater Statistical Summary

0		Number of	Number of	Detection			Location of Maximum	Arithmetic	Num N	ber of Exceeda umber of Samp WQO ^b E 0/123	edances / mples
Constituent	Units	Detects	Samples	Frequency %	Range of L	Detections	Detection	Mean	PSL ^a	WQO ^b	Background ^c
Bromoform	µg/L	8	123	7%	0.09 -	0.1	MW-4.1(3/6/2007),MW-4.2 (5/22/2006,3/6/2007),MW- 4.3(5/22/2006,12/5/2006,3/6/ 2007),MW-5.9 (3/6/2007)	0.355	0/123	0/123	NA
Carbon Disulfide	µg/L	8	123	7%	0.03 -	0.3	MW-4.3 (3/7/2006)	0.189	0/123	0/123	NA
Chloroethane	μg/L	0	123	0%	NA -	NA	NA	0.39	0/123	0/123	NA
Chloroform	μg/L	1	123	1%	0.3 -	0.3	MW-3.14 (10/11/2007)	0.186	0/123	0/123	NA
Chloromethane	μg/L	2	123	2%	0.3 -	0.6	MW-5.8 (9/6/2006)	0.378	0/123	0/123	NA
Isopropyl Alcohol	µg/L	5	92	5%	3.4 -	45	MW-5.8 (12/5/2006)	29.5	0/92	0/92	NA
Methylene Chloride	µg/L	12	123	10%	0.2 -	3.7	MW-5.8, MW-5.9 (6/13/2007)	3.5	0/123	0/123	NA
MTBE	µg/L	18	123	15%	0.07 -	2.2	MW-5.7 (9/23/2004)	0.301	0/123	0/123	NA
Naphthalene	µg/L	2	123	2%	0.1 -	0.2	MW-4.2 (5/22/2006)	0.614	1/123	0/123	NA
p-Isopropyl Toluene	µg/L	0	123	0%	NA -	NA	NA	0.19	0/123	0/123	NA
Tetrachloroethene	µg/L	0	123	0%	NA -	NA	NA	0.193	0/123	0/123	NA
Toluene	µg/L	9	123	7%	0.1 -	0.8	MW-5.9 (3/30/2005)	0.207	0/123	0/123	NA
Trichloroethene	µg/L	1	123	1%	0.1 -	0.1	MW-5.7 (9/6/2006)	0.191	0/123	0/123	NA
Vinyl Chloride	µg/L	0	123	0%	NA -	NA	NA	0.204	0/123	0/123	NA
Xylenes, m,p-	µg/L	1	116	1%	0.1 -	0.1	MW-4.3 (5/12/2005)	0.2	0/116	0/116	NA
Xylenes, Total⁵	µg/L	1	123	1%	0.1 -	0.1	MW-4.3 (5/12/2005)	0.1	0/123	0/123	NA
Dioxins/Furans									1	1	
2,3,7,8 TCDD TEQ (Human/Mammal) ⁷	pg/L	4	16	25%	0.001 -	0.935	MW-4.3R(10/10/2007)	0.235	0/16	1/16	NA
2,3,7,8 TCDD TEQ (Bird) ⁸	pg/L	4	16	25%	0.0004 -	0.3225	MW-4.3R(10/10/2007)	0.0812	0/16	1/16	NA
2,3,7,8 TCDD TEQ (Fish) ⁹	pg/L	3	16	19%	0.001 -	0.3225	MW-4.3R(10/10/2007)	0.108	0/16	1/16	NA
1,2,3,6,7,8-HxCDD	pg/L	1	16	6%	4.65 -	4.65	MW-4.3R(10/10/2007)	1.27	0/16	1/16	NA
1,2,3,4,6,7,8-HpCDD	pg/L	1	16	6%	36 -	36	MW-4.3R(10/10/2007)	3.15	1/16	1/16	NA
OCDD	pg/L	4	16	25%	4.02 -	315	MW-4.3R(10/10/2007)	22.3	0/16	0/16	NA
1,2,3,7,8,9-HxCDF	pg/L	1	16	6%	3.84 -	3.84	MW-4.3R(10/10/2007)	0.58	0/16	1/16	NA
1,2,3,4,6,7,8-HpCDF	pg/L	1	16	6%	7.2 -	7.2	MW-4.3R(10/10/2007)	0.756	0/16	0/16	NA
OCDF	pg/L	1	16	6%	31 -	31	MW-4.3R(10/10/2007)	3.49	0/16	0/16	NA
Total TCDD	pg/L	1	16	6%	28.25 -	28.25	MW-4.3R(10/10/2007)	2.6	0/16	0/16	NA
Total PeCDD	pg/L	1	16	6%	12.555 -	12.555	MW-4.3R(10/10/2007)	1.31	0/16	0/16	NA
Total HxCDD	pg/L	1	16	6%	62.8 -	62.8	MW-4.3R(10/10/2007)	6.04	0/16	0/16	NA
Total HpCDD	pg/L	2	16	13%	1.93 -	108.1	MW-4.3R(10/10/2007)	9.43	0/16	0/16	NA
Total TCDF	pg/L	1	16	6%	11.735 -	11.735	MW-4.3R(10/10/2007)	1.3	0/16	0/16	NA
Total PeCDF	pg/L	1	16	6%	8.21 -	8.21	MW-4.3R(10/10/2007)	1.21	0/16	0/16	NA
Total HxCDF	pg/L	1	16	6%	14.7 -	14.7	MW-4.3R(10/10/2007)	1.52	0/16	0/16	NA
Total HpCD	pa/L	1	16	6%	13.81 -	13.81	MW-4 3R(10/10/2007)	1.63	0/16	0/16	NA

Constituent	Units	Number of	Number of	Detection	Range of Dete	ctions	Location of Maximum	Arithmetic	Number of B Number of	Exceedances ^d / of Samples ^d
		Detections	Samples	Frequency %			Detection	wean	HH PSL ^e	Eco PSL ^{f,g}
Metals										
Antimony	mg/kg	10	36	28%	0.19 -	4	OUE-DP-003	0.526	0/36	3/36
Arsenic	mg/kg	36	36	100%	0.45 -	13	OUE-DP-001	4.69	1/36	0/36
Barium	mg/kg	36	36	100%	18 -	505	HA-4.139(6.2 to 6.7 ft)	87.4	0/36	1/36
Beryllium	mg/kg	15	36	42%	0.22 -	0.61	HA-4.140,P04-16	0.287	0/36	0/36
Cadmium	mg/kg	10	38	26%	0.25 -	2.5	P04-16	0.466	0/38	0/38
Chromium	mg/kg	38	38	100%	5.2 -	69	OUE-DP-003	21.4	0/38	4/38
Cobalt	mg/kg	36	36	100%	0.97 -	18	HA-4.160,HA-4.140	6.37	0/36	0/36
Copper	mg/kg	34	36	94%	0.96 -	42	OUA-TP-028	14.4	0/36	2/36
Lead	mg/kg	59	59	100%	1.9 -	230	OUE-DP-003	17.9	2/59	8/59
Mercury	mg/kg	28	36	78%	0.013 -	0.27	OUE-DP-004	0.0386	0/36	1/36
Molybdenum	mg/kg	14	36	39%	0.37 -	2.8	HA-4.149	0.49	0/36	2/36
Nickel	mg/kg	37	37	100%	2.8 -	34	OUE-HA-002ABCD	16.4	0/37	0/37
Selenium	mg/kg	4	36	11%	0.14 -	0.74	OUE-DP-011	0.179	0/36	0/36
Silver	mg/kg	0	36	0%	NA -	NA	NA	0.147	0/36	0/36
Thallium	mg/kg	1	36	3%	0.36 -	0.36	P04-13	0.15	0/36	0/36
Vanadium	mg/kg	36	36	100%	7.3 -	90	HA-4.140	32	0/36	0/36
Zinc	mg/kg	32	38	84%	8.3 -	330	OUE-DP-004	52.9	0/38	4/38
Total Petroleum Hydrocarbons (1	ГРН)									
Total Gasoline (C6-C10) ¹	mg/kg	0	10	0%	NA -	NA	NA	0.537	0/10	0/10
Diesel C10-C12	mg/kg	32	83	39%	0.18 -	74	OUE-DP-012	2.73	1/83	0/83
Diesel C12-C16	mg/kg	74	83	89%	0.27 -	610	OUE-DP-012	13.8	0/83	0/83
Diesel C16-C24	mg/kg	80	83	96%	1.8 -	6200	OUE-DP-004	164	0/83	0/83
Total Diesel (C10-C24) ²	mg/kg	94	99	95%	2.2 -	6330	OUE-DP-004	159	0/99	2/99
Motor Oil C24-C36	mg/kg	83	89	93%	2.5 -	16000	OUE-DP-004	457	0/88	0/89
Polychlorinated Biphenyls (PCB)		•	•	•				•	•	
Aroclor-1016	mg/kg	0	5	0%	NA -	NA	NA	0.0065	0/5	0/5
Aroclor-1221	mg/kg	0	5	0%	NA -	NA	NA	0.0132	0/5	0/5
Aroclor-1232	mg/kg	0	5	0%	NA -	NA	NA	0.0065	0/5	0/5
Aroclor-1242	mg/kg	0	5	0%	NA -	NA	NA	0.0065	0/5	0/5
Aroclor-1248	mg/kg	0	5	0%	NA -	NA	NA	0.0065	0/5	0/5
Aroclor-1254	mg/kg	0	5	0%	NA -	NA	NA	0.0065	0/5	0/5
Aroclor-1260	mg/kg	0	8	0%	NA -	NA	NA	0.00419	0/8	0/8
PCB #8	mg/kg	1	5	20%	0.00096 -	0.001	OUE-DP-012	0.000458	0/5	0/5
PCB #18	mg/kg	0	5	0%	NA -	NA	NA	0.000363	0/5	0/5
PCB #28	mg/kg	0	5	0%	NA -	NA	NA	0.000363	0/5	0/5
PCB #44	mg/kg	0	5	0%	NA -	NA	NA	0.000363	0/5	0/5
PCB #52	mg/kg	0	5	0%	NA -	NA	NA	0.000363	0/5	0/5
PCB #66	mg/kg	0	5	0%	NA -	NA	NA	0.000363	0/5	0/5
PCB #77	mg/kg	1	5	20%	0.00038 -	0.0004	OUE-DP-013	0.00377	0/5	0/5
PCB #81	ma/ka	0	5	0%	NA -	NA	NA	0.000363	0/5	0/5

Constituent	Units	Number of	Number of	Detection	Range of Detections	Location of Maximum	Arithmetic	Number of I Number of	Exceedances ^d / of Samples ^d
		Detections	Samples	Frequency 76		Detection	Weatt	HH PSL [®]	Eco PSL ^{f,g}
PCB #101	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #118	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #126	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #128	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #138	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #153	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #156	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #157	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #167	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #170	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #180	mg/kg	0	5	0%	NA - NA	NA	0.000363	0/5	0/5
PCB #187	mg/kg	1	5	20%	0.00089 - 0.0009	OUE-DP-013	0.000485	0/5	0/5
PCB #209	mg/kg	0	4	0%	NA - NA	NA	0.000338	0/4	0/4
Total PCB Aroclors	mg/kg	0	5	0%	NA - NA	NA	NA	0/5	0/5
Total PCB Congeners ^o	mg/kg	2	5	40%	0.0019 - 0.0025	OUE-DP-013	0.0022	0/5	0/5
Polycyclic Aromatic Hydrocarbor	ns (PAH)								
4-Methylphenol	mg/kg	0	26	0%	NA - NA	NA	1.32	0/26	0/26
2-Methylnaphthalene	mg/kg	21	50	42%	0.0011 0.04	OUE-DP-100	0.014	0/50	0/50
Acenaphthene	mg/kg	20	103	19%	0.0012 - 0.078	FL-CS-018	0.0436	0/103	0/103
Acenaphthylene	mg/kg	46	103	45%	0.001 - 0.22	OUE-DP-099	0.0386	0/103	0/103
Anthracene	mg/kg	41	103	40%	0.0012 - 0.3	OUE-DP-100	0.0396	0/103	0/103
Benzo(a)anthracene	mg/kg	56	103	54%	0.0015 - 1.1	OUE-DP-099	0.0718	7/103	1/103
Benzo(a)pyrene	mg/kg	56	103	54%	0.0012 - 1.1	OUE-DP-099	0.0678	16/103	1/103
Benzo(b)fluoranthene	mg/kg	62	103	60%	0.00093 - 1.3	OUE-DP-099	0.0771	8/103	1/103
Benzo(g,h,i)perylene	mg/kg	57	103	55%	0.0012 - 0.48	OUE-DP-100	0.0457	0/103	0/103
Benzo(k)fluoranthene	mg/kg	46	103	45%	0.0012 - 0.39	OUE-DP-099	0.0444	1/103	0/103
bis(2-Ethylhexyl)Phthalate	mg/kg	2	26	8%	0.021 - 0.034	OUE-DP-004	1.3	0/26	0/26
Butyl Benzyl Phthalate	mg/kg	1	26	4%	0.022 - 0.022	OUE-DP-002	1.31	0/26	0/26
Chrysene	mg/kg	65	103	63%	0.00083 - 1.1	OUE-DP-065,OUE-DP-099	0.093	0/103	2/103
Dibenz(a,h)anthracene	mg/kg	32	103	31%	0.001 - 0.11	OUE-DP-100	0.033	7/103	0/103
Di-n-butylphthalate	mg/kg	0	26	0%	NA - NA	NA	1.32	0/26	0/26
Di-n-octylphthalate	mg/kg	0	26	0%	NA - NA	NA	1.32	0/26	0/26
Fluoranthene	mg/kg	67	103	65%	0.001 - 1.6	OUE-DP-100	0.119	0/103	4/103
Fluorene	mg/kg	35	103	34%	0.001 - 0.28	OUE-DP-012	0.0347	0/103	0/103
Indeno(1,2,3-cd)Pyrene	mg/kg	52	103	51%	0.0011 - 0.43	OUE-DP-100	0.044	3/103	0/103
Naphthalene	mg/kg	4/	103	46%	0.0014 - 0.21	HA-4.139	0.0376	0/103	0/103
Phenanthrene	mg/kg	64	103	62%	0.0015 - 1.4	OUE-DP-100	0.0857	0/103	2/103
Pyrene	mg/kg	66	103	64%	0.00093 - 1.9	OUE-DP-099,OUE-DP-100	0.127	0/103	3/103
LMW-PAH ¹⁰	mg/kg	65	103	63%	0.0015 - 2.175	OUE-DP-100	0.176	0/103	0/103
HMW-PAH ¹¹	mg/kg	69	103	67%	0.003 - 8.900	OUE-DP-099	0.709	0/103	8/103
Total PAH ³	mg/kg	70	103	68%	0.00 - 8.90	OUE-DP-100	0.69	0/103	0/103

Constituent	Units	Number of	Number of	Detection	Range of D	etections	Location of Maximum	Arithmetic	Number of I Number of	Exceedances ^d / of Samples ^d
		Detections	Samples	Frequency %			Detection	wean	HH PSL ^e	Eco PSL ^{f,g}
USEPA B(a)P TEQ ⁴	mg/kg	67	103	65%	0.0001	- 1.5	OUE-DP-099	0.0939	17/103	0/103
Volatile Organic Compounds (VC	C)									
1,2,4-Trimethylbenzene	mg/kg	0	27	0%	NA	- NA	NA	0.00283	0/27	0/27
1,3,5-Trimethylbenzene	mg/kg	0	27	0%	NA	- NA	NA	0.00283	0/27	0/27
1,4-Dichlorobenzene	mg/kg	0	27	0%	NA	- NA	NA	0.0163	0/27	0/27
2-Butanone	mg/kg	7	27	26%	0.00089	- 0.033	OUE-DP-002	0.00623	0/27	0/27
4-Methyl-2-Pentanone	mg/kg	1	27	4%	0.00055	- 0.0006	OUE-DP-060	0.00547	0/27	0/27
Acetone	mg/kg	17	27	63%	0.0014	- 0.16	OUE-DP-004	0.0255	0/27	0/27
Benzene	mg/kg	1	34	3%	0.00091	- 0.0009	OUE-DP-002	0.00229	0/34	0/34
Carbon Disulfide	mg/kg	1	27	4%	0.0019	- 0.0019	OUE-DP-059	0.00284	0/27	0/27
Chloroform	mg/kg	0	27	0%	NA	- NA	NA	0.00284	0/27	0/27
Ethanol	mg/kg	0	4	0%	NA	- NA	NA	0.0488	0/4	0/4
Ethylbenzene	mg/kg	1	34	3%	0.00059	- 0.0006	OUE-DP-002	0.00226	0/34	0/34
Isopropyl alcohol	mg/kg	0	4	0%	NA	- NA	NA	0.00449	0/4	0/4
Isopropylbenzene	mg/kg	0	27	0%	NA	- NA	NA	0.00283	0/27	0/27
Methyl n-Butyl Ketone	mg/kg	0	27	0%	NA	- NA	NA	0.00564	0/27	0/27
Methylene Chloride	mg/kg	4	27	15%	0.00084	- 0.059	P04-11	0.0124	0/27	0/27
Naphthalene	mg/kg	0	27	0%	NA	- NA	NA	0.00282	0/27	0/27
n-Butylbenzene	mg/kg	0	27	0%	NA	- NA	NA	0.00284	0/27	0/27
n-Propylbenzene	mg/kg	0	27	0%	NA	- NA	NA	0.00283	0/27	0/27
p-Isopropyl Toluene	mg/kg	0	27	0%	NA	- NA	NA	0.00283	0/27	0/27
sec-Butylbenzene	mg/kg	0	27	0%	NA	- NA	NA	0.00283	0/27	0/27
Tetrachloroethene	mg/kg	7	27	26%	0.00051	- 0.039	OUE-DP-001	0.00522	0/27	0/27
Toluene	mg/kg	1	34	3%	0.0016	- 0.0016	OUE-DP-001	0.00233	0/34	0/34
Xylenes, m,p-	mg/kg	2	34	6%	0.00074	- 0.0011	OUE-DP-001	0.00228	0/34	0/34
Xylenes, o-	mg/kg	0	34	0%	NA	- NA	NA	0.00236	0/34	0/34
Xylenes, Total⁵	mg/kg	2	34	6%	0.00074	- 0.0011	OUE-DP-001	0.00092	0/34	0/34
Dioxins/Furans										
2,3,7,8-TCDD TEQ										
(Human/Mammal) ⁷	pa/a	1	1	100%	0.75	- 0.75	OUE-DP-013	0.75	0/1	0/1
2,3,7,8-TCDD TEQ (Bird) ⁸	pa/a	1	1	100%	6.20	- 6.20	OUE-DP-013	6.20	0/1	1/1
2,3,7,8-TCDD TEQ (Fish) ⁹	pa/a	1	1	100%	0.37	- 0.37	OUE-DP-013	0.37	0/1	0/1
2.3.7.8-TCDD	pa/a	0	1	0%	NA	- NA	NA	0.499	0/1	0/1
1.2.3.7.8-PeCDD	pg/g	0	1	0%	NA	- NA	NA	0.65	0/1	0/1
1.2.3.4.7.8-HxCDD	pg/g	0	1	0%	NA	- NA	NA	1.07	0/1	0/1
1.2.3.6.7.8-HxCDD	pa/a	0	1	0%	NA	- NA	NA	1.21	0/1	0/1
1,2,3,7,8,9-HxCDD	pa/a	0	1	0%	NA	- NA	NA	1.18	0/1	0/1
1,2,3,4,6,7,8-HpCDD	pa/a	1	1	100%	6.93	- 6.93	OUE-DP-013	6.93	0/1	0/1
OCDD	pa/a	1	1	100%	21.1	- 21.1	OUE-DP-013	21.1	0/1	0/1
2,3,7,8-TCDF	pa/a	1	1	100%	6.1	- 6.1	OUE-DP-013	6.1	0/1	0/1
1,2,3,7,8-PeCDF	pg/g	0	1	0%	NA	- NA	NA	1.46	0/1	0/1

Constituent	Units	Number of	Number of	Detection	Range of Detections	Location of Maximum	Arithmetic	Number of Number	Exceedances ^d / of Samples ^d
		Detections	Samples	Frequency %		Detection	wear	HH PSL ^e	Eco PSL ^{f,g}
2,3,4,7,8-PeCDF	pg/g	0	1	0%	NA - NA	NA	1.34	0/1	0/1
1,2,3,4,7,8-HxCDF	pg/g	0	1	0%	NA - NA	NA	1	0/1	0/1
1,2,3,6,7,8-HxCDF	pg/g	0	1	0%	NA - NA	NA	0.98	0/1	0/1
2,3,4,6,7,8-HxCDF	pg/g	0	1	0%	NA - NA	NA	1.07	0/1	0/1
1,2,3,7,8,9-HxCDF	pg/g	0	1	0%	NA - NA	NA	1.22	0/1	0/1
1,2,3,4,6,7,8-HpCDF	pg/g	1	1	100%	6 - 6	OUE-DP-013	6	0/1	0/1
1,2,3,4,7,8,9-HpCDF	pg/g	0	1	0%	NA - NA	NA	1.07	0/1	0/1
OCDF	pg/g	0	1	0%	NA - NA	NA	3.14	0/1	0/1
Total TCDD	pg/g	1	1	100%	81.7 - 81.7	OUE-DP-013	81.7	0/1	0/1
Total PeCDD	pg/g	1	1	100%	32.7 - 32.7	OUE-DP-013	32.7	0/1	0/1
Total HxCDD	pg/g	1	1	100%	17.1 - 17.1	OUE-DP-013	17.1	0/1	0/1
Total HpCDD	pg/g	1	1	100%	13.6 - 13.6	OUE-DP-013	13.6	0/1	0/1
Total TCDF	pg/g	1	1	100%	108 - 108	OUE-DP-013	108	0/1	0/1
Total PeCDF	pg/g	1	1	100%	26.9 - 26.9	OUE-DP-013	26.9	0/1	0/1
Total HxCDF	pg/g	1	1	100%	5.66 - 5.66	OUE-DP-013	5.66	0/1	0/1
Total HpCDF	pg/g	1	1	100%	6 - 6	OUE-DP-013	6	0/1	0/1

Table 4-47 Soil Statistical Summary Sawmill # 1 AOI

Constituent	Units	Number of	Number of	Detection	Range of Detections	Location of Maximum	Arithmetic	Number o Numbe	of Exceedances ^d / Fr of Samples ^d
		Detections "	Samples [°]	Frequency %		Detection	Mean	HH PSL [®]	Eco PSL ^{f,g}
Metals									
Antimony	mg/kg	11	24	46%	0.39 - 6.3	OUE-DP-024	0.804	0/24	4/24
Arsenic	mg/kg	24	24	100%	1.8 - 15	DP-05.54	5.58	1/24	0/24
Barium	mg/kg	24	24	100%	24 - 470	DP-05.54	142	0/24	3/24
Beryllium	mg/kg	17	24	71%	0.17 - 0.64	OUE-DP-028	0.341	0/24	0/24
Cadmium	mg/kg	9	24	38%	0.41 - 1.4	DP-05.55,DP-ROAD-4.2	0.424	0/24	0/24
Chromium	mg/kg	24	24	100%	4.3 - 94	OUE-DP-028	30.8	0/24	5/24
Cobalt	mg/kg	24	24	100%	0.84 - 19	DP-ROAD-4.2	8.12	0/24	0/24
Copper	mg/kg	24	24	100%	2.1 - 110	OUE-DP-031	36.9	0/24	7/24
Lead	mg/kg	57	57	100%	3.1 - 3800	OUE-DP-070	106	8/57	19/57
Mercury	mg/kg	16	24	67%	0.019 - 0.35	OUE-DP-026	0.065	0/24	5/24
Molybdenum	mg/kg	19	24	79%	0.33 - 5.2	OUE-DP-031	0.981	0/24	2/24
Nickel	mg/kg	24	24	100%	4 - 78	OUE-DP-028	23.9	0/24	1/24
Selenium	mg/kg	1	24	4%	0.73 - 0.73	DP-ROAD-4.2	0.161	0/24	0/24
Silver	mg/kg	0	24	0%	NA - NA	NA	0.135	0/24	0/24
Thallium	mg/kg	0	24	0%	NA - NA	NA	0.135	0/24	0/24
Vanadium	mg/kg	24	24	100%	6.9 - 91	DP-05.55	37.7	0/24	1/24
Zinc	mg/kg	24	24	100%	8.7 - 400	DP-05.54	101	0/24	9/24
Total Petroleum Hydrocarbons	(TPH)				•	•			
Total Gasoline (C6-C10) ¹	mg/kg	1	7	14%	6.8 - 6.8	P05-03	1.42	0/7	0/7
Diesel C10-C12	mg/kg	15	60	25%	0.15 - 78	OUE-T5-3	4.42	1/60	0/60
Diesel C12-C16	mg/kg	43	60	72%	0.15 - 610	OUE-DP-025	27.7	0/60	0/60
Diesel C16-C24	mg/kg	58	60	97%	0.41 - 12000	OUE-DP-025	753	1/60	0/60
Total Diesel (C10-C24) ²	mg/kg	70	72	97%	0.41 - 12634	OUE-DP-025	840	1/72	12/72
Motor Oil C24-C36	mg/kg	62	63	98%	1.5 - 23000	OUE-DP-025	2170	0/63	0/63
Polychlorinated Biphenyls (PC	B)								
Aroclor-1016	mg/kg	0	6	0%	NA - NA	NA	0.00625	0/6	0/6
Aroclor-1221	mg/kg	0	6	0%	NA - NA	NA	0.0125	0/6	0/6
Aroclor-1232	mg/kg	0	6	0%	NA - NA	NA	0.00625	0/6	0/6
Aroclor-1242	mg/kg	0	6	0%	NA - NA	NA	0.00625	0/6	0/6
Aroclor-1248	mg/kg	0	6	0%	NA - NA	NA	0.00625	0/6	0/6
Aroclor-1254	mg/kg	0	6	0%	NA - NA	NA	0.00625	0/6	0/6
Aroclor-1260	mg/kg	0	6	0%	NA - NA	NA	0.00625	0/6	0/6
PCB #8	mg/kg	1	4	25%	0.00042 - 0.00042	OUE-DP-025	0.000326	0/4	0/4
PCB #18	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #28	mg/kg	1	4	25%	0.0025 - 0.0025	OUE-DP-025	0.000846	0/4	0/4
PCB #44	mg/kg	1	4	25%	0.0014 - 0.0014	OUE-DP-025	0.000571	0/4	0/4
PCB #52	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #66	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #77	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #81	mg/kg	1	4	25%	0.0035 - 0.0035	OUE-DP-025	0.0011	0/4	0/4

Table 4-47 Soil Statistical Summary Sawmill # 1 AOI

Constituent	Units	Number of	Number of	Detection	Range of Detections	Location of Maximum	Arithmetic	Number o Numbe	of Exceedances ^d / er of Samples ^d
		Detections "	Samples *	Frequency %		Detection	Mean	HH PSL [®]	Eco PSL ^{f,g}
PCB #101	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #118	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #126	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #128	mg/kg	1	4	25%	0.00025 - 0.00025	OUE-DP-025	0.000284	0/4	0/4
PCB #138	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #153	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #156	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #157	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #167	mg/kg	1	4	25%	0.00071 - 0.00071	OUE-DP-024	0.00034	0/4	0/4
PCB #170	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #180	mg/kg	1	4	25%	0.00062 - 0.00062	OUE-DP-024	0.000318	0/4	0/4
PCB #187	mg/kg	0	4	0%	NA - NA	NA	0.0003	0/4	0/4
PCB #209	mg/kg	1	4	25%	0.00049 - 0.00049	OUE-DP-025	0.000344	0/4	0/4
Total PCB Aroclors	mg/kg	0	6	0%	NA - NA	NA	NA	0/6	0/6
Total PCB Congeners ⁶	mg/kg	2	4	50%	0.0027 - 0.017	OUE-DP-025	0.00985	0/4	0/4
Polycyclic Aromatic Hydrocar	bons (PAI	H)		•	•	•	•		
4-Methylphenol	mg/kg	0	30	0%	NA - NA	OUE-DP-026	4.6	0/30	0/30
2-Methylnaphthalene	mg/kg	15	31	48%	0.0012 0.066	OUE-DP-026	0.0596	0/31	0/31
Acenaphthene	mg/kg	12	58	21%	0.0013 - 0.1	OUE-DP-026	1.17	0/58	0/58
Acenaphthylene	mg/kg	14	58	24%	0.0017 - 0.81	OUE-DP-073	0.708	0/58	1/58
Anthracene	mg/kg	15	58	26%	0.0011 - 0.87	OUE-DP-073	0.713	0/58	1/58
Benzo(a)anthracene	mg/kg	23	58	40%	0.0011 - 3.6	OUE-DP-073	0.796	8/58	2/58
Benzo(a)pyrene	mg/kg	20	58	35%	0.003 - 5.6	OUE-DP-073	0.849	11/58	4/58
Benzo(b)fluoranthene	mg/kg	21	58	36%	0.0014 - 5.6	OUE-DP-073	0.869	6/58	3/58
Benzo(g,h,i)perylene	mg/kg	16	58	28%	0.0014 - 2.1	OUE-DP-073	0.764	0/58	2/58
Benzo(k)fluoranthene	mg/kg	18	58	31%	0.002 - 1.7	OUE-DP-073	0.737	2/58	1/58
bis(2-Ethylhexyl)Phthalate	mg/kg	4	30	13%	0.034 - 0.33	P04-24	4.59	0/30	0/30
Butyl Benzyl Phthalate	mg/kg	0	30	0%	NA - NA	NA	4.6	0/30	0/30
Chrysene	mg/kg	29	58	50%	0.0019 - 3.9	OUE-DP-073	0.851	1/58	4/58
Dibenz(a,h)anthracene	mg/kg	11	58	19%	0.0026 - 0.58	OUE-DP-073	0.703	5/58	0/58
Di-n-butylphthalate	mg/kg	0	30	0%	NA - NA	NA	4.6	0/30	0/30
Di-n-octylphthalate	mg/kg	0	30	0%	NA - NA	NA	4.6	0/30	0/30
Fluoranthene	mg/kg	27	58	47%	0.0039 - 5.6	OUE-DP-073	0.917	0/58	4/58
Fluorene	mg/kg	18	58	31%	0.0024 - 1.5	OUE-DP-025	0.732	0/58	2/58
Indeno(1,2,3-cd)Pyrene	mg/kg	13	58	22%	0.0036 - 1.9	OUE-DP-073	0.768	4/58	1/58
Naphthalene	mg/kg	16	58	28%	0.0011 - 0.09	OUE-DP-073	0.732	0/58	0/58
Phenanthrene	mg/kg	26	58	45%	0.0044 - 2	OUE-DP-026	0.832	0/58	5/58
Pyrene	mg/kg	29	58	50%	0.0013 - 7.7	OUE-DP-073	0.984	0/58	4/58

Table 4-47 Soil Statistical Summary Sawmill # 1 AOI

Constituent	Units	Number of	Number of	Detection	Range of Detections	Location of Maximum	Arithmetic	Number o Numbe	of Exceedances ^d / Fr of Samples ^d
		Detections "	Samples [•]	Frequency %		Detection	Mean	HH PSL [®]	Eco PSL ^{f,g}
LMW-PAH ¹⁰	mg/kg	29	58	50%	0.005 - 3.754	OUE-DP-073	0.586	0/58	0/58
HMW-PAH ¹¹	mg/kg	31	58	53%	0.00 - 38.00	OUE-DP-073	2.82	0/58	9/58
Total PAH ³	mg/kg	31	58	53%	0.00 - 36.00	OUE-DP-073	2.92	0/58	0/58
USEPA B(a)P TEQ ⁴	mg/kg	30	60	50%	0.000019 - 7.5	OUE-DP-073	0.514	12/60	0/60
Volatile Organic Compounds (/OC)			-					
1,2,4-Trimethylbenzene	mg/kg	1	44	2%	0.00032 - 0.00032	HA-4.054	0.0015	0/44	0/44
1,3,5-Trimethylbenzene	mg/kg	1	44	2%	0.00022 - 0.00022	HA-4.054	0.0015	0/44	0/44
1,4-Dichlorobenzene	mg/kg	0	44	0%	NA - NA	NA	0.00155	0/44	0/44
2-Butanone	mg/kg	16	44	36%	0.0014 - 0.0061	OUE-DP-018	0.00361	0/44	0/44
4-Methyl-2-Pentanone	mg/kg	7	44	16%	0.00013 - 0.00036	HA-5.89	0.00287	0/44	0/44
Acetone	mg/kg	34	44	77%	0.0018 - 0.083	HA-4.039	0.0159	0/44	0/44
Benzene	mg/kg	0	44	0%	NA - NA	NA	0.00161	0/44	0/44
Carbon Disulfide	mg/kg	3	44	7%	0.00057 - 0.0021	OUE-DP-018	0.00168	0/44	0/44
Chloroform	mg/kg	0	44	0%	NA - NA	NA	0.00157	0/44	0/44
Ethanol	mg/kg	3	31	10%	0.28 - 3.6	DP-05.56	0.328	0/31	0/31
Ethylbenzene	mg/kg	1	44	2%	0.00096 - 0.00096	DP-ROAD-4.1	0.00153	0/44	0/44
Isopropyl alcohol	mg/kg	1	31	3%	0.078 - 0.078	HA-5.85	0.0376	0/31	0/31
Isopropylbenzene	mg/kg	0	44	0%	NA - NA	NA	0.00154	0/44	0/44
Methyl n-Butyl Ketone	mg/kg	0	44	0%	NA - NA	NA	0.00287	0/44	0/44
Methylene Chloride	mg/kg	16	44	36%	0.00048 - 0.056	P04-24	0.00584	0/44	0/44
Naphthalene	mg/kg	3	44	7%	0.00085 - 0.007	HA-5.88	0.00167	0/44	0/44
n-Butylbenzene	mg/kg	0	44	0%	NA - NA	NA	0.00151	0/44	0/44
n-Propylbenzene	mg/kg	0	44	0%	NA - NA	NA	0.00156	0/44	0/44
p-Isopropyl Toluene	mg/kg	0	44	0%	NA - NA	NA	0.00154	0/44	0/44
sec-Butylbenzene	mg/kg	0	44	0%	NA - NA	NA	0.00155	0/44	0/44
Tetrachloroethene	mg/kg	0	44	0%	NA - NA	NA	0.00153	0/44	0/44
Toluene	mg/kg	8	44	18%	0.00027 - 0.0017	DP-ROAD-4.1	0.00153	0/44	0/44
Xylenes, m,p-	mg/kg	1	44	2%	0.0025 - 0.0025	DP-ROAD-4.1	0.0018	0/44	0/44
Xylenes, o-	mg/kg	0	44	0%	NA - NA	NA	0.00151	0/44	0/44
Xylenes, Total ⁵	mg/kg	1	44	2%	0.0025 - 0.0025	DP-ROAD-4.1	0.0025	0/44	0/44

Table 4-48 Soil Statistical Summary Compressor House and Lath Building AOI

Constituent	Units	Number of	Number of	Detection	Range of Detections		Location of Maximum	Arithmetic	Number of Number	Exceedances ^d / of Samples ^d
		Detections	Samples	Frequency %			Detection	Wean	HH PSL [®]	Eco PSL ^{f,g}
Metals										
Antimony	mg/kg	4	14	29%	0.03	- 1.1	OUE-DP-033	0.239	0/14	1/14
Arsenic	mg/kg	14	14	100%	0.56	- 13	OUE-DP-032	5.67	2/14	0/14
Barium	mg/kg	14	14	100%	29	- 380	OUE-DP-035	95.2	0/14	1/14
Beryllium	mg/kg	6	14	43%	0.23	- 0.77	OUE-DP-034	0.309	0/14	0/14
Cadmium	mg/kg	1	14	7%	0.073	- 0.073	MW-03.14	0.148	0/14	0/14
Chromium	mg/kg	14	14	100%	4.2	- 48	OUE-DP-034	19.5	0/14	1/14
Cobalt	mg/kg	14	14	100%	0.35	- 18	OUE-DP-035	6.04	0/14	0/14
Copper	mg/kg	12	14	86%	1	- 71	OUE-DP-035	18.8	0/14	2/14
Lead	mg/kg	15	15	100%	2.3	- 72	OUC-HA-020	16.8	0/15	3/15
Mercury	mg/kg	10	14	71%	0.013	- 0.061	OUE-DP-035	0.0318	0/14	0/14
Molybdenum	mg/kg	7	14	50%	0.45	- 1.3	OUE-DP-032	0.513	0/14	0/14
Nickel	mg/kg	14	14	100%	1.9	- 46	OUE-DP-034,OUE-DP-035	17.5	0/14	2/14
Selenium	mg/kg	5	14	36%	0.11	- 0.42	OUE-DP-033	0.205	0/14	0/14
Silver	mg/kg	2	14	14%	0.032	- 0.06	MW-03.14	0.138	0/14	0/14
Thallium	mg/kg	2	14	14%	0.033	- 0.071	MW-03.14	0.139	0/14	0/14
Vanadium	mg/kg	14	14	100%	6.2	- 61	OUE-DP-034	28.9	0/14	0/14
Zinc	mg/kg	12	14	86%	2.3	- 110	OUE-DP-032	39.3	0/14	2/14
Total Petroleum Hydrocart	bons (TPH)									
Gasoline C8-C10	mg/kg	2	2	100%	0.039	- 0.071	MW-03.14	0.055	0/2	0/2
Total Gasoline (C6-C10) ¹	ma/ka	2	2	100%	0.039	- 0.071	MW-03.14	0.055	0/2	0/2
Diesel C10-C12	mg/kg	13	47	28%	0.2	- 430	R37-CS-009	10.8	1/47	0/47
Diesel C12-C16	mg/kg	31	47	66%	0.32	- 1700	R37-CS-009	47.3	1/47	0/47
Diesel C16-C24	mg/kg	42	47	89%	0.21	- 3600	R37-CS-009,R37-CS-016	299	0/47	0/47
Total Diesel (C10-C24) ²	mg/kg	43	47	90%	0.21	- 5730	R37-CS-009	389	0/47	4/47
Motor Oil C24-C36	mg/kg	43	47	90%	1.2	- 12000	R37-CS-009,R37-CS-016	1100	0/47	0/47
Polychlorinated Biphenyls	s (PCB)									
Aroclor-1016	mg/kg	0	1	0%	NA	- NA	NA	0.006	0/1	0/1
Aroclor-1221	mg/kg	0	1	0%	NA	- NA	NA	0.012	0/1	0/1
Aroclor-1232	mg/kg	0	1	0%	NA	- NA	NA	0.006	0/1	0/1
Aroclor-1242	mg/kg	0	1	0%	NA	- NA	NA	0.006	0/1	0/1
Aroclor-1248	mg/kg	0	1	0%	NA	- NA	NA	0.006	0/1	0/1
Aroclor-1254	mg/kg	0	1	0%	NA	- NA	NA	0.006	0/1	0/1
Aroclor-1260	mg/kg	0	7	0%	NA	- NA	NA	0.0011	0/7	0/7
PCB #8	mg/kg	0	6	0%	NA	- NA	NA	0.000288	0/6	0/6
PCB #18	mg/kg	0	6		NA	- NA	NA	0.000288	0/6	0/6
PCB #28	mg/kg	0	6	0%	NA	- NA	NA	0.000288	0/6	0/6
PCB #44	mg/kg	0	6	0%	NA	- NA	NA	0.000288	0/6	0/6
PCB #52	mg/kg	0	6	0%	NA	- NA	NA	0.000288	0/6	0/6
PCB #66	mg/kg	1	6	17%	0.00021	- 0.00021	OUE-HA-005	0.000276	0/6	0/6

Table 4-48 Soil Statistical Summary Compressor House and Lath Building AOI

Constituent	Units	Number of	Number of	Detection	Range of Detection	Location of Maximum	Arithmetic	Number of Number	Exceedances ^d / of Samples ^d
		Detections	Samples	Frequency 76		Detection	wear	HH PSL [®]	Eco PSL ^{f,g}
PCB #77	mg/kg	0	1	0%	NA - NA	NA	0.006	0/1	0/1
PCB #81	mg/kg	0	6	0%	NA - NA	NA	0.000288	0/6	0/6
PCB #101	mg/kg	1	6	17%	0.0009 - 0.000	9 OUE-HA-007	0.000393	0/6	0/6
PCB #118	mg/kg	2	6	33%	0.00025 - 0.000	2 OUE-HA-007	0.000293	0/6	0/6
PCB #126	mg/kg	0	6	0%	NA - NA	NA	0.000288	0/6	0/6
PCB #128	mg/kg	0	6	0%	NA - NA	NA	0.000288	0/6	0/6
PCB #138	mg/kg	2	6	33%	0.00014 - 0.000	000007 OUE-HA-007	0.000315	0/6	0/6
PCB #153	mg/kg	4	6	67%	0.00031 - 0.000	9 OUE-HA-007	0.000458	0/6	0/6
PCB #156	mg/kg	0	6	0%	NA - NA	NA	0.000288	0/6	0/6
PCB #157	mg/kg	0	6	0%	NA - NA	NA	0.000288	0/6	0/6
PCB #167	mg/kg	0	6	0%	NA - NA	NA	0.000288	0/6	0/6
PCB #170	mg/kg	2	6	33%	0.00028 - 0.000	0UE-HA-007	0.000342	0/6	0/6
PCB #180	mg/kg	1	6	17%	0.00064 - 0.000	64 OUE-HA-007	0.00035	0/6	0/6
PCB #187	mg/kg	1	6	17%	0.00037 - 0.000	000007 OUE-HA-007	0.000305	0/6	0/6
PCB #209	mg/kg	0	6	0%	NA - NA	NA	0.000288	0/6	0/6
Total PCB Aroclors	mg/kg	0	1	0%	NA - NA	NA		0/1	0/1
Total PCB Congeners ⁶	mg/kg	5	6	83%	0.00042 - 0.008	64 OUE-HA-007	0.00265	0/6	0/6
Polycyclic Aromatic Hydro	carbons (PAH)							
4-Methylphenol	mg/kg	0	14	0%	NA - NA	NA	1.4	0/14	0/14
2-Methylnaphthalene	mg/kg	7	14	50%	0.0022 12	OUE-DP-035	0.947	0/14	0/14
Acenaphthene	mg/kg	2	34	6%	0.0018 - 0.004	6 OUE-DP-035,OUE-DP-035	0.0347	0/34	0/34
Acenaphthylene	mg/kg	13	34	38%	0.00087 - 0.04	OUC-HA-053	0.0345	0/34	0/34
Anthracene	mg/kg	13	34	38%	0.00096 - 0.06	OUC-HA-053	0.0343	0/34	0/34
Benzo(a)anthracene	mg/kg	18	34	53%	0.00096 - 0.2	OUC-HA-053	0.0404	1/34	0/34
Benzo(a)pyrene	mg/kg	17	34	50%	0.001 - 0.17	OUC-HA-053	0.04	3/34	0/34
Benzo(b)fluoranthene	mg/kg	18	34	53%	0.0012 - 0.21	OUC-HA-053	0.0466	1/34	0/34
Benzo(g,h,i)perylene	mg/kg	17	34	50%	0.00066 - 0.08	OUC-HA-053	0.0176	0/34	0/34
Benzo(k)fluoranthene	mg/kg	12	34	35%	0.0023 - 0.06	OUC-HA-053	0.0361	0/34	0/34
bis(2-Ethylhexyl)Phthalate	mg/kg	4	14	29%	0.015 - 0.06	MW-03.14	1.35	0/14	0/14
Butyl Benzyl Phthalate	mg/kg	0	14	0%	NA - NA	NA	1.4	0/14	0/14
Chrysene	mg/kg	22	34	65%	0.00093 - 0.2	OUC-HA-053	0.048	0/34	0/34
Dibenz(a,h)anthracene	mg/kg	2	34	NA	0.0021 - 0.023	OUC-HA-053	0.0331	1/34	0/34
Di-n-butylphthalate	mg/kg	0	14	NA	NA - NA	NA	1.4	0/14	0/14
Di-n-octylphthalate	mg/kg	1	14	NA	0.039 - 0.03	OUE-DP-033	1.39	0/14	0/14
Fluoranthene	mg/kg	20	34	NA	0.00089 - 0.42	OUC-HA-053	0.0543	0/34	0/34
Fluorene	mg/kg	12	34	35%	0.0017 - 0.03	OUE-DP-035,OUE-DP-035	0.0157	0/34	0/34
Indeno(1,2,3-cd)Pyrene	mg/kg	14	34	41%	0.0011 - 0.07	OUC-HA-053	0.0165	0/34	0/34
Naphthalene	mg/kg	18	34	53%	0.0013 - 0.02	OUE-DP-034,OUE-DP-034	0.0362	0/34	0/34
Phenanthrene	mg/kg	23	34	68%	0.0014 - 0.22	OUC-HA-053	0.0531	0/34	0/34
Pyrene	mg/kg	22	34	65%	0.0012 - 0.37	OUC-HA-053	0.0575	0/34	0/34

Table 4-48 Soil Statistical Summary Compressor House and Lath Building AOI

Constituent	Units	Number of	Number of	Detection	on cy % Range of Detections	Location of Maximum	Arithmetic	Number of Number	Exceedances ^d / of Samples ^d
		Detections	Samples	Frequency 76		Detection	Weatt	HH PSL [®]	Eco PSL ^{f,g}
LMW-PAH ¹⁰	mg/kg	23	32	72%	0.001 - 0.360	OUC-HA-053	0.068	0/32	0/32
HMW-PAH ¹¹	mg/kg	22	32	69%	0.005 - 1.800	OUC-HA-053	0.199	0/32	1/32
Total PAH ³	mg/kg	24	34	71%	0.001 - 1.700	OUC-HA-053	0.198	0/34	0/34
USEPA B(a)P TEQ ⁴	mg/kg	23	34	68%	0.0000 - 0.2500	OUC-HA-053	0.0245	3/34	0/34
Volatile Organic Compour	ds (VOC)								
1,2,4-Trimethylbenzene	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
1,3,5-Trimethylbenzene	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
1,4-Dichlorobenzene	mg/kg	0	10	0%	NA - NA	NA	0.0821	0/10	0/10
2-Butanone	mg/kg	6	10	60%	0.0034 - 0.0071	OUE-DP-034	0.00529	0/10	0/10
4-Methyl-2-Pentanone	mg/kg	0	10	0%	NA - NA	NA	0.00541	0/10	0/10
Acetone	mg/kg	7	10	70%	0.014 - 0.045	OUE-DP-034	0.0206	0/10	0/10
Benzene	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
Carbon Disulfide	mg/kg	1	10	10%	0.0029 - 0.0029	OUE-DP-035	0.00279	0/10	0/10
Chloroform	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
Ethanol	mg/kg	0	2	0%	NA - NA	NA	0.55	0/2	0/2
Ethylbenzene	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
Isopropyl alcohol	mg/kg	0	2	0%	NA - NA	NA	0.11	0/2	0/2
Isopropylbenzene	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
Methyl n-Butyl Ketone	mg/kg	0	10	0%	NA - NA	NA	0.00541	0/10	0/10
Methylene Chloride	mg/kg	7	10	70%	0.0046 - 0.0084	OUE-DP-034	0.00763	0/10	0/10
Naphthalene	mg/kg	1	10	10%	0.0044 - 0.0044	MW-03.14	0.00287	0/10	0/10
n-Butylbenzene	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
n-Propylbenzene	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
p-Isopropyl Toluene	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
sec-Butylbenzene	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
Tetrachloroethene	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
Toluene	mg/kg	1	10	10%	0.00072 - 0.00072	MW-03.14	0.00252	0/10	0/10
Xylenes, m,p-	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
Xylenes, o-	mg/kg	0	10	0%	NA - NA	NA	0.00271	0/10	0/10
Xylenes, Total ⁵	mg/kg	0	10	0%	NA - NA	NA	NA	0/10	0/10

Constituent	Units	Number of	Number of Samples ^d	Detection	Range o	of De	tections	Location of Maximum	Arithmetic Mean	Number of Number	f Exceedances ^d / r of Samples ^d
		Detections	Gumpies							HH PSL [®]	Eco PSL ^{f,g}
Metals	-							•			
Antimony	mg/kg	63	108	58%	0.16	-	33	OUE-HA-023B	1.78	1/108	40/108
Arsenic	mg/kg	108	108	100%	0.47	-	52	HA-4.090(13.5 to 14 ft)	4.82	4/108	1/108
Barium	mg/kg	108	108	100%	25	-	8200	OUE-HA-023B	622	3/108	26/108
Beryllium	mg/kg	77	108	71%	0.1	-	1.1	DP-04.16,HA-4.060	0.36	0/108	0/108
Cadmium	mg/kg	30	108	28%	0.051	-	4.1	HA-4.068	0.363	0/108	2/108
Chromium	mg/kg	112	112	100%	4.5	-	75	OUE-HA-024	24	0/112	10/112
Chromium (Hexavalent)	mg/kg	0	22	0%	NA	-	NA	NA	0.025	0/22	0/22
Cobalt	mg/kg	108	108	100%	0.67	-	55	P04-38	7.99	0/108	4/108
Copper	mg/kg	108	108	100%	0.61	-	290	OUE-HA-023B	32.4	0/108	26/108
Lead	mg/kg	182	182	100%	0.93	-	3600	OUE-HA-023B	89.7	29/182	64/182
Mercury	mg/kg	85	108	79%	0.015	-	0.87	HA-4.083	0.0709	0/108	11/108
Molybdenum	mg/kg	90	108	83%	0.25	-	70	HA-4.067	2.46	0/108	15/108
Nickel	mg/kg	108	108	100%	3.3	-	78	HA-4.067	20.4	0/108	4/108
Selenium	mg/kg	13	108	12%	0.051	-	1.9	HA-4.090(13.5 to 14 ft)	0.183	0/108	3/108
Silver	mg/kg	8	108	7%	0.044	-	12	P04-38	0.299	0/108	2/108
Thallium	mg/kg	22	108	20%	0.044	-	0.975	HA-4.145(0.9 to 1.4 ft)	0.184	0/108	0/108
Vanadium	mg/kg	108	108	100%	6	-	130	DP-04.23	35	0/108	1/108
Zinc	mg/kg	108	108	100%	3.8	-	1100	HA-4.066	110	0/108	29/108
Total Petroleum Hydrocarbon	s (TPH)	•	•	•				•		•	
Gasoline C8-C10	mg/kg	3	15	20%	0.023	-	0.13	MW-04.06	0.0887	0/15	0/15
Total Gasoline (C6-C10) ¹	mg/kg	3	15	20%	0.023	-	0.13	MW-04.06	0.07	0/15	0/15
Diesel C10-C12	mg/kg	48	154	31%	0.19	-	26	HA-4.082	1.26	0/154	0/154
Diesel C12-C16	mg/kg	105	154	68%	0.16	-	110	HA-4.065	3.46	0/154	0/154
Diesel C16-C24	mg/kg	149	154	97%	0.57	-	1400	HA-4.065	59.3	0/154	0/154
Total Diesel (C10-C24) ²	ma/ka	159	164	97%	0.57	-	3600	P04-PH1	88.5	0/164	2/164
Motor Oil C24-C36	ma/ka	159	164	97%	4.8	-	9600	P04-PH1	295	0/164	0/164
Polychlorinated Biphenyls (PO	CB)				1						
Aroclor-1016	mg/kg	0	15	0%	NA	-	NA	NA	0.0136	0/15	0/15
Aroclor-1221	mg/kg	0	15	0%	NA	-	NA	NA	0.0272	0/15	0/15
Aroclor-1232	mg/kg	0	15	0%	NA	-	NA	NA	0.0136	0/15	0/15
Aroclor-1242	mg/kg	0	15	0%	NA	-	NA	NA	0.0136	0/15	0/15
Aroclor-1248	mg/kg	0	15	0%	NA	-	NA	NA	0.0136	0/15	0/15
Aroclor-1254	mg/kg	0	15	0%	NA	-	NA	NA	0.0136	0/15	0/15
Aroclor-1260	mg/kg	2	15	13%	0.0045	-	0.029	OUE-DP-046	0.0147	0/15	0/15
PCB #8	mg/kg	6	30	20%	0.00031	-	0.004	DP-04.21	0.000862	0/30	0/30
PCB #18	mg/kg	4	29	14%	0.00011	-	0.00062	DP-04.29	0.000246	0/29	0/29
PCB #28	mg/kg	0	29	0%	NA	-	NA	NA	0.000228	0/29	0/29
PCB #44	mg/kg	2	29	7%	0.00026	-	0.00033	OUE-HA-021	0.00023	0/29	0/29
PCB #52	ma/ka	2	29	7%	0.00021	-	0.0006	OUE-HA-021	0.000237	0/29	0/29
PCB #66	mg/kg	0	26	0%	NA	-	NA	NA	0.000255	0/26	0/26

Constituent	Units	Number of Detections ^d	Number of Samples ^d	Detection Frequency %	Range of Detections	Location of Maximum Detection	Arithmetic Mean	Number of Number	^d Exceedances ^d / of Samples ^d
								HH PSL [®]	Eco PSL ^{f,g}
PCB #77	mg/kg	2	21	10%	0.00016 - 0.00058	OUE-HA-021	0.00052	0/21	0/21
PCB #81	mg/kg	0	29	0%	NA - NA	NA	0.000228	0/29	0/29
PCB #101	mg/kg	3	29	10%	0.00042 - 0.0011	OUE-HA-021	0.000272	0/29	0/29
PCB #118	mg/kg	3	29	10%	0.00023 - 0.0012	OUE-HA-021	0.000259	0/29	0/29
PCB #126	mg/kg	1	26	4%	0.00021 - 0.00021	OUE-HA-030	0.000252	1/26	0/26
PCB #128	mg/kg	0	29	0%	NA - NA	NA	0.000228	0/29	0/29
PCB #138	mg/kg	3	29	10%	0.00035 - 0.00053	DP-04.34	0.000252	0/29	0/29
PCB #153	mg/kg	4	29	14%	0.00036 - 0.0016	OUE-HA-021	0.000297	0/29	0/29
PCB #156	mg/kg	1	29	3%	0.00018 - 0.00018	OUE-HA-021	0.000226	0/29	0/29
PCB #157	mg/kg	1	29	3%	0.00022 - 0.00022	OUE-HA-021	0.000227	0/29	0/29
PCB #167	mg/kg	0	29	0%	NA - NA	NA	0.000228	0/29	0/29
PCB #170	mg/kg	3	29	10%	0.00026 - 0.001	OUE-HA-032	0.000254	0/29	0/29
PCB #180	mg/kg	4	29	14%	0.0002 - 0.00061	DP-04.27	0.000239	0/29	0/29
PCB #187	mg/kg	4	29	14%	0.00024 - 0.00043	DP-04.27	0.000244	0/29	0/29
PCB #209	mg/kg	2	29	7%	0.00065 - 0.001	OUE-HA-021	0.000267	0/29	0/29
Total PCB Aroclors	mg/kg	2	15	13%	0.0045 - 0.029	OUE-DP-046	0.0168	0/15	0/15
Total PCB Congeners ⁶	mg/kg	15	29	52%	0.00042 - 0.013	OUE-HA-021	0.00355	0/29	0/29
Polycyclic Aromatic Hydrocar	bons (PAH)		•			•			
4-Methylphenol	mg/kg	1	21	5%	1 1	OUE-DP-036	0.269	0/21	0/21
2-Methylnaphthalene	mg/kg	32	61	53%	0.0015 - 0.035	OUE-HA-037	0.00593	0/61	0/61
Acenaphthene	mg/kg	27	153	18%	0.0011 - 0.73	HSA-4.3	0.0338	0/153	0/153
Acenaphthylene	mg/kg	52	153	34%	0.0014 - 2.1	HSA-4.3	0.0437	0/153	1/153
Anthracene	mg/kg	50	153	33%	0.0012 - 2.8	HSA-4.3	0.0463	0/153	1/153
Benzo(a)anthracene	mg/kg	65	149	44%	0.0015 - 13	HSA-4.3	0.126	3/149	2/149
Benzo(a)pyrene	mg/kg	65	149	44%	0.0011 - 18	HSA-4.3	0.159	15/149	1/149
Benzo(b)fluoranthene	mg/kg	73	149	49%	0.00079 - 27	HSA-4.3	0.226	5/149	1/149
Benzo(g,h,i)perylene	mg/kg	69	153	45%	0.0014 - 7.4	HSA-4.3	0.0818	0/153	1/153
Benzo(k)fluoranthene	mg/kg	56	149	38%	0.0011 - 17	HSA-4.3	0.148	2/149	1/149
bis(2-Ethylhexyl)Phthalate	mg/kg	13	26	50%	0.015 - 1.4	P04-38	0.172	0/26	0/26
Butyl Benzyl Phthalate	mg/kg	3	26	12%	0.039 - 0.38	P04-38	0.219	0/26	0/26
Chrysene	mg/kg	75	149	50%	0.0015 - 22	HSA-4.3	0.196	1/149	2/149
Dibenz(a,h)anthracene	mg/kg	42	153	28%	0.0015 - 2.1	HSA-4.3	0.0406	6/153	1/153
Di-n-butylphthalate	mg/kg	4	26	15%	0.012 - 0.6	OUE-HA-023B	0.219	0/26	0/26
Di-n-octylphthalate	mg/kg	0	26	0%	NA - NA	Max Detect	0.225	0/26	0/26
Fluoranthene	mg/kg	83	149	56%	0.0014 - 40	HSA-4.3	0.337	0/149	2/149
Fluorene	mg/kg	38	153	25%	0.0012 - 1.3	HSA-4.3	0.0363	0/153	1/153
Indeno(1,2,3-cd)Pyrene	mg/kg	62	153	41%	0.0011 - 7.3	HSA-4.3	0.0806	3/153	1/153
Naphthalene	mg/kg	58	149	39%	0.0013 - 1.3	HSA-4.3	0.0437	0/149	1/149
Phenanthrene	mg/kg	82	149	55%	0.0014 - 29	HSA-4.3	0.243	0/149	1/149
Pyrene	mg/kg	83	149	56%	0.0013 - 50	HSA-4.3	0.403	0/149	2/149

Constituent	Units	Number of Detections ^d	Number of Samples ^d	Detection Frequency %	Range of Detections	Location of Maximum Detection	Arithmetic Mean	Number of Number	^d Exceedances ^d / of Samples ^d
		Dotootiono	oumpioo	,,				HH PSL ^e	Eco PSL ^{f,g}
LMW-PAH ¹⁰	mg/kg	84	149	56%	0.0016 - 37	HSA-4.3	0.533	0/149	1/149
HMW-PAH ¹¹	mg/kg	93	149		0.002 - 204	HSA-4.3	2.530	0/149	7/149
Total PAH ³	mg/kg	93	149	62%	0.0021 - 199	HSA-4.3	2.44	0/149	0/149
USEPA B(a)P TEQ ⁴	mg/kg	80	149	54%	0.0001 - 27	HSA-4.3	0.3820	22/149	0/149
Volatile Organic Compounds	(VOC)			•				• •	
1,2,4-Trimethylbenzene	mg/kg	5	99	5%	0.00064 - 0.042	HA-4.082	0.00261	0/99	0/99
1,3,5-Trimethylbenzene	mg/kg	4	99	4%	0.00067 - 0.012	HA-4.082	0.00225	0/99	0/99
1,4-Dichlorobenzene	mg/kg	1	103	1%	0.00058 - 0.00058	HA-4.087	0.00596	0/103	0/103
2-Butanone	mg/kg	43	99	43%	0.00064 - 0.021	OUE-HA-020	0.0048	0/99	0/99
4-Methyl-2-Pentanone	mg/kg	4	99	4%	0.00025 - 0.005	HA-4.082	0.00425	0/99	0/99
Acetone	mg/kg	80	99	81%	0.0017 - 0.12	OUE-DP-042	0.0213	0/99	0/99
Benzene	mg/kg	4	103	4%	0.00019 - 0.0011	HA-4.082	0.00219	0/103	0/103
Carbon Disulfide	mg/kg	11	99	11%	0.00019 - 0.0029	OUE-HA-020	0.00221	0/99	0/99
Chloroform	mg/kg	3	99	3%	0.00028 - 0.0031	HA-4.079	0.0022	0/99	0/99
Ethanol	mg/kg	5	71	7%	0.022 - 0.19	HA-4.083	0.3	0/71	0/71
Ethylbenzene	mg/kg	6	103	6%	0.00051 - 0.05	HA-4.082	0.00271	0/103	0/103
Isopropyl alcohol	mg/kg	3	71	4%	0.0087 - 0.024	HA-4.070,HA-4.083	0.061	0/71	0/71
Isopropylbenzene	mg/kg	2	99	2%	0.0021 - 0.0094	MW-04.6	0.00227	0/99	0/99
Methyl n-Butyl Ketone	mg/kg	1	99	1%	0.0022 - 0.0022	HA-4.066	0.00434	0/99	0/99
Methylene Chloride	mg/kg	33	99	33%	0.00038 - 0.27	P04-38	0.0102	0/99	0/99
Naphthalene	mg/kg	7	99	7%	0.00033 - 0.12	P04-PH1	0.00333	0/99	0/99
n-Butylbenzene	mg/kg	1	99	1%	0.001 - 0.001	HA-4.082	0.00221	0/99	0/99
n-Propylbenzene	mg/kg	2	99	2%	0.00073 - 0.0063	HA-4.082	0.00224	0/99	0/99
p-Isopropyl Toluene	mg/kg	5	99	5%	0.00063 - 0.081	MW-04.6	0.00291	0/99	0/99
sec-Butylbenzene	mg/kg	1	99	1%	0.00071 - 0.00071	HA-4.082	0.0022	0/99	0/99
Tetrachloroethene	mg/kg	1	99	1%	0.00067 - 0.00067	HA-4.158	0.00223	0/99	0/99
Toluene	mg/kg	20	103	19%	0.00025 - 0.3	HA-4.082	0.00596	0/103	0/103
Xylenes, m,p-	mg/kg	5	103	5%	0.0014 - 0.18	HA-4.082	0.00424	0/103	0/103
Xylenes, o-	mg/kg	5	103	5%	0.001 - 0.063	HA-4.082	0.00281	0/103	0/103
Xylenes, Total ⁵	mg/kg	5	103	5%	0.0024 - 0.243	HA-4.082	0.057	0/103	0/103
Dioxins/Furans									
2,3,7,8-TCDD TEQ									
(Human/Mammal) ⁷	pg/g	75	80	94%	0.00048 - 2729	OUE-DP-052	49.5	19/80	19/80
2,3,7,8-TCDD TEQ (Bird) ⁸	pq/q	75	80	94%	0.00016 - 8299	OUE-DP-052	138	0/80	0/80
2.3.7.8-TCDD TEQ (Fish) ⁹	pa/a	74	80	93%	0.00016 - 2969	OUE-DP-052	53.9	0/80	0/80
2,3,7,8- TCDD	pa/a	24	80	30%	0.0744 - 176	OUE-DP-052	3.68	2/80	2/80
1,2,3,7,8-PeCDD	pq/q	35	80	44%	0.221 - 775	OUE-DP-052	12.9	0/80	0/80
1,2,3,4,7,8-HxCDD	pg/g	34	80	43%	0.169 - 494	OUE-DP-052	9.2	1/80	1/80

Constituent	Units Number of Detections ^d		Number of	Detection	Range of Detection	s Location of Maximum	Arithmetic Mean	Number of Number	f Exceedances ^d / r of Samples ^d
		Delections	Gamples	inequency /		Detection	moun	HH PSL [®]	Eco PSL ^{f,g}
1,2,3,6,7,8-HxCDD	pg/g	47	80	59%	0.256 - 1430	OUE-DP-052	25.5	3/80	3/80
1,2,3,7,8,9-HxCDD	pg/g	45	80	56%	0.179 - 1040	OUE-DP-052	18.3	3/80	3/80
1,2,3,4,6,7,8-HpCDD	pg/g	67	80	84%	0.822 - 4290	OUE-DP-052	130	0/80	0/80
OCDD	pg/g	74	80	93%	1.61 - 6040	OUE-DP-039	453	0/80	0/80
2,3,7,8-TCDF	pg/g	50	80	63%	0.253 - 4370	OUE-DP-052	64.6	0/80	0/80
1,2,3,7,8-PeCDF	pg/g	38	80	48%	0.13 - 3940	OUE-DP-052	55.1	0/80	0/80
2,3,4,7,8-PeCDF	pg/g	42	80	53%	0.173 - 2220	OUE-DP-052	35.7	0/80	0/80
1,2,3,4,7,8-HxCDF	pg/g	39	80	49%	0.21 - 1090	OUE-DP-052	19.4	0/80	0/80
1,2,3,6,7,8-HxCDF	pg/g	41	80	51%	0.0747 - 677	OUE-DP-052	13.1	0/80	0/80
2,3,4,6,7,8-HxCDF	pg/g	42	80	53%	0.0848 - 334	OUE-DP-052	8.89	0/80	0/80
1,2,3,7,8,9-HxCDF	pg/g	18	80	23%	0.0781 - 57.8	HA-4.090	1.35	0/80	0/80
1,2,3,4,6,7,8-HpCDF	pg/g	57	80	71%	0.214 - 406	OUE-DP-052	23.9	0/80	0/80
1,2,3,4,7,8,9-HpCDF	pg/g	23	80	29%	0.154 - 47.2	HA-4.090	1.46	0/80	0/80
OCDF	pg/g	48	80	60%	0.289 - 629	OUE-T2-2b	29	0/80	0/80
Total TCDD	pg/g	68	80	85%	0.478 - 37600	OUE-DP-052	518	0/80	0/80
Total PeCDD	pg/g	60	80	75%	0.417 - 44700	OUE-DP-052	613	0/80	0/80
Total HxCDD	pg/g	66	80	83%	0.2 - 43500	OUE-DP-052	639	0/80	0/80
Total HpCDD	pg/g	68	80	85%	1.47 - 7290	OUE-DP-052	238	0/80	0/80
Total TCDF	pg/g	68	80	85%	0.354 - 26300	OUE-DP-052	504	0/80	0/80
Total PeCDF	pg/g	56	80	70%	0.54 - 19200	OUE-DP-052	321	0/80	0/80
Total HxCDF	pg/g	58	80	73%	0.373 - 3820	OUE-DP-052	98.6	0/80	0/80
Total HpCDF	pg/g	58	80	73%	0.235 - 738	OUE-T2-2b	48.5	0/80	0/80

Table 4-50 Soil Statistical Summary Pond 8 Fill Area AOI

Constituent	Units	Number of	Number of	Detection	Ra	nge	of	Location of Maximum	Arithmetic	Number o Numbe	of Exceedances ^d / er of Samples ^d
Constituent	onno	Detections ^a	Samples ^a	Frequency %	Det	ectio	ons	Detection	Mean	HH PSL ^e	Eco PSL ^{f,g}
Metals											
Antimony	mg/kg	5	13	39%	0.25	-	0.58	HSA-6.29	0.48	0/13	0/13
Arsenic	mg/kg	13	13	100%	1.6	-	8.2	HSA-6.30	5.99	0/13	0/13
Barium	mg/kg	13	13	100%	31	-	180	HSA-6.29	75.1	0/13	0/13
Beryllium	mg/kg	12	13	92%	0.2	-	0.45	HSA-6.29	0.295	0/13	0/13
Cadmium	mg/kg	1	13	8%	0.26	-	0.26	HSA-6.29	0.123	0/13	0/13
Chromium	mg/kg	17	17	100%	13	-	28	HSA-6.29	19.6	0/17	0/17
Chromium (Hexavalent)	mg/kg	0	2	0%	NA	-	NA	NA	0.025	0/2	0/2
Cobalt	mg/kg	13	13	100%	1.7	-	10	HSA-6.29	5.42	0/13	0/13
Copper	mg/kg	13	13	100%	2.7	-	17	P06-TP3	9.92	0/13	0/13
Lead	mg/kg	13	13	100%	1.5	-	22	HSA-6.29	7.21	0/13	0/13
Mercury	mg/kg	12	13	92%	0.029	-	0.1	HSA-6.29	0.0423	0/13	0/13
Molybdenum	mg/kg	8	13	62%	0.42	-	1.6	HSA-6.29	0.534	0/13	0/13
Nickel	mg/kg	13	13	100%	6.7	-	23	HSA-6.30	15.7	0/13	0/13
Selenium	mg/kg	2	13	15%	0.3	-	0.51	HSA-6.29	0.157	0/13	0/13
Silver	mg/kg	0	13	0%	NA	-	NA	NA	0.112	0/13	0/13
Thallium	mg/kg	7	13	54%	0.27	-	0.62	HSA-6.29	0.265	0/13	0/13
Vanadium	mg/kg	13	13	100%	20	-	45	HSA-6.29	32.8	0/13	0/13
Zinc	mg/kg	13	13	100%	17	-	160	HSA-6.29	43.5	0/13	1/13
Total Petroleum Hydrocarbo	ons (TPH)	-									
Gasoline C8-C10	mg/kg	NA	NA	NA	NA	-	NA	NA	NA	NA	NA
Total Gasoline (C6-C10) ¹	mg/kg	NA	NA	NA	NA	-	NA	NA	NA	NA	NA
Diesel C10-C12	mg/kg	1	10	10%	2.6	-	2.6	HSA-6.30	0.76	0/10	0/10
Diesel C12-C16	mg/kg	5	10	50%	1.1	-	5.7	HSA-6.29	2.15	0/10	0/10
Diesel C16-C24	mg/kg	9	10	90%	2	-	150	HSA-6.30	36.6	0/10	0/10
Total Diesel (C10-C24) ²	ma/ka	14	15	93%	2	-	310	P06-TP8	57.9	0/15	0/15
Motor Oil C24-C36	ma/ka	13	15	87%	33	-	610	HSA-6.29	150	0/15	0/15
Polycyclic Aromatic Hydroc	arbons (PAH)										
4-Methylphenol	ma/ka	0	3	0%	NA	-	NA	NA	0.167	0/3	0/3
Acenaphthene	ma/ka	0	13	0%	NA	-	NA	NA	0.0197	0/13	0/13
Acenaphthylene	ma/ka	0	13	0%	NA	-	NA	NA	0.0179	0/13	0/13
Anthracene	ma/ka	0	13	0%	NA	-	NA	NA	0.0197	0/13	0/13
Benzo(a)anthracene	mg/kg	0	13	0%	NA	-	NA	NA	0.0195	0/13	0/13
Benzo(a)pyrene	mg/kg	0	13	0%	NA	-	NA	NA	0.0187	0/13	0/13
Benzo(b)fluoranthene	ma/ka	0	13	0%	NA	-	NA	NA	0.0268	0/13	0/13
Benzo(g,h,i)perylene	mg/kg	0	13	0%	NA	-	NA	NA	0.0184	0/13	0/13
Benzo(k)fluoranthene	ma/ka	0	13	0%	NA	-	NA	NA	0.0179	0/13	0/13
bis(2-Ethylhexyl)Phthalate	mg/kg	0	3	0%	NA	-	NA	NA	0.167	0/3	0/3
Butyl Benzyl Phthalate	mg/kg	0	3	0%	NA	-	NA	NA	0.167	0/3	0/3
Chrysene	mg/kg	0	13	0%	NA	-	NA	NA	0.0242	0/13	0/13
Dibenz(a,h)anthracene	mg/kg	0	13	0%	NA	-	NA	NA	0.0195	0/13	0/13
Di-n-butylphthalate	mg/kg	0	3	0%	NA	-	NA	NA	0.167	0/3	0/3

Table 4-50 Soil Statistical Summary Pond 8 Fill Area AOI

		Number of	Number of	Detection	Ra	nae	of	Location of	Arithmetic	Number (of Exceedances ^d /
Constituent	Units	Detections ^d	Samples ^d	Frequency %	Dete	ecti	ons	Maximum Detection	Mean	HH PSL [®]	Eco PSL ^{f,g}
Di-n-octylphthalate	mg/kg	0	3	0%	NA	-	NA	NA	0.167	0/3	0/3
Fluoranthene	mg/kg	1	13	8%	0.064	-	0.064	HSA-6.29	0.0264	0/13	0/13
Fluorene	mg/kg	0	13	0%	NA	-	NA	NA	0.022	0/13	0/13
Indeno(1,2,3-cd)Pyrene	mg/kg	0	13	0%	NA	-	NA	NA	0.0261	0/13	0/13
Naphthalene	mg/kg	0	13	0%	NA	-	NA	NA	0.0217	0/13	0/13
Phenanthrene	mg/kg	1	13	8%	0.033	-	0.033	HSA-6.29	0.0232	0/13	0/13
Pyrene	mg/kg	0	13	0%	NA	-	NA	NA	0.0215	0/13	0/13
LMW-PAH ¹⁰	mg/kg	1	13	8%	0.033	-	0.033	HSA-6.29	0.033	0/13	0/13
HMW-PAH ¹¹	mg/kg	1	13	8%	0.064	-	0.064	HSA-6.29	0.064	0/13	0/13
Total PAH ³	mg/kg	1	13	8%	0.033	-	0.033	HSA-6.29	0.033	0/13	0/13
USEPA B(a)P TEQ ⁴	mg/kg	0	13	0%	NA	-	NA	NA	NA	0/13	0/13
Volatile Organic Compound	Is (VOC)			•				•	•		
1,2,4-Trimethylbenzene	mg/kg	0	7	0%	NA	-	NA	NA	0.000431	0/7	0/7
1,3,5-Trimethylbenzene	mg/kg	0	7	0%	NA	-	NA	NA	0.000516	0/7	0/7
1,4-Dichlorobenzene	mg/kg	0	7	0%	NA	-	NA	NA	0.00024	0/7	0/7
2-Butanone	mg/kg	2	7	29%	0.0021	-	0.0022	HSA-6.30	0.00106	0/7	0/7
4-Methyl-2-Pentanone	mg/kg	0	7	0%	NA	-	NA	NA	0.000406	0/7	0/7
Acetone	mg/kg	7	7	100%	0.0033	-	0.053	HSA-6.30	0.0133	0/7	0/7
Benzene	mg/kg	0	7	0%	NA	-	NA	NA	0.000511	0/7	0/7
Carbon Disulfide	mg/kg	0	7	0%	NA	-	NA	NA	0.00187	0/7	0/7
Chloroform	mg/kg	0	7	0%	NA	-	NA	NA	0.000564	0/7	0/7
Ethanol	mg/kg	0	7	0%	NA	-	NA	NA	0.0614	0/7	0/7
Ethylbenzene	mg/kg	0	7	0%	NA	-	NA	NA	0.000511	0/7	0/7
Isopropyl alcohol	mg/kg	1	7	14%	0.018	-	0.018	HSA-6.30	0.00843	0/7	0/7
Isopropylbenzene	mg/kg	0	7	0%	NA	-	NA	NA	0.000511	0/7	0/7
Methyl n-Butyl Ketone	mg/kg	0	7	0%	NA	-	NA	NA	0.000329	0/7	0/7
Methylene Chloride	mg/kg	0	7	0%	NA	-	NA	NA	0.00184	0/7	0/7
Naphthalene	mg/kg	0	7	0%	NA	-	NA	NA	0.000317	0/7	0/7
n-Butylbenzene	mg/kg	0	7	0%	NA	-	NA	NA	0.000361	0/7	0/7
n-Propylbenzene	mg/kg	0	7	0%	NA	-	NA	NA	0.000483	0/7	0/7
p-Isopropyl Toluene	mg/kg	0	7	0%	NA	-	NA	NA	0.000443	0/7	0/7
sec-Butylbenzene	mg/kg	0	7	0%	NA	-	NA	NA	0.000464	0/7	0/7
Tetrachloroethene	mg/kg	0	7	0%	NA	-	NA	NA	0.000448	0/7	0/7
Toluene	mg/kg	0	7	0%	NA	-	NA	NA	0.000439	0/7	0/7
Xylenes, m,p-	mg/kg	0	7	0%	NA	-	NA	NA	0.000993	0/7	0/7
Xylenes, o-	mg/kg	0	7	0%	NA	-	NA	NA	0.000469	0/7	0/7
Xylenes, Total ⁵	mg/kg	0	7	0%	NA	-	NA	NA	NA	0/7	0/7

Constituent	Units	Number of Detects	Number of Samples	Detection Frequency %	Range of Detections		etections	Location of Maximum Detection	Arithmetic Mean	Number of E Number of	Exceedances / of Samples	Exceedances Above Background/ Total
										HH PSL [®]	Eco PSL ^f	Exectances
Metals			1	1	1				1	T		
Antimony	mg/kg	45	56	80%	0.12	-	2.5	SD-5.1,DP-04.14	0.846	0/56	0/56	NA
Arsenic	mg/kg	56	56	100%	0.58	-	27.6	Pond08-04	8.55	56/56	19/56	19/56
Barium	mg/kg	56	56	100%	33.5	-	2170	Pond08-01	475	0/56	0/56	NA
Beryllium	mg/kg	49	56	88%	0.191	-	0.95	DP-05.62	0.56	0/56	0/56	NA
Cadmium	mg/kg	39	56	70%	0.048	-	1.94	Pond08-08	0.713	0/56	19/56	0/19
Chromium (hexavalent compounds)	mg/kg	0	21	0%	NA	-	NA	NA	0.025	0/21	0/21	0/21
Chromium	mg/kg	56	56	100%	6.9	-	65.6	Pond08-10	34.6	0/56	18/56	4/18
Cobalt	mg/kg	56	56	100%	1.9	-	20.3	Pond08-11	11.1	0/56	1/56	1/1
Copper	mg/kg	56	56	100%	0.52	-	251	Pond08-04	85.8	0/56	39/56	34/39
Lead	mg/kg	56	56	100%	1.9	-	302	Pond08-07	56.7	13/56	27/56	27/27
Mercury	mg/kg	53	56	95%	0.021	-	0.305	Pond08-17	0.106	0/56	10/56	10/10
Molybdenum	mg/kg	51	56	91%	0.13	-	96.4	Pond08-04	9.83	0/56	24/56	20/24
Nickel	mg/kg	56	56	100%	6.35	-	52.4	Pond08-18	29.8	0/56	38/56	13/38
Selenium	mg/kg	30	56	54%	0.4	-	2.3	Pond08-04	0.799	0/56	0/56	NA
Silver	mg/kg	32	56	57%	0.058	-	0.526	Pond08-03	0.215	0/56	0/56	NA
Thallium	mg/kg	32	56	57%	0.035	-	0.34	Pond08-09	0.171	0/56	0/56	NA
Vanadium	mg/kg	56	56	100%	9.8	-	103	Pond08-18	50.9	0/56	0/56	NA
Zinc	mg/kg	56	56	100%	9.4	-	675	Pond08-08	238	0/56	31/56	30/31
Total Petroleum Hydrocarbons (TP	H)		•	•					•			
Gasoline C6-C8	mg/kg	0	19	0%	NA	-	NA	NA	0.0999	0/19	NA	NA
Gasoline C8-C10	mg/kg	0	19	0%	NA	-	NA	NA	0.0999	0/19	NA	NA
Total Gasoline (C6-C10) ¹	mg/kg	0	19	0%	NA	-	NA	NA	NA	0/19	NA	NA
Diesel C10-C12	mg/kg	47	60	78%	1.7	-	6700	Pond08-08	491	33/60	NA	NA
Diesel C12-C16	mg/kg	52	60	87%	2.4	-	7100	Pond08-08	697	13/60	NA	NA
Diesel C16-C24	mg/kg	58	60	97%	1.3	-	25000	Pond8-17 (re-extracted)	3060	5/60	NA	NA
Total Diesel (C10-C24) ²	mg/kg	58	60	97%	1.3	-	36900	Pond8-17 (re-extracted)	4390	8/60	34/60	NA
Motor Oil C24-C36	mg/kg	55	60	92%	11	-	22000	Pond08-08	4650	0/60	NA	NA
Polychlorinated Biphenyls (PCB)										•		
PCB #8	mg/kg	5	23	22%	0.00037	-	0.0027	Pond08-06	0.000685	0/23	0/23	NA
PCB #18	mg/kg	6	23	26%	0.00097	-	0.008	Pond08-06	0.00117	0/23	0/23	NA
PCB #28	mg/kg	11	23	48%	0.00055	-	0.014	Pond08-06	0.00207	0/23	0/23	NA
PCB #44	mg/kg	9	23	39%	0.00048	-	0.0061	Pond08-06	0.00105	0/23	0/23	NA

Constituent	Units	Number of Detects	Number of Samples	Detection Frequency %	Range of Detections	Location of Maximum Detection	Arithmetic Mean	Number of E Number	Exceedances / of Samples	Exceedances Above Background/ Total
								HH PSL °	Eco PSL ^f	Exceedances
PCB #52	mg/kg	7	23	30%	0.00074 - 0.0057	Pond08-06	0.00115	0/23	0/23	NA
PCB #66	mg/kg	8	23	35%	0.0003 - 0.0039	Pond08-06	0.000793	0/23	0/23	NA
PCB #77	mg/kg	1	23	4%	0.00035 - 0.00035	DP-05.62	0.000439	0/23	0/23	NA
PCB #81	mg/kg	6	23	26%	0.00087 - 0.011	Pond08-06	0.00172	0/23	0/23	NA
PCB #101	mg/kg	2	23	9%	0.0039 - 0.004	Pond08-03	0.00102	0/23	0/23	NA
PCB #105	mg/kg	8	23	35%	0.00046 - 0.0017	Pond08-08	0.000615	0/23	0/23	NA
PCB #118	mg/kg	10	23	44%	0.00071 - 0.0045	Pond08-08	0.00102	0/23	0/23	NA
PCB #128	mg/kg	7	23	30%	0.00034 - 0.0011	Pond08-06	0.000465	0/23	0/23	NA
PCB #138	mg/kg	13	23	57%	0.00025 - 0.0045	Pond08-06	0.00106	0/23	0/23	NA
PCB #153	mg/kg	8	23	35%	0.00048 - 0.0068	Pond08-06	0.00119	0/23	0/23	NA
PCB #156	mg/kg	7	23	30%	0.0003 - 0.0015	Pond08-08	0.000507	0/23	0/23	NA
PCB #169	mg/kg	4	23	17%	0.00044 - 0.00095	Pond08-08	0.000473	4/23	0/23	NA
PCB #170	mg/kg	5	23	22%	0.00055 - 0.0014	Pond08-06	0.000501	0/23	0/23	NA
PCB #180	mg/kg	11	23	48%	0.00022 - 0.0035	Pond08-06	0.000894	0/23	0/23	NA
PCB #187	mg/kg	5	23	22%	0.00095 - 0.002	Pond08-06	0.000632	0/23	0/23	NA
PCB #206	mg/kg	8	23	35%	0.00027 - 0.0011	Pond08-06	0.000512	0/23	0/23	NA
PCB #209	mg/kg	1	23	4%	0.00034 - 0.00034	Pond08-06	0.000417	0/23	0/23	NA
Total PCB Congeners ⁶	mg/kg	19.000	23.000	83%	0.001 - 0.150	Pond08-06	0.028	0/23	2/23	NA
Polycyclic Aromatic Hydrocarbons	(PAH)									
2-Methylnaphthalene	mg/kg	15	15	100%	0.012 - 0.24	Pond08-06	0.0717	0/15	11/15	NA
Acenaphthene	mg/kg	15	39	39%	0.0037 - 0.067	Pond08-06	0.071	0/39	13/39	NA
Acenaphthylene	mg/kg	17	39	44%	0.0089 - 0.45	Pond08-03	0.0893	0/39	17/39	NA
Anthracene	mg/kg	15	39	39%	0.012 - 0.3	Pond08-03	0.0729	0/39	8/39	NA
Benzo(a)anthracene	mg/kg	16	39	41%	0.031 - 1.1	Pond08-07	0.164	8/39	10/39	NA
Benzo(a)pyrene	mg/kg	16	39	41%	0.021 - 1.7	Pond08-07	0.191	15/39	10/39	NA
Benzo(b)fluoranthene	mg/kg	16	39	41%	0.034 - 2.5	Pond08-07	0.265	10/39	0/39	NA
Benzo(g,h,i)perylene	mg/kg	16	39	41%	0.066 - 1.9	Pond08-07	0.23	0/39	10/39	NA
Benzo(k)fluoranthene	mg/kg	15	39	39%	0.014 - 0.77	Pond08-07	0.114	1/39	3/39	NA
Chrysene	mg/kg	20	39	51%	0.047 - 1.9	Pond08-07	0.224	0/39	10/39	NA
Dibenz(a,h)anthracene	mg/kg	15	39	39%	0.0083 - 0.4	Pond08-07	0.0831	8/39	8/39	NA
Dibenzofuran	mg/kg	15	15	100%	0.017 - 0.38	Pond08-03	0.0898	0/15	0/15	NA
Fluoranthene	mg/kg	20	39	51%	0.027 - 2.8	Pond08-03	0.463	0/39	11/39	NA
Fluorene	mg/kg	20	39	51%	0.015 - 0.26	Pond08-06	0.0956	0/39	5/39	NA

Constituent	Units	Number of Detects	Number of Samples	Detection Frequency %	Range of Detections		Location of Maximum Detection	Arithmetic Mean	Number of Exceedances / Number of Samples		Exceedances Above Background/ Total Exceedances ^h
							D 100.07		HH PSL [®]	Eco PSL ¹	
Indeno(1,2,3-cd)Pyrene	mg/kg	15	39	39%	0.036	- 2	Pond08-07	0.218	9/39	7/39	NA
Naphthalene	mg/kg	17	39	44%	0.039	- 1.3	Pond08-03	0.201	0/39	9/39	NA
Phenanthrene	mg/kg	24	39	62%	0.053	- 1.8	Pond08-03	0.348	0/39	18/39	NA
Pyrene	mg/kg	21	39	54%	0.031	- 2.9	Pond08-07	0.518	0/39	14/39	NA
LMW-PAH ¹⁰	mg/kg	24	39	62%	0.053	- 4.7	Pond08-03	1	0/39	0/39	NA
HMW-PAH ¹¹	mg/kg	22	39	56%	0.05	- 18	Pond08-07	3.49	0/39	0/39	NA
Total PAH ³	mg/kg	24	39	62%	0.11	- 9.3	Pond08-08,Pond08-03	2.51	0/39	11/39	NA
USEPA B(a)P TEQ ⁴	mg/kg	20	39	51%	0.00047	- 2.8	Pond08-07	0.466	15/39	12/39	NA
Volatile Organic Compounds (VOC))										
2-Butanone	mg/kg	16	20	80%	0.00069	- 0.0087	DP-05.61	0.00244	0/20	0/20	NA
Acetone	mg/kg	19	20	95%	0.003	- 0.026	DP-05.61	0.0102	0/20	7/20	NA
Benzene	mg/kg	1	20	5%	0.00059	- 0.00059	DP-05.60	0.000162	0/20	0/20	NA
Carbon Disulfide	mg/kg	0	19	0%	NA	-	NA	0.000674	0/19	0/19	NA
Chlorobenzene	mg/kg	5	20	25%	0.00026	- 0.0011	DP-05.61,DP-04.14	0.000328	0/20	0/20	NA
Ethanol	mg/kg	0	19	0%	NA	- NA	NA	0.0253	0/19	0/19	NA
Isopropyl alcohol	mg/kg	0	19	0%	NA	- NA	NA	0.00389	0/19	0/19	NA
Isopropylbenzene	mg/kg	0	19	0%	NA	- NA	NA	0.000185	0/19	0/19	NA
Methylene Chloride	mg/kg	7	20	35%	0.00041	0.0011	DP-05.61	0.000721	0/20	0/20	NA
p-Isopropyl Toluene	mg/kg	0	19	0%	NA	- NA	NA	0.000226	0/19	0/19	NA
Naphthalene	mg/kg	0	19	0%	NA	- NA	NA	0.0153	0/19	0/19	NA
Toluene	mg/kg	17	20	85%	0.00035	- 0.0033	DP-05.61	0.00107	0/20	0/20	NA
Dioxins/Furans											
2,3,7,8-TCDD TEQ	ng/g	45	45	100%	0 00020	- 231	Pond08-17	83.5	38/45	36/45	ΝΔ
(Human/Mammal) ⁷	P9/9	45	40	100 %	0.00023	231		05.5	30/43	30/43	INA .
2,3,7,8-TCDD TEQ (Bird) ⁸	pg/g	45	45	100%	9.5E-05	- 362	DP-05.61	93.5	0/45	37/45	NA
2,3,7,8-TCDD TEQ (Fish) ⁹	pg/g	44	45	98%	0.001	- 194	DP-05.61	70.7	0/45	35/45	NA
2,3,7,8-TCDD	pg/g	40	45	89%	0.218	- 28.5	Pond08-07	7.56	31/45	0/45	NA
1,2,3,7,8-PeCDD	pg/g	42	45	93%	0.223	- 85.7	Pond08-17	22.8	0/45	0/45	NA
1,2,3,4,7,8-HxCDD	pg/g	42	45	93%	0.16	- 78.9	Pond08-06	28.4	0/45	0/45	NA
1,2,3,6,7,8-HxCDD	pg/g	42	45	93%	0.387	- 301	Pond08-17	101	21/45	0/45	NA

Constituent	Units	Number of Detects	Number of Samples	Detection Frequency %	Range of Detections	Location of Maximum Detection	Arithmetic Mean	Number of I Number	Exceedances / of Samples	Exceedances Above Background/ Total
								HH PSL ^e	Eco PSL ^f	Exceedances
1,2,3,7,8,9-HxCDD	pg/g	42	45	93%	0.524 - 234	Pond08-07	68.8	15/45	0/45	NA
1,2,3,4,6,7,8-HpCDD	pg/g	44	45	98%	0.237 - 4420	Pond08-07,Pond08-18	1220	0/45	0/45	NA
OCDD	pg/g	45	45	100%	0.95 - 36400	Pond08-18	8410	0/45	0/45	NA
2,3,7,8-TCDF	pg/g	43	45	96%	0.0903 - 129	Pond08-01	22.7	0/45	0/45	NA
1,2,3,7,8-PeCDF	pg/g	41	45	91%	0.103 - 37.2	Pond08-04	10	0/45	0/45	NA
2,3,4,7,8-PeCDF	pg/g	42	45	93%	0.252 - 315	DP-05.61	17.7	0/45	0/45	NA
1,2,3,4,7,8-HxCDF	pg/g	40	45	89%	0.136 - 59.8	Pond08-18	17	0/45	0/45	NA
1,2,3,6,7,8-HxCDF	pg/g	42	45	93%	0.134 - 65.8	Pond08-18	22.7	0/45	0/45	NA
2,3,4,6,7,8-HxCDF	pg/g	41	45	91%	0.205 - 122	DP-05.61	25.4	0/45	0/45	NA
1,2,3,7,8,9-HxCDF	pg/g	40	45	89%	0.265 - 15.8	DP-05.61	5.5	0/45	0/45	NA
1,2,3,4,6,7,8-HpCDF	pg/g	44	45	98%	0.0476 - 2040	Pond08-18	311	0/45	0/45	NA
1,2,3,4,7,8,9-HpCDF	pg/g	42	45	93%	0.114 - 118	Pond08-18	18.8	0/45	0/45	NA
OCDF	pg/g	43	45	96%	0.362 - 8450	Pond08-18	1080	0/45	0/45	NA
Total TCDD	pg/g	42	45	93%	0.384 - 188	Pond08-04	60	0/45	0/45	NA
Total PeCDD	pg/g	42	45	93%	0.913 - 302	Pond08-17	102	0/45	0/45	NA
Total HxCDD	pg/g	44	45	98%	0.147 - 2450	Pond08-07	631	0/45	0/45	NA
Total HpCDD	pg/g	44	45	98%	0.41 - 7870	Pond08-18	2220	0/45	0/45	NA
Total TCDF	pg/g	43	45	96%	1.39 - 1760	DP-05.61	409	0/45	0/45	NA
Total PeCDF	pg/g	44	45	98%	0.159 - 4180	DP-05.61	376	0/45	0/45	NA
Total HxCDF	pg/g	44	45	98%	0.166 - 1830	Pond08-18	500	0/45	0/45	NA
Total HpCDF	pg/g	44	45	98%	0.0923 - 6230	Pond08-18	916	0/45	0/45	NA
Pesticides						·				
4,4'-DDD	mg/kg	4	6	67%	0.0032 - 0.013	Pond08-07	0.00495	0/6	2/6	NA
4,4'-DDE	mg/kg	4	6	67%	0.002 - 0.0055	Pond08-08	0.00305	0/6	2/6	NA
Aldrin	mg/kg	1	6	17%	0.00059 - 0.00059	Pond08-08	0.00102	0/6	0/6	NA
Alpha-BHC	mg/kg	1	6	17%	0.0011 - 0.0011	Pond08-08	0.00111	0/6	0/6	NA
Alpha-Chlordane	mg/kg	4	6	67%	0.0023 - 0.0048	Pond08-08	0.00293	0/6	0/6	NA
Dieldrin	mg/kg	1	6	17%	0.0023 - 0.0023	Pond08-07	0.00162	0/6	1/6	NA
Endosulfan I	mg/kg	1	6	17%	0.0012 - 0.0012	Pond08-08	0.00113	0/6	0/6	NA
Endrin Aldehyde	mg/kg	1	6	17%	0.0013 - 0.0013	Pond08-08	0.00114	0/6	0/6	NA
Gamma-Chlordane	mg/kg	5	6	83%	0.00058 - 0.0072	Pond08-07	0.00324	0/6	0/6	NA
Heptachlor Epoxide	mg/kg	1	6	17%	0.00035 - 0.00035	Pond08-07	0.000917	0/6	0/6	NA
Heptachlor	mg/kg	1	6	17%	0.0015 - 0.0015	Pond08-08	0.00113	0/6	1/6	NA

Table 4-52 Sediment Statistical Summary North Pond and Ponds 6 and 7

Constituent	Units	Number of Detects	Number of Samples	Detection Frequency %	Range	of De	tections	Location of Maximum Detection	Arithmetic Mean	Number of I / Number	Exceedances of Samples	Exceedances Above Background/ Total
										HH PSL ^e	Eco PSL ^f	Exceedances
Metals		•		•								
Antimony	mg/kg	28	40	70%	0.37	-	3.1	Pond7-02	0.758	0/40	0/40	NA
Arsenic	mg/kg	40	40	100%	0.33	-	115	Pond7-02	19.8	40/40	18/40	17/40
Barium	mg/kg	40	40	100%	28	-	3220	Pond6-02	733	0/40	0/40	NA
Beryllium	mg/kg	24	40	60%	0.25	-	0.842	Pond6-02,Pond7-02	0.354	0/40	0/40	NA
Cadmium	mg/kg	19	40	48%	0.274	-	4.29	Pond7-02	0.871	0/40	11/40	4/11
Chromium (hexavalent compounds)	mg/kg	1	24	4%	0.23	-	0.23	DP-4.7	0.0335	0/24	0/24	NA
Chromium	mg/kg	40	40	100%	4.5	-	86.7	Pond7-02	29.4	0/40	10/40	5/10
Cobalt	mg/kg	40	40	100%	0.67	-	16.9	Pond7-02	7.41	0/40	0/40	NA
Copper	mg/kg	40	40	100%	0.71	-	234	Pond7-01	50.3	0/40	17/40	14/17
Lead	mg/kg	40	40	100%	0.98	-	262	Pond7-02	47.4	7/40	11/40	11/11
Mercury	mg/kg	29	40	73%	0.022	-	0.742	Pond7-01	0.135	0/40	9/40	9/9
Molybdenum	mg/kg	33	40	83%	0.26	-	14.7	North Pond-01	2.4	0/40	11/40	7/11
Nickel	mg/kg	40	40	100%	2.8	-	44.7	Pond7-02	19.1	0/40	13/40	3/13
Selenium	mg/kg	7	40	18%	0.6	-	1	North Pond-01,Pond7-02	0.382	0/40	0/40	NA
Silver	mg/kg	11	40	28%	0.172	-	0.786	Pond7-02	0.212	0/40	0/40	NA
Thallium	mg/kg	11	40	28%	0.113	-	0.743	Pond7-02	0.211	0/40	0/40	NA
Vanadium	mg/kg	40	40	100%	7.9	-	59.2	North Pond-01	30.8	0/40	0/40	NA
Zinc	mg/kg	40	40	100%	9.6	-	1180	Pond7-02	242	0/40	17/40	16/17
Total Petroleum Hydrocarbons (TPH)											
Gasoline C6-C8	mg/kg	0	27	0%	NA	-	NA	NA	0.105	0/27	NA	NA
Gasoline C8-C10	mg/kg	0	27	0%	NA	-	NA	NA	0.105	0/27	NA	NA
Total Gasoline (C6-C10) ¹	mg/kg	0	27	0%	NA	-	NA	NA		0/27	NA	NA
Diesel C10-C12	mg/kg	17	37	46%	1.1	-	260	Pond07-02	22.6	0/37	NA	NA
Diesel C12-C16	mg/kg	20	37	54%	1.5	-	260	Pond07-02	36.2	0/37	NA	NA
Diesel C16-C24	mg/kg	31	37	84%	1.1	-	1100	Pond07-02	212	0/37	NA	NA
Total Diesel (C10-C24) ²	mg/kg	31	37	84%	1.1	-	1620	Pond07-02	307	0/37	3/37	NA
Motor Oil C24-C36	mg/kg	28	37	76%	6.1	-	1900	Pond07-01,Pond07-02,Pond07-02	448	0/37	NA	NA
Polycyclic Aromatic Hydrocarbons (PAH)											
2-Methylnaphthalene	mg/kg	9	11	82%	0.0088	-	0.098	Pond07-02	0.0437	0/11	7/11	NA
Acenaphthene	mg/kg	12	38	32%	0.0033	-	0.13	DP-04.12	0.0418	0/38	9/38	NA
Acenaphthylene	mg/kg	16	38	42%	0.0024	-	1.1	DP-04.12	0.159	0/38	15/38	NA
Anthracene	mg/kg	12	38	32%	0.005	-	0.19	Pond07-01	0.0487	0/38	7/38	NA
Benzo(a)anthracene	mg/kg	15	38	40%	0.01	-	0.16	Pond07-02	0.0467	1/38	5/38	NA
Benzo(a)pyrene	mg/kg	11	38	29%	0.0073	-	0.24	Pond07-02	0.0505	7/38	5/38	NA
Benzo(b)fluoranthene	mg/kg	17	38	45%	0.0059	-	0.29	Pond07-02	0.0654	5/38	0/38	NA
Benzo(g,h,i)perylene	mg/kg	9	38	24%	0.018	-	0.3	Pond07-01,Pond07-02	0.0637	0/38	5/38	NA
Benzo(k)fluoranthene	mg/kg	10	38	26%	0.008	-	0.082	Pond07-02	0.0348	0/38	0/38	NA
Chrysene	ma/ka	16	38	42%	0.01	-	0.17	Pond07-02	0.0556	0/38	1/38	NA

Table 4-52 Sediment Statistical Summary North Pond and Ponds 6 and 7

Constituent	Units	Number of Detects	Number of Samples	Detection Frequency %	Range	of De	tections	Location of Maximum Detection	Arithmetic Mean	Number of E	Exceedances of Samples	Exceedances Above Background/ Total Exceedances ^h
										HH PSL °	Eco PSL	
Dibenz(a,h)anthracene	mg/kg	8	38	21%	0.0051	-	0.013	Pond07-01,Pond07-02	0.025	0/38	0/38	NA
Dibenzofuran	mg/kg	9	11	82%	0.0026	-	0.45	Pond06-02	0.192	0/11	0/11	NA
Fluoranthene	mg/kg	21	38	55%	0.0053	-	1.2	DP-04.11	0.267	0/38	9/38	NA
Fluorene	mg/kg	14	38	37%	0.0026	-	0.25	DP-04.12	0.0593	0/38	9/38	NA
Indeno(1,2,3-cd)Pyrene	mg/kg	9	38	24%	0.016	-	0.24	Pond07-01,Pond07-02	0.0575	5/38	3/38	NA
Naphthalene	mg/kg	17	38	45%	0.0085	-	3	DP-04.12	0.509	0/38	14/38	NA
Phenanthrene	mg/kg	21	38	55%	0.015	-	1.3	DP-04.11	0.297	0/38	13/38	NA
Pyrene	mg/kg	21	38	55%	0.0069	-	1.3	DP-04.11	0.277	0/38	13/38	NA
LMW-PAH ¹⁰	mg/kg	21.0	38.0	55%	0.0	-	5.7	DP-04.12	1.9	0/38	0/38	NA
HMW-PAH ¹¹	mg/kg	21.0	38.0	55%	0.0	-	3.4	Pond07-02	1.3	0/38	0/38	NA
Total PAH ³	mg/kg	21.00	38.00	55%	0.03	-	4.20	Pond07-02	1.77	0/38	9/38	NA
USEPA B(a)P TEQ ⁴	mg/kg	17	38	45%	0.00059	-	0.33	Pond07-02	0.101	7/38	5/38	NA
Volatile Organic Compounds (VOC)								•				
2-Butanone	mg/kg	12	27	44%	0.00044	-	0.003	DP-04.10	0.00118	0/27	0/27	NA
Acetone	mg/kg	20	27	74%	0.0023	-	0.011	DP-04.09	0.00464	0/27	1/27	NA
Benzene	mg/kg	0	19	0%	NA	-	NA	NA	0.000172	0/19	0/19	NA
Carbon Disulfide	mg/kg	0	19	0%	NA	-	NA	NA	0.00107	0/19	0/19	NA
Chlorobenzene	mg/kg	5	27	19%	0.00049	-	0.002	DP-04.09	0.000368	0/27	0/27	NA
Ethanol	mg/kg	2	27	7%	0.016	-	0.23	DP-04.09	0.0448	0/27	0/27	NA
Isopropyl alcohol	mg/kg	1	27	4%	0.003	-	0.003	DP-04.09	0.00707	0/27	0/27	NA
Isopropylbenzene	mg/kg	1	27	4%	0.00048	-	0.00048	DP-04.07	0.000255	0/27	0/27	NA
Methylene Chloride	mg/kg	6	27	22%	0.00056	-	0.00083	DP-04.08	0.000693	0/27	0/27	NA
p-Isopropyl Toluene	mg/kg	1	27	4%	0.0036	-	0.0036	DP-04.07	0.000376	0/27	0/27	NA
Naphthalene	mg/kg	0	19	0%	NA	-	NA	NA	0.00684	0/19	0/19	NA
Toluene	mg/kg	17	27	63%	0.00034	-	0.0023	DP-04.10	0.000669	0/27	0/27	NA
Dioxins/Furans	1	1		1	1			I	1	1	1	
2,3,7,8-TCDD TEQ	pg/g	27	27	100%	0.023	-	1688	Pond07-02	505	21/27	18/27	
		07	07	1000/			0000	D 107.00	4400	0/07	40/07	NA
2,3,7,8-1CDD 1EQ (Bird)	pg/g	27	27	100%	0	-	3668	Pond07-02	1180	0/27	19/27	NA
2,3,7,8-TCDD TEQ (FISN)	pg/g	27	27	100%	0	-	1848	Pond07-02	562	0/27	18/27	NA
2,3,7,8-TCDD	pg/g	22	27	82%	0.253	-	273	Pond07-02	81	18/27	0/27	NA
1,2,3,7,8-PeCDD	pg/g	23	27	85%	0.421	-	519	Pond07-02	146	0/27	0/27	NA
1,2,3,4,7,8-HXCDD	pg/g	22	27	82%	0.325	-	506	Pond07-02	122	9/27	0/27	NA NA
	pg/g	24	27	89%	0.168	-	760	Pondu7-02	189	9/27	0/27	NA NA
	pg/g	24	27	89%	0.119	-	004	Pondu7-02	796	9/27	0/27	NA NA
	pg/g	20	27	90%	0.294	-	5150	Pond07-02	180	0/27	0/27	NA NA
	pg/g	21	21	100%	0.722	-	2430	Pondoz 02	F09	0/27	0/27	
	pg/g	20	21	90%	0.224	-	021	Pond07.02	266	0/27	0/27	NA NA
	P9/9	23	27	90%	0.227	-	1100	DP 04 12	200	0/27	0/27	NA
2,0,7,1,0°F CODI	P9/9	∠4	21	0370	0.002	-	1190	DF-04.1Z	529	0/21	0/21	11/7

Table 4-52 Sediment Statistical Summary North Pond and Ponds 6 and 7

Constituent	Units	Number of Detects	Number of Samples	Detection Frequency %	Range	of Det	ections	Location of Maximum Detection	Arithmetic Mean	Number of E / Number of	Exceedances of Samples	Exceedances Above Background/ Total
										HH PSL °	Eco PSL ^f	Exceedances "
1,2,3,4,7,8-HxCDF	pg/g	24	27	89%	0.0841	-	595	Pond07-02	160	0/27	0/27	NA
1,2,3,6,7,8-HxCDF	pg/g	25	27	93%	0.0728	-	684	Pond07-02	185	0/27	0/27	NA
2,3,4,6,7,8-HxCDF	pg/g	24	27	89%	0.0826	-	854	Pond07-02	227	0/27	0/27	NA
1,2,3,7,8,9-HxCDF	pg/g	21	27	78%	0.161	-	251	Pond07-02	64.5	0/27	0/27	NA
1,2,3,4,6,7,8-HpCDF	pg/g	25	27	93%	0.288	-	886	Pond07-02	231	0/27	0/27	NA
1,2,3,4,7,8,9-HpCDF	pg/g	22	27	82%	0.383	-	203	Pond07-02	52.8	0/27	0/27	NA
OCDF	pg/g	25	27	93%	0.603	-	348	Pond07-02	117	0/27	0/27	NA
Total TCDD	pg/g	25	27	93%	0.177	-	9450	Pond07-02	2460	0/27	0/27	NA
Total PeCDD	pg/g	25	27	93%	0.122	-	8070	Pond07-02	2120	0/27	0/27	NA
Total HxCDD	pg/g	25	27	93%	1	-	10400	Pond07-02	2530	0/27	0/27	NA
Total HpCDD	pg/g	26	27	96%	0.5	-	5740	Pond07-02	1430	0/27	0/27	NA
Total TCDF	pg/g	27	27	100%	0.147	-	32800	Pond07-02	9810	0/27	0/27	NA
Total PeCDF	pg/g	26	27	96%	0.0906	-	16000	Pond07-02	4490	0/27	0/27	NA
Total HxCDF	pg/g	26	27	96%	0.0798	-	6690	Pond07-02	1790	0/27	0/27	NA
Total HpCDF	pg/g	25	27	93%	0.565	-	1800	Pond07-02	479	0/27	0/27	NA

Constituent	Units	Number of Detects	Number of Samples	Detection Frequency %	ction Range of Detections Max	Location of Maximum Detection	Arithmetic Mean	Num Exceedanc of Sa	ber of es / Number mples	Exceedances Above Background/ Total		
		Deleter	Cumpico	inoquonoy /					inoun	HH PSL °	Eco PSL ^f	Exceedances ⁿ
Metals												
Antimony	mg/kg	44	47	94%	0.05	-	4.7	DP-07.13,DP-07.15	1.62	0/47	0/47	NA
Arsenic	mg/kg	47	47	100%	1.66	-	98.9	Pond03-01	19.3	47/47	23/47	23/47
Barium	mg/kg	47	47	100%	23	-	5240	Pond03-07	1530	1/47	0/47	1/1
Beryllium	mg/kg	43	47	92%	0.21	-	1.15	Pond02-01	0.615	0/47	0/47	NA
Cadmium	mg/kg	28	47	60%	0.22	-	5	Pond03-01	1.31	0/47	18/47	9/18
Chromium (hexavalent compounds)	mg/kg	2	23	9%	0.06	-	0.11	DP-07.11	0.0302	0/23	0/23	NA
Chromium	mg/kg	47	47	100%	8	-	94.5	Pond03-01	40.2	0/47	19/47	9/19
Cobalt	mg/kg	47	47	100%	2.1	-	30.4	Pond03-09	12.6	0/47	8/47	8/8
Copper	mg/kg	47	47	100%	1.6	-	240	Pond02-02	72.7	0/47	24/47	22/24
Lead	mg/kg	47	47	100%	1.3	-	389	Pond01-02	53.5	9/47	17/47	17/17
Mercury	mg/kg	44	47	94%	0.021	-	0.419	Pond03-01	0.0889	0/47	4/47	4/4
Molybdenum	mg/kg	44	47	94%	0.29	-	67.1	Pond03-09	6.76	0/47	21/47	17/21
Nickel	mg/kg	47	47	100%	8.21	-	61.5	Pond03-09	27.3	0/47	29/47	8/29
Selenium	mg/kg	21	47	45%	0.39	-	5.7	Pond03-09	1.09	0/47	0/47	NA
Silver	mg/kg	23	47	49%	0.081	-	0.799	Pond02-01	0.266	0/47	0/47	NA
Thallium	mg/kg	24	47	51%	0.042	-	1.39	Pond01-02	0.335	0/47	0/47	NA
Vanadium	mg/kg	47	47	100%	11	-	113	Pond03-09	51.9	0/47	0/47	NA
Zinc	mg/kg	47	47	100%	12	-	1510	Pond03-01	356	0/47	22/47	21/22
Total Petroleum Hydrocarbons (TP	H)											
Gasoline C6-C8	mg/kg	NA	NA	0%	NA	-	NA	NA	NA	NA	NA	NA
Gasoline C8-C10	mg/kg	NA	NA	0%	NA	-	NA	NA	NA	NA	NA	NA
Total Gasoline (C6-C10) ¹	mg/kg	NA	NA	0%	NA	-	NA	NA	NA	NA	NA	NA
Diesel C10-C12	mg/kg	20	40	50%	1.6	-	160	Pond03-02	19.7	4/40	NA	NA
Diesel C12-C16	mg/kg	24	40	60%	1.1	-	100	Pond03-02	16.6	0/40	NA	NA
Diesel C16-C24	mg/kg	35	40	88%	1	-	1400	Pond03-02	189	0/40	NA	NA
Total Diesel (C10-C24) ²	mg/kg	35	40	88%	1	-	1660	Pond03-02	252	0/40	2/40	NA
Motor Oil C24-C36	mg/kg	32	40	80%	7.3	-	4100	Pond03-02	581	0/40	NA	NA
Polychlorinated Biphenyls (PCB)												
PCB #8	mg/kg	3	27	11%	0.0004	-	0.0011	DP-07.13	0.000541	0/27	0/27	NA
PCB #18	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #28	mg/kg	3	27	11%	0.00054	-	0.00061	DP-07.14	0.000425	0/27	0/27	NA
PCB #44	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #52	mg/kg	0	27	0%	NA	-	NA	NA	0.000442	0/27	0/27	NA
PCB #66	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA

Constituent	Units	Number of Detects	Number of Samples	Detection Frequency %	Range of Detections Max	Location of Maximum Detection	Arithmetic Mean	Num Exceedance of Sa	ber of es / Number mples	Exceedances Above Background/ Total		
				,,						HH PSL ^e	Eco PSL ^f	Exceedances "
PCB #77	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #81	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #101	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #105	mg/kg	0	27	0%	NA	-	NA	NA	0.000438	0/27	0/27	NA
PCB #118	mg/kg	1	27	4%	0.0011	-	0.0011	DP-07.13	0.000449	0/27	0/27	NA
PCB #128	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #138	mg/kg	3	27	11%	0.00031	-	0.00051	Pond03-02	0.00039	0/27	0/27	NA
PCB #153	mg/kg	2	27	7%	0.00043	-	0.00091	Pond03-02	0.000419	0/27	0/27	NA
PCB #156	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #169	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #170	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #180	mg/kg	4	27	15%	0.00049	-	0.00088	Pond03-05	0.00044	0/27	0/27	NA
PCB #187	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #206	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
PCB #209	mg/kg	0	27	0%	NA	-	NA	NA	0.000414	0/27	0/27	NA
Total PCB Congeners ⁶	mg/kg	7	27	26%	0.0011	-	0.0056	Pond03-02	0.00296	0/27	0/27	NA
Polycyclic Aromatic Hydrocarbons	s (PAH)											
2-Methylnaphthalene	mg/kg	17	17	100%	0.0033	-	0.5	Pond02-02	0.0594	0/17	12/17	NA
Acenaphthene	mg/kg	17	40	43%	0.00073	-	0.29	Pond02-02	0.0583	0/40	12/40	NA
Acenaphthylene	mg/kg	21	40	53%	0.0071	-	3.4	Pond02-02	0.218	0/40	21/40	NA
Anthracene	mg/kg	19	40	48%	0.0034	-	1.3	Pond02-02	0.105	0/40	9/40	NA
Benzo(a)anthracene	mg/kg	19	40	48%	0.0058	-	1.1	Pond02-02	0.13	5/40	10/40	NA
Benzo(a)pyrene	mg/kg	20	40	50%	0.0077	-	1.6	Pond02-02	0.14	16/40	10/40	NA
Benzo(b)fluoranthene	mg/kg	22	40	55%	0.01	-	1.9	Pond02-02	0.175	10/40	0/40	NA
Benzo(g,h,i)perylene	mg/kg	17	40	43%	0.014	-	2.6	Pond02-02	0.178	0/40	9/40	NA
Benzo(k)fluoranthene	mg/kg	19	40	48%	0.0032	-	0.82	DP-07.13	0.0922	2/40	2/40	NA
Chrysene	mg/kg	24	40	60%	0.0068	-	1.4	DP-07.13	0.167	0/40	8/40	NA
Dibenz(a,h)anthracene	mg/kg	17	40	43%	0.00097	-	0.15	Pond02-02	0.0483	5/40	2/40	NA
Dibenzofuran	mg/kg	17	17	100%	0.01	-	1.8	Pond02-02	0.246	0/17	0/17	NA
Fluoranthene	mg/kg	29	40	73%	0.0067	-	7.8	Pond02-02	0.808	0/40	14/40	NA
Fluorene	mg/kg	18	40	45%	0.0017	-	0.99	Pond02-02	0.0989	0/40	7/40	NA
Indeno(1,2,3-cd)Pyrene	mg/kg	17	40	43%	0.013	-	2	Pond02-02	0.159	9/40	5/40	NA
Naphthalene	mg/kg	24	40	60%	0.015	-	12	Pond02-02	0.732	1/40	19/40	NA
Phenanthrene	mg/kg	28	40	70%	0.012	-	8.3	Pond02-02	0.678	0/40	18/40	NA
Pyrene	mg/kg	30	40	75%	0.006	-	7.5	Pond02-02	0.796	0/40	17/40	NA

Constituent	Units	Number of Detects	Number of Samples	Detection Frequency %	% Range of Detections Max	Location of Maximum Detection	Arithmetic Mean	Num Exceedanc of Sa	ber of es / Number mples	Exceedances Above Background/ Total		
										HH PSL °	Eco PSL ^f	Exceedances "
LMW-PAH ¹⁰	mg/kg	29.000	40.000	73%	0.012	-	28.600	Pond02-02	2.580	0/40	0/40	NA
HMW-PAH ¹¹	mg/kg	30.00	40.00	75%	0.02	-	26.60	Pond02-02	3.23	0/40	0/40	NA
Total PAH ³	mg/kg	30	40	75%	0.022	-	33	Pond02-02	3.5	0/40	14/40	NA
USEPA B(a)P TEQ ⁴	mg/kg	24.000	40.000	60%	0.001	-	2.300	Pond02-02	0.275	16/40	10/40	NA
Volatile Organic Compounds (VOC	;)											
2-Butanone	mg/kg	10	21	48%	0.0012	-	0.0051	DP-07.13	0.00142	0/21	0/21	NA
Acetone	mg/kg	20	21	95%	0.00099	-	0.2	DP-07.13	0.0159	0/21	7/21	NA
Benzene	mg/kg	1	21	5%	0.00028	-	0.00028	DP-07.11	0.000165	0/21	0/21	NA
Carbon Disulfide	mg/kg	1	21	5%	0.00039	-	0.00039	DP-07.15	0.000791	0/21	0/21	NA
Chlorobenzene	mg/kg	10	21	48%	0.00021	-	0.0039	DP-07.09	0.000992	0/21	0/21	NA
Ethanol	mg/kg	2	21	10%	0.19	-	5.4	DP-07.13	0.288	0/21	0/21	NA
Isopropyl alcohol	mg/kg	1	21	5%	0.5	-	0.5	DP-07.13	0.0279	0/21	0/21	NA
Isopropylbenzene	mg/kg	0	21	0%	NA	-	NA	NA	0.000204	0/21	0/21	NA
Methylene Chloride	mg/kg	7	21	33%	0.00067	-	0.0012	DP-07.17	0.000715	0/21	0/21	NA
p-Isopropyl Toluene	mg/kg	0	21	0%	NA	-	NA	NA	0.000245	0/21	0/21	NA
Naphthalene	mg/kg	1	21	5%	0.00056	-	0.00056	DP-07.15	0.000266	0/21	0/21	NA
Toluene	mg/kg	4	21	19%	0.00022	-	0.00076	DP-07.10	0.000221	0/21	0/21	NA
Dioxins/Furans		•						•				
2,3,7,8-TCDD TEQ (Human/Mammal) ⁷	pg/g	36	39	92%	0.02	-	1285	Pond03-01	180	31/39	28/39	NA
2.3.7.8-TCDD TEQ (Bird) ⁸	pa/a	36	39	92%	0.016	-	2793	Pond03-01	477	0/39	30/39	NA
2,3,7,8-TCDD TEQ (Fish) ⁹	pg/g	36	39	92%	0.016	-	1392	Pond03-01	189	0/39	28/39	NA
2,3,7,8- TCDD	pg/g	34	39	87%	0.22	-	186	Pond03-01	32.2	28/39	0/39	NA
1,2,3,7,8- PeCDD	pg/g	33	39	85%	0.462	-	379	Pond03-01	39.7	0/39	0/39	NA
1,2,3,4,7,8- HxCDD	pg/g	33	39	85%	0.338	-	397	Pond03-01	34.2	4/39	0/39	NA
1,2,3,6,7,8- HxCDD	pg/g	34	39	87%	0.231	-	670	Pond03-01	66.5	5/39	0/39	NA
1,2,3,7,8,9- HxCDD	pg/g	32	39	82%	0.419	-	508	Pond03-01	48.3	4/39	0/39	NA
1,2,3,4,6,7,8- HpCDD	pg/g	36	39	92%	0.41	-	2760	Pond03-01	380	0/39	0/39	NA
OCDD	pg/g	36	39	92%	1.66	-	17900	Pond03-09	1660	0/39	0/39	NA
2,3,7,8- TCDF	pg/g	35	39	90%	0.299	-	1240	Pond03-01	237	0/39	0/39	NA
1,2,3,7,8-PeCDF	pg/g	34	39	87%	0.841	-	668	Pond03-01	99.5	0/39	0/39	NA
2,3,4,7,8-PeCDF	pg/g	34	39	87%	1.03	-	645	Pond03-01	92.6	0/39	0/39	NA
1,2,3,4,7,8-HxCDF	pg/g	33	39	85%	0.45	-	467	Pond03-01	47.8	0/39	0/39	NA
1,2,3,6,7,8-HxCDF	pg/g	34	39	87%	0.3	-	525	Pond03-01	58.4	0/39	0/39	NA
2,3,4,6,7,8-HxCDF	pg/g	35	39	90%	0.125	-	691	Pond03-01	70.5	0/39	0/39	NA

Constituent	Units	Number of Detects	Number of Samples	Detection	Range	of Det	ections	Location of	Arithmetic Mean	Numl Exceedance of Sa	per of es / Number mples	Exceedances Above Background/ Total
			Campico							HH PSL °	Eco PSL ^f	Exceedances ⁿ
1,2,3,7,8,9-HxCDF	pg/g	33	39	85%	0.281	-	179	Pond03-01	20.2	0/39	0/39	NA
1,2,3,4,6,7,8-HpCDF	pg/g	36	39	92%	0.195	-	781	Pond03-01	101	0/39	0/39	NA
1,2,3,4,7,8,9-HpCDF	pg/g	31	39	80%	0.211	-	178	Pond03-01	19	0/39	0/39	NA
OCDF	pg/g	34	39	87%	0.61	-	1500	Pond03-09	130	0/39	0/39	NA
Total TCDD	pg/g	34	39	87%	3.77	-	7690	Pond03-01	737	0/39	0/39	NA
Total PeCDD	pg/g	34	39	87%	1.77	-	6780	Pond03-01	546	0/39	0/39	NA
Total HxCDD	pg/g	34	39	87%	1.93	-	9460	Pond03-01	777	0/39	0/39	NA
Total HpCDD	pg/g	36	39	92%	0.773	-	5040	Pond03-01	669	0/39	0/39	NA
Total TCDF	pg/g	36	39	92%	0.177	-	24100	Pond03-01	3860	0/39	0/39	NA
Total PeCDF	pg/g	34	39	87%	8.93	-	11800	Pond03-01	1510	0/39	0/39	NA
Total HxCDF	pg/g	35	39	90%	0.284	-	5300	Pond03-01	593	0/39	0/39	NA
Total HpCDF	pg/g	36	39	92%	0.195	-	1630	Pond03-01	235	0/39	0/39	NA

Table 4-54 Sediment Statistical Summary Ponds 5 and 9

Constituent	Units	Number of Detects	Number of	Detection Frequency %	Range of Detections	Location of Maximum	Arithmetic Mean	Num Exceedanc of Sa	ber of es / Number mples	Exceedances Above Background/ Total		
			Samples					Detection		HH PSL °	Eco PSL ^f	PSL Exceedances "
Metals												•
Antimony	mg/kg	13	13	100%	0.252	- 2	.3	DP-5.63	0.857	0/13	0/13	NA
Arsenic	mg/kg	13	13	100%	0.76	- 9	.6	Pond5-02,Pond5- 03	3.99	13/13	0/13	0/13
Barium	mg/kg	13	13	100%	35	- 4	75	Pond5-03	118	0/13	0/13	NA
Beryllium	mg/kg	5	13	39%	0.217	- 0.	757	Pond5-02	0.293	0/13	0/13	NA
Cadmium	mg/kg	4	13	31%	0.111	- 0.	412	Pond5-02	0.18	0/13	0/13	NA
Chromium (hexavalent compounds)	mg/kg	0	9	0%	NA	- 1	JA	NA	0.025	0/9	0/9	NA
Chromium	mg/kg	13	13	100%	8.1	- :	36	DP-5.63	19.4	0/13	0/13	NA
Cobalt	mg/kg	13	13	100%	1.7	- 1	6.5	Pond5-02	6.55	0/13	0/13	NA
Copper	mg/kg	13	13	100%	2	- 7	85	Pond5-03	162	0/13	6/13	5/6
Lead	mg/kg	13	13	100%	1	- 7	0.8	Pond5-02	18.1	0/13	3/13	3/3
Mercury	mg/kg	7	13	54%	0.025	- 0.	179	Pond5-02	0.0482	0/13	0/13	NA
Molybdenum	mg/kg	12	13	92%	0.25	- 4	.83	Pond9-01	0.856	0/13	1/13	1/1
Nickel	mg/kg	13	13	100%	6.6	- :	36	DP-5.63	18.6	0/13	3/13	0/3
Selenium	mg/kg	3	13	23%	0.3	- ().7	Pond5-03	0.263	0/13	0/13	NA
Silver	mg/kg	4	13	31%	0.051	- 0	.25	Pond5-03	0.126	0/13	0/13	NA
Thallium	mg/kg	4	13	31%	0.033	- 0.	198	Pond5-02	0.125	0/13	0/13	NA
Vanadium	mg/kg	13	13	100%	10	- !	58	DP-5.63	31.4	0/13	0/13	NA
Zinc	mg/kg	13	13	100%	14	- 1	89	Pond5-02	60.6	0/13	2/13	2/2
Total Petroleum Hydrocarbons (TF	PH)								-			-
Gasoline C6-C8	mg/kg	NA	NA	0%	NA	- 1	JA	NA	NA	NA	NA	NA
Gasoline C8-C10	mg/kg	NA	NA	0%	NA	- 1	JA	NA	NA	NA	NA	NA
Total Gasoline (C6-C10) ¹	mg/kg	NA	NA	0%	NA	- 1	JA	NA	NA	NA	NA	NA
Diesel C10-C12	mg/kg	5	13	39%	1.1	- 2	70	Pond05-03	35.8	1/13	NA	NA
Diesel C12-C16	mg/kg	7	13	54%	1	- 2	50	Pond05-01	33.8	0/13	NA	NA
Diesel C16-C24	mg/kg	10	13	77%	1.4	- 2	100	Pond05-01	255	0/13	NA	NA
Total Diesel (C10-C24) ²	mg/kg	10	13	77%	1.4	- 24	121	Pond05-01	419	0/13	1/13	NA
Motor Oil C24-C36	mg/kg	9	13	69%	6.7	- 14	100	Pond05-01	318	0/13	NA	NA
Polychlorinated Biphenyls (PCB)	r											
PCB #8	mg/kg	1	5	20%	0.00043	- 0.0	0043	DP-05.63	0.000513	0/5	0/5	NA
PCB #18	mg/kg	0	5	0%	NA	- 1	JA	NA	0.000371	0/5	0/5	NA
PCB #28	mg/kg	3	5	60%	0.00024	- 0.0	012	Pond05-01	0.000417	0/5	0/5	NA
PCB #44	mg/kg	2	5	40%	0.00064	- 0.0	017	DP-05.63	0.000719	0/5	0/5	NA
PCB #52	mg/kg	2	5	40%	0.00081	- 0.0	0095	Pond05-01	0.000603	0/5	0/5	NA
PCB #66	mg/kg	1	5	20%	0.00063	- 0.0	0063	DP-05.63	0.000463	0/5	0/5	NA
PCB #77	mg/kg	1	5	20%	0.0018	- 0.0	018	DP-05.63	0.000991	0/5	0/5	NA
PCB #81	mg/kg	1	5	20%	0.0033	- 0.0	033	Pond05-01	0.000945	0/5	0/5	NA
PCB #101	mg/kg	2	5	40%	0.00069	- 0.0	023	Pond05-01	0.000849	0/5	0/5	NA
PCB #105	mg/kg	1	5	20%	0.00045	- 0.0	0045	Pond05-01	0.000375	0/5	0/5	NA
PCB #118	mg/kg	1	5	20%	0.0015	- 0.0	015	DP-05.63	0.000711	0/5	0/5	NA
PCB #128	mg/kg	1	5	20%	0.00055	- 0.0	0055	DP-05.63	0.000447	0/5	0/5	NA

Table 4-54 Sediment Statistical Summary Ponds 5 and 9

Constituent	Units Number of Of Samples Frequency % Range of Detection	etections	Location of Maximum	Arithmetic Mean	Num Exceedanc of Sa	ber of es / Number mples	Exceedances Above Background/ Total				
			Samples	···· , ··· , ···			Detection		HH PSL °	Eco PSL ^f	PSL Exceedances ⁿ
PCB #138	mg/kg	4	5	80%	0.00043 -	0.0018	Pond05-01	0.000779	0/5	0/5	NA
PCB #153	mg/kg	1	5	20%	0.00072 -	0.00072	DP-05.63	0.000575	0/5	0/5	NA
PCB #156	mg/kg	1	5	20%	0.00045 -	0.00045	DP-05.63	0.00044	0/5	0/5	NA
PCB #169	mg/kg	0	5	0%	NA -	NA	NA	0.00149	0/5	0/5	NA
PCB #170	mg/kg	0	5	0%	NA -	NA	NA	0.000371	0/5	0/5	NA
PCB #180	mg/kg	3	5	60%	0.00052 -	0.00081	DP-05.63	0.000737	0/5	0/5	NA
PCB #187	mg/kg	1	5	20%	0.00098 -	0.00098	DP-05.63	0.0114	0/5	0/5	NA
PCB #206	mg/kg	4	5	80%	0.00033 -	0.002	Pond05-01	0.000709	0/5	0/5	NA
PCB #209	mg/kg	1	5	20%	0.00044 -	0.00044	Pond05-01	0.000373	0/5	0/5	NA
Total PCB Congeners ⁶	mg/kg	4	5	80%	0.00396 -	0.02616	Pond05-01	0.015	0/5	0/5	NA
Polycyclic Aromatic Hydrocarbons	s (PAH)			•			•	•			•
2-Methylnaphthalene	mg/kg	3	4	75%	0.0028 -	0.11	Pond05-01	0.0413	0/4	2/4	NA
Acenaphthene	mg/kg	2	12	17%	0.0066 -	0.021	Pond05-01	0.0255	0/12	2/12	NA
Acenaphthylene	mg/kg	3	12	25%	0.0016 -	0.074	Pond05-01	0.0253	0/12	2/12	NA
Anthracene	mg/kg	3	12	25%	0.0035 -	0.019	Pond05-01	0.018	0/12	0/12	NA
Benzo(a)anthracene	mg/kg	2	12	17%	0.006 -	0.023	Pond05-03	0.023	0/12	0/12	NA
Benzo(a)pyrene	mg/kg	3	12	25%	0.0064 -	0.029	Pond05-03	0.02	0/12	0/12	NA
Benzo(b)fluoranthene	mg/kg	3	12	25%	0.0081 -	0.04	Pond05-03	0.0235	0/12	0/12	NA
Benzo(g,h,i)perylene	mg/kg	3	12	25%	0.01 -	0.049	Pond05-01	0.0279	0/12	0/12	NA
Benzo(k)fluoranthene	mg/kg	3	12	25%	0.0028 -	0.011	Pond05-03	0.0214	0/12	0/12	NA
Chrysene	mg/kg	4	12	33%	0.0049 -	0.037	Pond05-03	0.0262	0/12	0/12	NA
Dibenz(a,h)anthracene	mg/kg	3	12	25%	0.0018 -	0.0047	Pond05-03	0.0205	0/12	0/12	NA
Dibenzofuran	mg/kg	3	4	75%	0.0023 -	0.027	Pond05-01	0.0541	0/4	0/4	NA
Fluoranthene	mg/kg	3	12	25%	0.013 -	0.14	Pond05-01	0.0426	0/12	0/12	NA
Fluorene	mg/kg	3	12	25%	0.0023 -	0.058	Pond05-01	0.0287	0/12	0/12	NA
Indeno(1,2,3-cd)Pyrene	mg/kg	3	12	25%	0.0055 -	0.038	Pond05-03	0.0262	0/12	0/12	NA
Naphthalene	mg/kg	3	12	25%	0.0051 -	0.44	Pond05-01	0.0719	0/12	1/12	NA
Phenanthrene	mg/kg	4	12	33%	0.0098 -	0.34	Pond05-01	0.0659	0/12	1/12	NA
Pyrene	mg/kg	3	12	25%	0.014 -	0.27	Pond05-01	0.0559	0/12	1/12	NA
LMW-PAH ¹⁰	mg/kg	4	12	33%	0.027 -	1.1	Pond05-01	0.39	0/12	0/12	NA
HMW-PAH ¹¹	mg/kg	4	12	33%	0.029 -	0.55	Pond05-01	0.263	0/12	0/12	NA
Total PAH ³	mg/kg	4	12	33%	0.077 -	0.9	Pond05-01	0.392	0/12	0/12	NA
USEPA B(a)P TEQ ⁴	mg/kg	4	12	33%	0.00029 -	0.045	Pond05-03	0.0206	1/12	0/12	NA
Volatile Organic Compounds (VOC)										
2-Butanone	mg/kg	7	9	78%	0.00076 -	0.0043	DP-05.63	0.00163	0/9	0/9	NA
Acetone	mg/kg	9	9	100%	0.00093 -	0.017	DP-05.63	0.00746	0/9	2/9	NA
Benzene	mg/kg	0	9	0%	NA -	NA	NA	0.000144	0/9	0/9	NA
Carbon Disulfide	mg/kg	0	9	0%	NA -	NA	NA	0.000737	0/9	0/9	NA
Chlorobenzene	mg/kg	6	9	67%	0.00051 -	0.0026	DP-01.05	0.00118	0/9	0/9	NA
Ethanol	mg/kg	0	9	0%	NA -	NA	NA	0.025	0/9	0/9	NA
Isopropyl alcohol	mg/kg	0	9	0%	NA -	NA	NA	0.00428	0/9	0/9	NA

Table 4-54 Sediment Statistical Summary Ponds 5 and 9

Constituent	Units	Number of	Number of	Detection	Range of	Detections	Location of Maximum	Arithmetic	Num Exceedanc of Sa	iber of ces / Number amples	Exceedances Above Background/ Total
		Delects	Samples	Frequency 76			Detection	Weall	HH PSL °	Eco PSL ^f	PSL Exceedances ^h
Isopropylbenzene	mg/kg	0	9	0%	NA	- NA	NA	0.000189	0/9	0/9	NA
Methylene Chloride	mg/kg	4	9	44%	0.00047	- 0.0022	DP-01.05	0.000942	0/9	0/9	NA
p-Isopropyl Toluene	mg/kg	0	9	0%	NA	- NA	NA	0.000224	0/9	0/9	NA
Naphthalene	mg/kg	0	9	0%	NA	- NA	NA	0.000229	0/9	0/9	NA
Toluene	mg/kg	8	9	89%	0.00022	- 0.00095	DP-05.63	0.000442	0/9	0/9	NA
Dioxins/Furans							•				
2,3,7,8-TCDD TEQ	,			1000/		- =0	D 105.04	05.0	= /0	0.10	
(Human/Mammal) ⁷	pg/g	6	6	100%	0.019	70	Pond05-01	25.2	5/6	3/6	NA
2,3,7,8-TCDD	,			1000/			D 105.04		a./a	110	
TEQ (Bird) ⁸	pg/g	6.0	6.0	100%	0.0	75.0	Pond05-01	30.6	0/6	4/6	NA
2,3,7,8-TCDD											
TEQ (Fish) ⁹	pg/g	6.0	6.0	100%	0.0	68.0	Pond05-01	25.0	0/6	3/6	NA
2,3,7,8-TCDD	pg/g	5	6	83%	2.87	- 49.4	Pond05-01	13.4	4/6	0/6	NA
1,2,3,7,8-PeCDD	pg/g	5	6	83%	1.58	- 4.85	Pond05-02	2.7	0/6	0/6	NA
1,2,3,4,7,8-HxCDD	pg/g	5	6	83%	1.32	- 5.65	Pond05-01	2.96	0/6	0/6	NA
1,2,3,6,7,8-HxCDD	pg/g	5	6	83%	5.28	- 20.1	Pond05-01	10.3	0/6	0/6	NA
1,2,3,7,8,9-HxCDD	pg/g	5	6	83%	3.39	- 11.9	Pond05-01	6.26	0/6	0/6	NA
1,2,3,4,6,7,8-HpCDD	pg/g	6	6	100%	0.222	- 235	Pond05-01	125	0/6	0/6	NA
OCDD	pg/g	6	6	100%	1.58	- 1690	Pond05-01	956	0/6	0/6	NA
2,3,7,8-TCDF	pg/g	5	6	83%	1.53	- 4.86	Pond05-01	2.54	0/6	0/6	NA
1,2,3,7,8-PeCDF	pg/g	5	6	83%	0.753	- 2.32	Pond05-02	1.35	0/6	0/6	NA
2,3,4,7,8-PeCDF	pg/g	5	6	83%	0.873	- 24.8	DP-05.63	7.64	0/6	0/6	NA
1,2,3,4,7,8-HxCDF	pg/g	5	6	83%	1.13	- 11.4	Pond05-02	4.99	0/6	0/6	NA
1,2,3,6,7,8-HxCDF	pg/g	5	6	83%	1.79	- 11.9	Pond05-01	6.01	0/6	0/6	NA
2,3,4,6,7,8-HxCDF	pg/g	5	6	83%	1.71	- 25.5	Pond05-01	12.2	0/6	0/6	NA
1,2,3,7,8,9-HxCDF	pg/g	6	6	100%	0.148	- 5.65	Pond05-02	2.49	0/6	0/6	NA
1,2,3,4,6,7,8-HpCDF	pg/g	6	6	100%	0.144	- 86.1	Pond05-01	42.2	0/6	0/6	NA
1,2,3,4,7,8,9-HpCDF	pg/g	5	6	83%	1.46	- 4.9	Pond05-02	2.65	0/6	0/6	NA
OCDF	pg/g	6	6	100%	0.446	- 221	Pond05-01	110	0/6	0/6	NA
Total TCDD	pg/g	5	6	83%	9.65	- 91.8	Pond05-01	32.6	0/6	0/6	NA
Total PeCDD	pg/g	5	6	83%	15.3	- 50.6	Pond05-02	27.2	0/6	0/6	NA
Total HxCDD	pg/g	5	6	83%	45.7	- 154	Pond05-02	85.5	0/6	0/6	NA
Total HpCDD	pg/g	6	6	100%	0.43	- 458	Pond05-01	257	0/6	0/6	NA
Total TCDF	pg/g	5	6	83%	26.9	- 231	Pond05-01	107	0/6	0/6	NA
Total PeCDF	pg/g	5	6	83%	23.5	- 484	Pond05-01	244	0/6	0/6	NA
Total HxCDF	pg/g	6	6	100%	0.148	- 384	Pond05-01	183	0/6	0/6	NA
Total HpCDF	pg/g	6	6	100%	0.144	- 250	Pond05-01	119	0/6	0/6	NA

Table 4-55 Surface Water Statistical Summary Pond 8

				Detection				Location of		Numb	er of Exceeda	ances /
Constituent	Units	Number of	Number of	Frequency	Range of	of Dete	ctions	Maximum	Arithmetic	Nur	mber of Sam	oles
		Detects	Samples	(%)				Detection	Mean	PSL ^a	WQO ^b	RWQCB
Metals	•	*	•	•	•			•	•		•	
Antimony	µg/L	3	14	21%	0.12	-	0.24	Drainage-B (Pond 8 Outfall)	0.43	0/14	0/14	NA
Arsenic	µg/L	10	14	71%	0.26	-	3.3	DP-04.15,Drainage-B (Pond 8 Outfall)(9/24/2008)	1.2	0/14	0/14	NA
Barium	µg/L	14	14	100%	28	-	180	DP-04.14,DP-04.15	66	0/14	0/14	NA
Cadmium	µg/L	1	14	7%	0.25	-	0.25	Drainage-B (Pond 8 Outfall)	0.48	0/14	1/14	NA
Chromium	µg/L	5	14	36%	0.29	-	2.1	DP-05.61(4/19/2006)	0.64	0/14	0/14	NA
Cobalt	µg/L	7	14	50%	0.094	-	1.2	DP-04.14	0.45	0/14	0/14	NA
Copper	µg/L	5	14	36%	0.46	-	3.8	Drainage-B (Pond 8 Outfall)	0.96	0/14	0/14	NA
Lead	µg/L	3	14	21%	0.14	-	1.5	Drainage-B (Pond 8 Outfall)	0.52	0/14	1/14	NA
Mercury	µg/L	1	14	7%	0.099	- (0.099	Drainage-B (Pond 8 Outfall)	0.10	0/14	1/14	NA
Molybdenum	µg/L	9	14	64%	1.1	-	9.15	Drainage-B (Pond 8 Outfall)(12/10/2007)	2.2	0/14	0/14	NA
Nickel	µg/L	7	14	50%	0.485	-	4.8	Drainage-B (Pond 8 Outfall)	0.94	0/14	0/14	NA
Selenium	µg/L	2	14	14%	0.087	-	0.1	Drainage-B (Pond 8 Outfall)(12/10/2007)	0.44	0/14	0/14	NA
Silver	µg/L	1	14	7%	0.047	- (0.047	Drainage-B (Pond 8 Outfall)	0.47	0/14	0/14	NA
Thallium	µg/L	1	14	7%	0.045	- (0.045	Drainage-B (Pond 8 Outfall)(6/13/2007)	0.47	0/14	0/14	NA
Vanadium	µg/L	3	9	33%	1.155	-	2.8	Drainage-B (Pond 8 Outfall)	0.93	0/9	0/9	NA
Zinc	µg/L	14	14	100%	3.15	-	33	Drainage-B (Pond 8 Outfall)	12	0/14	0/14	NA
Total Petroleum Hydroc	arbons (TPH	1)										
Gasoline C6-C8	mg/L	2	11	18%	0.011	- (0.017	Drainage-B (Pond 8 Outfall)(6/13/2007)	0.023	0/11	0/11	0/11
Gasoline C8-C10	mg/L	0	11	0%	NA	-	NA	NA	0.025	0/11	0/11	0/11
Total Gasoline (C6-C10) ¹	mg/L	2	11	18%	0.011	- (0.017	Drainage-B (Pond 8 Outfall)(6/13/2007)	0.014	0/11	0/11	0/11
Diesel C16-C24	mg/L	2	11	18%	0.016	- (0.035	Drainage-B (Pond 8 Outfall)	0.025	0/11	0/11	0/11
Total Diesel (C10-C24) ²	mg/L	2	11	18%	0.016	- (0.035	Drainage-B (Pond 8 Outfall)	0.026	0/11	0/11	0/11
Motor Oil C24-C36	mg/L	1	11	9%	0.24	-	0.24	Drainage-B (Pond 8 Outfall)	0.16	0/11	0/11	1/11
Polycyclic Aromatic Hyd	drocarbons (PAH)	•	•					•		•	•
Acenaphthylene	µg/L	1	12	8%	0.02	-	0.02	Drainage-B (Pond 8 Outfall)	0.058	0/12	0/12	NA
Anthracene	µg/L	1	12	8%	0.02	-	0.02	Drainage-B (Pond 8 Outfall)	0.043	0/12	0/12	NA
Benzo(a)anthracene	μg/L	1	12	8%	0.01	-	0.01	Drainage-B (Pond 8 Outfall)	0.042	0/12	1/12	NA
Benzo(a)pyrene	µg/L	0	12	0%	NA	-	NA	NA	0.042	0/12	0/12	NA
Benzo(b)fluoranthene	µg/L	1	12	8%	0.02	-	0.02	Drainage-B (Pond 8 Outfall)	0.043	1/12	1/12	NA
Benzo(g,h,i)perylene	µg/L	1	12	8%	0.04	-	0.04	Drainage-B (Pond 8 Outfall)	0.045	1/12	0/12	NA
Benzo(k)fluoranthene	µg/L	0	12	0%	NA	-	NA	NA	0.45	0/12	0/12	NA
Chrysene	µg/L	0	12	0%	NA	-	NA	NA	0.85	0/12	0/12	NA
Dibenz(a,h)anthracene	µg/L	1	12	8%	0.08	-	0.08	Drainage-B (Pond 8 Outfall)	0.048	1/12	1/12	NA
Table 4-55 Surface Water Statistical Summary Pond 8

				Detection				Location of	A -: 41 41-	Number of Exceedances /		
Constituent	Units	Number of	Number of	Frequency	Range of	of De	tections	Maximum	Arithmetic	NU	inder of Samp	pies
		Detects	Samples	(%)				Detection	Mean	PSL ^a	WQO [®]	RWQCB
Fluoranthene	μg/L	2	12	17%	0.03	-	0.24	Drainage-B (Pond 8 Outfall)	0.059	0/12	0/12	NA
Fluorenex c vb	μg/L	0	12	0%	NA	-	NA	NA	0.043	0/12	0/12	NA
Indeno(1,2,3-cd)Pyrene	μg/L	1	12	8%	0.03	-	0.03	Drainage-B (Pond 8 Outfall)	0.043	1/12	1/12	NA
Naphthalene	µg/L	3	12	25%	0.02	-	0.11	Drainage-B (Pond 8 Outfall)	0.052	0/12	0/12	NA
Phenanthrene	μg/L	2	12	17%	0.04	-	0.19	Drainage-B (Pond 8 Outfall)	0.056	0/12	0/12	NA
Pyrene	μg/L	2	12	17%	0.03	-	0.17	Drainage-B (Pond 8 Outfall)	0.053	2/12	0/12	NA
Total PAH ³	µg/L	2	12	17%	0.09	-	0.56	Drainage-B (Pond 8 Outfall)	0.33	0/12	0/12	NA
USEPA B(a)P TEQ ⁴	µg/L	1	12	8%	0.086	-	0.086	Drainage-B (Pond 8 Outfall)	0.086	0/12	1/12	NA
Volatile Organic Compo	unds (VOC)	•			•						•	•
1,4-Dichlorobenzene	µg/L	0	9	0%	NA	-	NA	NA	2.3	0/9	0/9	NA
Acetone	µg/L	4	9	44%	1.1	-	2.4	Drainage-B (Pond 8 Outfall)	3.7	0/9	0/9	NA
Bromomethane	µg/L	1	9	11%	0.4	-	0.4	Drainage-B (Pond 8 Outfall)	0.49	0/9	0/9	NA
Ethanol	µg/L	0	9	0%	NA	-	NA	NA	500	0/9	0/9	NA
Isopropyl alcohol	μg/L	2	9	22%	4.2	-	40	Drainage-B (Pond 8 Outfall)(6/13/2007)	44	0/9	0/9	NA
Methylene Chloride	µg/L	2	9	22%	0.4	-	3.1	Drainage-B (Pond 8 Outfall)(6/13/2007)	4.3	0/9	0/9	NA
p-Isopropyl Toluene	µg/L	0	9	0%	NA	-	NA	NA	0.25	0/9	0/9	NA
Toluene	µg/L	4	9	44%	0.2	-	0.4	Drainage-B (Pond 8 Outfall)	0.25	0/9	0/9	NA
Xylenes, m,p-	µg/L	0	9	0%	NA	-	NA	NA	0.25	0/9	0/9	NA
Xylenes, Total ⁵	µg/L	0	9	0%	NA	-	NA	NA	NA	0/9	0/9	NA
Dioxins/Furans												
2,3,7,8-TCDD TEQ (Human/Mammal) ⁷	pg/L	11	13	85%	0.005	-	2.9	(Pond 8 Outfall) (4/6/2007)	0.58	0/13	10/13	NA
2,3,7,8-TCDD TEQ (Bird) ⁸	pg/L	11	13	85%	0.002	-	3.5	(Pond 8 Outfall) (4/6/2007)	0.54	0/13	9/13	NA
2,3,7,8-TCDD TEQ (Fish) ⁹	pg/L	11	13	85%	0.002	-	2.2	(Pond 8 Outfall) (4/6/2007)	0.36	0/13	9/13	NA
1,2,3,4,6,7,8- HpCDD	pg/L	9	13	69%	3.51	-	82.2	(Pond 8 Outfall) (4/6/2007)	19.2	0/13	0/13	NA
OCDD	pg/L	11	13	85%	16.95	-	559	(Pond 8 Outfall) (4/6/2007)	137	0/13	0/13	NA
2,3,7,8- TCDF	pg/L	1	13	8%	2.81	-	2.81	(Pond 8 Outfall) (4/6/2007)	0.658	0/13	0/13	NA
2,3,4,7,8- PeCDF	pg/L	0	13	0%	NA	-	NA	NA	0.784	0/13	0/13	NA
1,2,3,6,7,8- HxCDF	pg/L	3	13	23%	3.02	-	4.66	(Pond 8 Outfall) (9/23/2010)	1.29	0/13	0/13	NA
2,3,4,6,7,8- HxCDF	pg/L	1	13	8%	1.56	-	1.56	(Pond 8 Outfall) (4/6/2007)	0.603	0/13	0/13	NA
1,2,3,4,6,7,8- HpCDF	pg/L	8	13	62%	1.75	-	34.6	(Pond 8 Outfall) (4/6/2007)	6.37	0/13	0/13	NA

Table 4-55 Surface Water Statistical Summary Pond 8

Constituent	Units	Number of	Number of	Detection Frequency	Range of Detections		ctions	Location of Maximum	Arithmetic	Number of Exceedances / Number of Samples		
		Detects	Samples	(%)	_			Detection	Mean	PSL ^a	WQO ^b	RWQCB
1,2,3,4,7,8,9- HpCDF	pg/L	1	13	8%	2.68	- :	2.68	(Pond 8 Outfall) (4/6/2007)	1.09	0/13	0/13	NA
OCDF	pg/L	8	13	62%	4.35	-	113	(Pond 8 Outfall) (4/6/2007)	20.8	0/13	0/13	NA
Total TCDD	pg/L	0	13	0%	NA	-	NA	NA	0.591	0/13	0/13	NA
Total HxCDD	pg/L	5	13	39%	4.315	- :	25.5	(Pond 8 Outfall) (4/6/2007)	7.32	0/13	0/13	NA
Total HpCDD	pg/L	9	13	69%	6.61	-	140	(Pond 8 Outfall) (4/6/2007)	35	0/13	0/13	NA
Total TCDF	pg/L	3	13	23%	6.61	- 4	43.6	(Pond 8 Outfall) (3/9/2007)	5.69	0/13	0/13	NA
Total PeCDF	pg/L	4	13	31%	2.06	- :	23.1	(Pond 8 Outfall) (3/9/2007)	5.13	0/13	0/13	NA
Total HxCDF	pg/L	5	13	39%	3.17	-	47	(Pond 8 Outfall) (4/6/2007)	11.3	0/13	0/13	NA
Total HpCDF	pg/L	8	13	62%	4.08	- 6	86.8	(Pond 8 Outfall) (4/6/2007)	15.6	0/13	0/13	NA

Table 4-56 Surface Water Statistical Summary North Pond and Ponds 6 and 7

				Detection	_			Location of		Number of Exceedances /		
Constituent	Units	Number of	Number of	Frequency	Range	of De	tections	Maximum	Arithmetic	NU	mber of Sam	pies
Madala		Detects	Samples	(%)				Detection	Mean	PSL °	WQO ^o	RWQCB
Metals		0	45	0.00/	0.40		0.00	(Dend C	0.450	0/45	0/45	NIA
Antimony	µg/L	3	15	20%	0.19	-	0.32	(Pond 6	0.453	0/15	0/15	NA
Arsenic	µg/L	10	15	67%	0.43	-	3.3	DP-4.13	1.34	0/15	0/15	NA
Barium	µg/∟	15	15	100%	29	-	1000	DP-4.13	428	0/15	0/15	INA
Cadmium	µg/L	2	15	13%	0.071	-	0.25	(Pond 6 Outfall) (3/26/2008)	0.455	0/15	2/15	NA
Chromium	μg/L	7	15	47%	0.345	-	1.2	DP-4.10,(Pond 6 Outfall) (12/10/2007)	0.689	0/15	0/15	NA
Cobalt	µg/L	8	15	53%	0.089	-	2.6	DP-4.9	0.686	0/15	0/15	NA
Copper	μg/L	7	15	47%	0.375	-	4.2	(Pond 6 Outfall) (3/26/2008)	1.01	0/15	0/15	NA
Lead	µg/L	3	15	20%	0.081	-	1.4	(Pond 6 Outfall) (3/26/2008)	0.518	0/15	2/15	NA
Mercury	ua/L	0	15	0%	NA	-	NA	NA	0.1	0/15	0/15	NA
Molvbdenum	ua/L	11	15	73%	1	-	8.5	DP-4.12	3.5	0/15	0/15	NA
Nickel	μg/L	11	15	73%	1.1	-	4.5	(Pond 6 Outfall) (3/26/2008)	1.38	0/15	0/15	NA
Selenium	µg/L	3	15	20%	0.11	-	0.18	(Pond 6 Outfall) (6/13/2007)	0.428	0/15	0/15	NA
Silver	µq/L	0	15	0%	NA	-	NA	NA	0.5	0/15	0/15	NA
Thallium	μg/L	1	15	7%	0.022	-	0.022	(Pond 6 Outfall) (6/13/2007)	0.468	0/15	0/15	NA
Vanadium	µg/L	4	11	36%	1	-	2.4	(Pond 6 Outfall) (6/13/2007)	0.959	0/11	0/11	NA
Zinc	µg/L	15	15	100%	5.5	-	31	(Pond 6 Outfall) (3/26/2008)	13.9	0/15	0/15	NA
Total Petroleum Hydroc	arbons (TPH	1)						<u> </u>				
Gasoline C6-C8	mg/L	1	5	20%	0.015	-	0.015	(Pond 6 Outfall) (6/13/2007)	0.023	0/5	0/5	0/5
Gasoline C8-C10	mg/L	1	5	20%	0.023	-	0.023	(Pond 6 Outfall) (6/13/2007)	0.0246	0/5	0/5	0/5
Total Gasoline (C6- C10) ¹	mg/L	1	5	20%	0.038	-	0.038	(Pond 6 Outfall) (6/13/2007)	0.038	0/5	0/5	0/5
Diesel C16-C24	mg/L	0	5	0%	NA	-	NA	NA	0.025	0/5	0/5	0/5
Total Diesel $(C10-C24)^2$	ma/L	0	5	0%	NA	-	NA	NA	NA	0/5	0/5	0/5
Motor Oil C24-C36	mg/L	1	5	20%	0.11	-	0.11	(Pond 6	0.142	0/5	0/5	0/5
Polycyclic Aromatic Hyd	drocarbons ((PAH)			-		-					
Acenaphthylene	µq/L	1	8	13%	0.02	-	0.02	(Pond 6	0.0544	0/8	0/8	NA
Anthracene	µg/L	0	8	0%	NA	-	NA	NA	0.045	0/8	0/8	NA
Benzo(a)anthracene	µg/L	0	8	0%	NA	-	NA	NA	0.0444	0/8	0/8	NA
Benzo(a)pyrene	µg/L	0	8	0%	NA	-	NA	NA	0.045	0/8	0/8	NA
Benzo(b)fluoranthene	µg/L	0	8	0%	NA	-	NA	NA	0.0444	0/8	0/8	NA
Benzo(g.h.i)pervlene	ua/L	0	8	0%	NA	-	NA	NA	0.045	0/8	0/8	NA

Table 4-56 Surface Water Statistical Summary North Pond and Ponds 6 and 7

		Number of		Detection				Location of		Number of Exceedances /		
Constituent	Units		Number of	Frequency	Range	of De	etections	Maximum	Arithmetic	Nu	oles	
		Detects	Samples	(%)				Detection	Mean	PSL ^a	WQO ^b	RWQCB
Benzo(k)fluoranthene	µg/L	0	8	0%	NA	-	NA	NA	0.0443	0/8	0/8	NA
Chrysene	μg/L	0	8	0%	NA	-	NA	NA	0.0443	0/8	0/8	NA
Dibenz(a,h)anthracene	μg/L	0	8	0%	NA	-	NA	NA	0.045	0/8	0/8	NA
Fluoranthene	μg/L	2	8	25%	0.0085	-	0.04	(Pond 6	0.0379	0/8	0/8	NA
Fluorene	μg/L	1	8	13%	0.009	-	0.009	(Pond 6	0.0405	0/8	0/8	NA
Indeno(1,2,3-cd)Pyrene	μg/L	0	8	0%	NA	-	NA	NA	0.0443	0/8	0/8	NA
Naphthalene	μg/L	3	8	38%	0.02	-	0.06	(Pond 6	0.0444	0/8	0/8	NA
Phenanthrene	μg/L	2	8	25%	0.015	-	0.05	(Pond 6	0.0398	0/8	0/8	NA
Pyrene	μg/L	2	8	25%	0.008	-	0.03	(Pond 6	0.0366	1/8	0/8	NA
Total PAH ³	μg/L	2	8	25%	0.019	-	0.11		0.0645	0/8	0/8	NA
USEPA B(a)P TEQ ⁴	µg/L	0	8	0%	NA	-	NA	NA	NA	0/8	0/8	NA
Volatile Organic Compo	unds (VOC)											
1,4-Dichlorobenzene	µg/L	1	5	20%	0.05	-	0.05	(Pond 6 Outfall) (3/9/2007)	0.21	0/5	0/5	NA
Acetone	µg/L	3	5	60%	1.25	-	9.3	(Pond 6 Outfall) (6/13/2007)	4.43	0/5	0/5	NA
Bromomethane	µg/L	1	5	20%	0.4	-	0.4	(Pond 6 Outfall) (3/9/2007)	0.48	0/5	0/5	NA
Ethanol	μg/L	1	5	20%	28	-	28	(Pond 6 Outfall) (6/13/2007)	406	0/5	0/5	NA
Isopropyl alcohol	μg/L	2	5	40%	1.5	-	140	(Pond 6 Outfall) (6/13/2007)	58.3	0/5	0/5	NA
Methylene Chloride	µg/L	2	5	40%	0.4	-	3.4	(Pond 6 Outfall) (6/13/2007)	3.76	0/5	0/5	NA
p-Isopropyl Toluene	μg/L	1	5	20%	0.1	-	0.1	(Pond 6 Outfall) (6/13/2007)	0.22	0/5	0/5	NA
Toluene	μg/L	4	5	80%	0.1	-	9.7	(Pond 6 Outfall) (6/13/2007)	2.33	0/5	0/5	NA
Xvlenes, m.p-	ua/L	0	5	0%	NA	-	NA	NA	0.25	0/5	0/5	NA
Xylenes Total ⁵	ug/l	0	5	0%	NA	-	NA	NA	NA	0/5	0/5	NA
Dioxins/Furans			-							0.0		
2,3,7,8-TCDD TEQ (Human/Mammal) ⁷	pg/L	5	10	50%	0.002	-	1.605	(Pond 6 Outfall)(9/4/2007)	0.646	0/10	3/10	NA
2,3,7,8-TCDD TEQ (Bird) ⁸	pg/L	5	10	50%	0.001	-	6.5015	(Pond 6 Outfall)(9/4/2007)	1.9	0/10	2/10	NA
2,3,7,8-TCDD TEQ (Eish) ⁹	pg/L	5	10	50%	0.001	-	1.8015	(Pond 6 Outfall)(9/4/2007)	0.533	0/10	2/10	NA
1234678-HpCDD	ng/l	3	10	30%	1 76	-	59.4	(Pond 6	10.9	0/10	0/10	NA
OCDD		5	10	50%	5 14	-	627	(Pond 6	84.1	0/10	0/10	NA
2 3 7 8-TCDF		2	10	20%	2 23	-	7 04	(Pond 6 Outfall)	1 21	0/10	0/10	NA
2.3.4.7.8-PeCDF	pa/L	1	10	10%	6.17	-	6.17	(Pond 6 Outfall)	1.15	0/10	0/10	NA
1.2.3.6.7.8-HxCDF	pg/L	1	10	10%	4.15	-	4.15	(Pond 6	0.78	0/10	0/10	NA
2,3,4,6,7,8-HxCDF	pg/L	0	10	0%	NA	-	NA	NA	0.411	0/10	0/10	NA

Table 4-56 Surface Water Statistical Summary North Pond and Ponds 6 and 7

				Detection				Location of		Number of Exceedances /			
Constituent	Units	Number of	Number of	Frequency	Range	of De	tections	Maximum	Arithmetic	Number of Samples			
		Detects	Samples	(%)				Detection	Mean	PSL ^a	WQO ^b	RWQCB	
1,2,3,4,6,7,8-HpCDF	pg/L	2	10	20%	11.9	-	20.9	(Pond 6	3.74	0/10	0/10	NA	
1,2,3,4,7,8,9-HpCDF	pg/L	0	10	0%	NA	-	NA	NA	0.785	0/10	0/10	NA	
OCDF	pg/L	2	10	20%	30.9	-	52.9	(Pond 6	9.59	0/10	0/10	NA	
Total TCDD	pg/L	1	10	10%	3.64	-	3.64	(Pond 6 Outfall)	0.852	0/10	0/10	NA	
Total HxCDD	pg/L	2	10	20%	16.1	-	19.3	(Pond 6 Outfall)	4.45	0/10	0/10	NA	
Total HpCDD	pg/L	3	10	30%	4.22	-	119	(Pond 6	22.6	0/10	0/10	NA	
Total TCDF	pg/L	2	10	20%	21.2	-	82.415	(Pond 6	10.6	0/10	0/10	NA	
Total PeCDF	pg/L	2	10	20%	26.3	-	45.41	(Pond 6	7.65	0/10	0/10	NA	
Total HxCDF	pg/L	2	10	20%	29.1	-	45	(Pond 6	7.82	0/10	0/10	NA	
Total HpCDF	pg/L	2	10	20%	31	-	48	(Pond 6	8.54	0/10	0/10	NA	

Table 4-57 Surface Water Statistical Summary Southern Ponds

				Detection				Location of		Number of Exceedances /		
Constituent	Units	Number of	Number of	Frequency	Range	of Det	ections	Maximum	Arithmetic	Number of Samples		
		Detects	Samples	(%)				Detection	Mean	PSL ^a	WQO ^b	
Metals												
Antimony	µg/L	0	11	0%	NA	-	NA	NA	0.5	0/11	0/11	
Arsenic	µg/L	7	11	64%	1.1	-	4.6	DP-7.10	1.81	0/11	0/11	
Barium	μg/L	11	11	100%	48	-	160	DP-7.16	106	0/11	0/11	
Cadmium	µg/L	0	11	0%	NA	-	NA	NA	0.5	0/11	0/11	
Chromium	µg/L	6	11	55%	1	-	110	DP-7.9	12.5	0/11	1/11	
Cobalt	μg/L	0	11	0%	NA	-	NA	NA	0.5	0/11	0/11	
Copper	µg/L	5	11	46%	1.1	-	2.2	DP-7.18	1.05	0/11	0/11	
Lead	μg/L	0	11	0%	NA	-	NA	NA	0.5	0/11	0/11	
Mercury	µg/L	0	11	0%	NA	-	NA	NA	0.1	0/11	0/11	
Molybdenum	µg/L	7	11	64%	1	-	13	DP-7.9	2.49	0/11	1/11	
Nickel	µg/L	2	11	18%	1.1	-	1.1	DP-7.17,DP-7.18	0.609	0/11	0/11	
Selenium	µg/L	0	11	0%	NA	-	NA	NA	0.5	0/11	0/11	
Silver	µg/L	0	11	0%	NA	-	NA	NA	0.5	0/11	0/11	
Thallium	μg/L	0	11	0%	NA	-	NA	NA	0.5	0/11	0/11	
Vanadium	μg/L	5	11	46%	1.3	-	20	DP-7.9	2.79	0/11	0/11	
Zinc	μg/L	11	11	100%	1.2	-	23	DP-7.10	8.49	0/11	0/11	

Table 4-58 Surface Water Statistical Summary Ponds 5 and 9

				Detection				Location of		Number of E	xceedances /
Constituent	Units	Number of	Number of	Frequency	Range	of Det	ections	Maximum	Arithmetic	Number o	f Samples
		Detects	Samples	(%)				Detection	Mean	PSL ^a	WQO ^b
Metals											
Antimony	µg/L	0	3	0%	NA	-	NA	NA	0.5	0/3	0/3
Arsenic	µg/L	2	3	67%	1.9	-	8.5	DP-1.5	3.6	0/3	0/3
Barium	μg/L	3	3	100%	31	-	35	DP-5.63 (Deep)	33	0/3	0/3
Cadmium	μg/L	0	3	0%	NA	-	NA	NA	0.5	0/3	0/3
Chromium	µg/L	1	3	33%	1.2	-	1.2	DP-5.63 (Shallow)	0.73	0/3	0/3
Cobalt	µg/L	1	3	33%	2.1	-	2.1	DP-5.63 (Deep)	1.0	0/3	0/3
Copper	µg/L	1	3	33%	4.2	-	4.2	DP-1.5	1.7	0/3	0/3
Lead	µg/L	0	3	0%	NA	-	NA	NA	0.5	0/3	0/3
Mercury	µg/L	0	3	0%	NA	-	NA	NA	0.1	0/3	0/3
Molybdenum	µg/L	1	3	33%	7	-	7	DP-1.5	2.7	0/3	0/3
Nickel	μg/L	0	3	0%	NA	-	NA	NA	0.5	0/3	0/3
Selenium	μg/L	0	3	0%	NA	-	NA	NA	0.5	0/3	0/3
Silver	µg/L	0	3	0%	NA	-	NA	NA	0.5	0/3	0/3
Thallium	μg/L	0	3	0%	NA	-	NA	NA	0.5	0/3	0/3
Vanadium	µg/L	1	3	33%	1.7	-	1.7	DP-1.5	0.9	0/3	0/3
Zinc	µg/L	2	3	67%	2.1	-	4.9	DP-5.63 (Shallow)	3.2	0/3	0/3

Figures

Appendices A-I (on CD)

A - Field Notes

B - Data Validation and Laboratory Reports

C - Boring Logs

D - Selection of Screening Level Values for Data Evaluation

E - Deleted

F - Forensic Evaluation of TPH Content in Soil Samples Containing Wood/Sawdust and Other Organic Material

G - Dioxin Profiles (Not substantially changed from January 2012 submittal. To be submitted with final report.)

H – Responses to Comments

I - Groundwater Geochemistry Evaluation